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Abstract—We consider image classification in a weakly
supervised scenario where the training data are annotated at
different levels of abstractions. A subset of the training data
are annotated with coarse labels (e.g. wolf, dog), while the
rest of the training data are annotated with fine labels (e.g.
breeds of wolves and dogs). Each coarse label corresponds
to a superclass of several fine labels. Our goal is to learn
a model that can classify a new image into one of the fine
classes. We investigate how the coarsely labeled data can
help improve the fine label classification. Since it is usually
much easier to collect data with coarse labels than those with
fine labels, the problem setup considered in this paper can
benefit a wide range of real-world applications. We propose
a model based on convolutional neural networks (CNNs) to
address this problem. We demonstrate the effectiveness of the
proposed model on several benchmark datasets. Our model
significantly outperforms the naive approach that discards the
extra coarsely labeled data.

I. INTRODUCTION

Image classification is one of the most fundamental
problems in computer vision. It serves as a building block
for many other high level tasks in vision, such as object
detection, scene understanding, etc. The performance of
image classification systems has increased dramatically in
the past few years. The current state-of-the-art image clas-
sification system has even surpassed human performance on
the ImageNet challenge [1].

The availability of large-scale datasets has been one
of the most important driving forces of this tremendous
success. For example, the ImageNet [2] dataset contains
thounsands of object categories and millions of images.
ImageNet has enabled the resurgence of deep convolutional
neural networks in computer vision [3]. In such datasets,
the categories (called “synsets” in ImageNet) are often
organized in a hierarchy. The categories at the top of the
hierarchy correspond to coarse classes (e.g. wolf, dog).
As one goes deeper in the hierarchy, the categories will
correspond to finer classes (e.g. breeds of wolves or dogs).

In order to collect large-scale image datasets, the standard
approach is to search images online and ask humans to
label them. This can be very expensive and time-consuming,
especially for fine-grained categorises. First of all, labeling
fine-grained categories often requires expert knowledge (e.g.
breeds of wolves or dogs). In addition, if a category is too
fine-grained, it might be difficult to get access to enough
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Figure 1: Illustration of the problem considered in this paper.
We consider a scenario where the training data consist of
two subsets Syine and Scoarse. Each image in the first set
Sine is annotated with a fine label (e.g. coyote, gray wolf,
etc.). We assume that each fine class belongs to exactly one
coarse class (e.g. wolf). So we can equivalently think of
each image in St being annotated with a fine label and
the corresponding coarse label (although the coarse label is
redundant once we know the fine label). Each image in the
second subset Seoqrse 1S annotated with only a coarse label
(e.g. wolf) and its fine label is unknown. Our goal is to use
these two subsets to train a fine label classifier.

images of this category. In contrast, it is relatively easy
to collect and annotate images of coarse categories (e.g.
wolf, dog), since there are more images available and the
annotation can be done by non-experts.

In this work, we consider a weakly supervised scenario for
image classification where only a subset of training data are
labeled with fine classes (e.g. breed of wolves or dogs) and
the rest of the training data are labeled with coarse classes
(e.g. wolf, dog). Each fine class corresponds to a subcategory
of one of the coarse class. From such training data, we learn
a system that can classify new images into one of the fine
classes. See Fig. | for an illustration.

In this scenario, we are interested in learning fine-class
classification models whose performance can be improved
with the augmentation of additional training data annotated
with coarse labels. Ristin et al. [4] has considered similar
problem setting and proposed a learning method based on
the NCM forest [5]. However, convolutional neural network
is the current de facto standard in image classification.



It is not clear how the method in [4] can be applied in
combination with CNNs.

The main contribution of this paper is to develop a CNN-
based approach for weakly supervised image classification.
Similar to [4], our proposed method can take advantage of
training data with coarse labels to improve the performance
of fine-class classification. Since our proposed method is
based on the powerful CNN framework, perhaps not sur-
prisingly, it significantly outperforms the method in [4].

II. RELATED WORK

In this section, we briefly review several lines of work
most relevant to this paper.

Convolutional neural networks: Convolutional neural
network (CNN) has shown tremendous success over the
past few years. Since AlexNet [3] won the 2012 ImageNet
challenge, CNN has quickly become the method of choice
for image classification and many CNN variants have been
proposed. For example, VGG Net [6] and GoogLeNet [7]
add more layers to the original AlexNet to make the network
deeper. Network-in-Network (NIN) [8] proposes to replace
the linear filters in conventional convolutional networks
with micro neural networks. ResNet [9] introduces shortcut
connections in the network architecture to learn very deep
network. Our proposed method benefits from these recent
developments in CNNs. It can use any of these existing deep
networks as its base model.

Semantic hierarchy in visual recognition: Our work is
related to a line of research on using semantic relations of
objects in visual recognition. For example, the object classes
in ImageNet[2] are organized as a hierarchical taxonomy
with different levels of abstraction. The taxonomy represents
the “is-a” relationship of object classes, e.g. coyote is a sub-
category of wolf. Bengio et al. [10] and Deng et al. [11]
use this taxonomy for learning image classification systems
that are sublinear in the number of classes. Deng et al. [12]
use the hierarchy to learn a classifer that can select the
appropriate level of abstraction, while trading off specificity
for accuracy. Ordonez et al. [13] learn to predict entry
level categories for images. Yan et al. [14] and Goo et
al. [15] incorporate the taxonomy in CNNs to improve image
classification performance.

Dealing with limited data: For many applications, it
might be difficult to have access to large amount of training
data. Our work falls under the general direction of how to
deal with such scenario. One approach that has been proven
effective is fine-tuning [16]. The idea is to use a model
trained for a task where large-scale data are available (e.g.
ImageNet classification), then fine-tune the model on a new
task where only limited data are available. The work in [4] is
the closest to ours. It considers the scenario where a subset
of training data are annotated with fine labels, and the rest
are annotated with only coarse labels. We consider the same
problem setup in this paper.
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III. PROBLEM SETUP

Our problem setup is similar to that in [4] and is illustrated
in Fig. 1. We consider the scenario where the training data .S
consists of two disjoint sets Scoarse and Sfine. Images in Scoarse
are annotated with their coarse classes (e.g. wolf) and those
in Sppe are annotated with fine classes (e.g. coyote, gray
wolf, etc.). We use Ny and N, to denote the number of fine
and coarse classes, respectively. We assume that there exists
a one-to-many mapping between coarse and fine classes —
each coarse class contains multiple fine classes, while each
fine class belongs to exactly one coarse class. Fig. 2 shows
an example of a taxonomy from the CIFAR100 dataset [17].

Our goal is to develop a system to classify images into
the fine classes. Of course, a naive solution is to train a
standard classification model only based on Sg,.. However,
this is suboptimal since it ignores S¢ouse- [n addition, Sfipe
is usually small in practice, since it is expensive to collect
training images with fine class labels. In this paper, we
investigate how to improve the performance of fine class
prediction when there are additional coarsely labeled training
data available. Our problem setup is related to weakly
supervised learning. The subset S,,qrsc €ssentially provides
a form of weak supervision for the learning problem. For
training images in Scoqrse, We only have access to their
coarse labels without knowing the detailed fine labels, i.e.
these images are weakly labeled.

In this paper, we focus on the scenario where the class
labels have two levels of abstraction (i.e. coarse labels vs
fine labels). But our proposed method can be easily extended
to the case where the class labels are organized in a tree-
structured taxonomy with multiple levels.

IV. OUR APPROACH

Our goal is to design a model that can exploit the
hierarchical relationship between coarse and fine labels in a
deep convolutional neural network (CNN). We achieve this
by modifying standard CNN architecture (e.g. AlexNet [3])
so that it can predict both coarse and fine labels for a given
image. Fig. 3 illustrates the overall architecture of our model.
The model will generate a feature map (or a feature vector)
for each of the fine classes. Given the taxonomy information
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Figure 3: An overview of the architecture of our model. Given an image, our model first generates a feature map for each
fine class. The average pooling is applied on these fine class feature maps to obtain the classification score of each fine
label. From the fine class feature maps, we use min-pooling to get the coarse class feature maps. Again, the average pooling
is applied to obtain the coarse label classification scores. These classification scores are then used to define the loss.

of the classes, the network is able to learn coarse class
feature maps through min-pooling. A global average pooling
layer is attached on the top of the class feature maps, which
simply computes the average for every feature map, for both
fine classes and coarse classes.

A. Base Model

We can use any CNN architecture as our base model. The
only requirement is that the base model needs to generate
a per-category feature map. Most of the popular CNN
architectures only require minor modification to produce
these per-category feature maps. For CNNs (e.g. Network-
in-Network (NIN)) which directly generate a feature map for
every class in the dataset, they can be directly adopted in our
approach by removing the last softmax layer. For CNNs (e.g.
AlexNet) which only produce a high dimensional vector,
we can append multiple parallel fully connected layers to
generate the class feature maps. Readers are referred to
Sec. V for details about those modifications.

In the end, the base model produces a two-dimensional
matrix M; ¢ R¥*Ns | where each column ]V[J{ ¢ RY
corresponds to a class-wise feature map for each fine class
Jj € {1,2,...,Ny}. Without loss of generality, we have
assumed that the class-wise feature map is a one-dimensional
vector with length d. If the base model produces a two-
dimensional map (e.g. in the case of NIN), we can always
concatenate the values in the map to make a one-dimensional
vector.

B. Min-Pooling for Coarse Class

The base model gives Ny feature maps corresponding
to each of the fine class. From those feature maps, we
generate the feature maps corresponding to coarse classes.
For a coarse class (e.g. wolf), the idea is to exploit the
commonalities of the fine classes (e.g. coyote, gray wolf,
etc.) belonging to this coarse class. Inspired by [15], we
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Figure 4: Illustration of the min-pooling operation. Suppose
we have a coarse class with three fine classes, the class
feature maps for all the three fine classes are available.
Through entry-wise min operation, we can obtain a feature
map for the coarse class.

implement this by the min-pooling operation across the
feature maps of the corresponding fine classes (see Fig. 4
for an illustration). Let k be a coarse class and Cj, be the
set of its corresponding fine classes. The feature map MF*
corresponding to this coarse class is computed as:

ME(i) = min{ M} (i)}ec, (1)

As suggested in [15], the min-pooling operation captures
features that are common across fine classes, but not unique
to any of them. So if we perform the min-pooling across fine
classes that belong to the same coarse class, the resulting
feature map will be able to capture the information about
this coarse class.



C. Global Average Pooling

The base model (Sec. IV-A) gives us a set of feature maps
M} (j € {1,2,..., Ny}) for the fine classes. The min-pooling
gives another set of feature maps MY (k € {1,2,...,N.})
for the coarse classes. From these per-category feature maps,
we would like to obtain a classification score for each class.
Similar to [8], [15], we get the classification score of a class
by attaching a global-average pooling layer to each feature
map. In other words, let sic G € {1,2,..,N¢}) be the
classification score of a fine class and s* (k € {1,2,..., N.})
be the classification score of a coarse class. We calculate
these scores as:

. J
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Compared with fully connected layers, the main advantage
of global average pooling layers is that there are no param-
eters inside them. This results in less memory footprint and
also makes the model less prone to overfitting.

D. Learning

Our main goal is to learn a fine label classifier using
images from the two disjoint sets. For images in Sfine,
both fine and coarse labels are available. However, images in
Scoarse Only have coarse class annotations. For training on
those coarse labeled images, the network learns to classify
fine labels by exploiting knowledge from the coarse class.
The hierarchy architecture of our model is able to do weakly
supervised learning. It has two components: an underlying
supervised learner (all the way to the fine class feature maps)
and a bootstrapping layer (coarse class feature maps) on top
of the supervised learner.

For each class (either coarse or fine), the output from
the corresponding global average pooling is forwarded to a
softmax layer to generate the classification loss. Since we
have both fine labels and coarse labels for part of the images,
the network will have two loss components, £y for fine label
classification loss, £, for coarse label classification loss. For
a training image x; with both labels, the loss function can
be formulated as:

€(x2) = £f({£2) + )\€C(xi) if z; € Sfine “)

where A is a non-negative hyperparameter used to control
the relative importance of the coarse label classification loss.
For images with only coarse labels, since we do not have
their fine labels to compute /¢, the loss function should be:

e(xz) = /\g((xz) if T; € Scoarse (5)

To simplify the learning, we introduce the following
indicator 1(z;) to denote whether the training image x;
belongs to Sfine OF Scoarse-

1) :{ ;

if z; € Sfine

if T; € Scoarse (6)

Then the loss functions defined in Eq. 4 and Eq. 5 can be
equivalently written as one loss function:

The loss of the whole training data is simply the summation
of the loss of each image in the training set.

To optimize the loss function, we use stochastic gradient
descent with momentum of 0.9 and weight decay of 0.0005.
The size of the mini-batch used in our experiments varies
for different models and different combination of Syipe
and Scoqrse. We generally follow two guidelines for setting
the mini-batch sizes: 1) keep the ratio of the number of
images from S¢ine and Scoarse in each batch equal to
|Stinel/|Scoarsel; 2) use the largest min-batch size that can
fit into the GPU memory. We use a Titan X with 12GB
memory in the experiments, so the min-batch size varies
from 128 to 400. The initial learning rate for all models
is set to 0.01 and is further reduced whenever the model
performance reaches plateau.

V. EXPERIMENTS

In this section, we evaluate our proposed model and
compare it with other approaches. We first describe some
implementation details and the base models we have
chosen (Sec. V-A). Then we present results on two
datasets: CIFAR100 (Sec. V-B) and a subset of ILSVRC
2010 (Sec. V-C). If not otherwise stated, the results are based
on top-1 fine label classification accuracy (%).

A. Implementation Details and Base Models

We consider two existing CNN architectures as our base
models. These base models can be used in our experiments
with several minor modifications.

NIN: For the CIFAR100 dataset, a 3-layer Network-In-
Network (NIN) [8] is used as the base model, this base
model is a replication of the one used in the original paper.
For the ImageNet dataset, we choose a 4-layer NIN [8],
which has more depths and number of parameters compared
with the 3-layer model. Both models have also been used
as base net for HD-CNN [14] and Taxonomy-Regularized
Deep CNN [15]. Since NIN architecture will generate class-
wise feature maps by itself, we can directly use it in
our experiments with only minor modification (change the
output volume of the last convolutional layer to match the
number of fine classes and remove the softmax layer).

Note that although we use the same notation NIN for the
two NINs in the experiments for CIFAR100 and ImageNet,
they are different models as we have stated above. This also
holds true for the following AlexNet models.

AlexNet: Here we consider a small scale AlexNet intro-
duced in [18] as the second base model for CIFAR100. It
differs from the original AlexNet[3] in two ways to make it
more suitable to be used for small datasets like CIFAR100.
First, it has 3 convolutional layers instead of 5. Second, the
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Figure 5: Top-1 validation accuracy on CIFAR100 dataset
using NIN as base model. We achieve the best validation
performance with A = 1.

convolutional layers are followed by one fully connected
layer instead of three. We set the dimension of the feature
map to be 36 (i.e. d = 36). In order to use it for our purpose,
we replace the last FC100' layer with a FC1024 layer and
attach N fz parallel FC36 layers behind it. The resulting
model will be able to generate a feature map for each of
the 100 fine classes.

For the ImageNet dataset, we wuse the popular
ILSVRC2012 winning model AlexNet[3]. Our
implementation of AlexNet is the same as the Caffe
AlexNet [19], except that ours is a single column version,
which has unrestricted connectivity between layers. For this
model, the FC1000 layer is removed and Ny parallel FC36
layers are attached to generate the per-class feature maps.

B. CIFARI00
The CIFAR100 dataset [17] consists of 60000 32x32 color
images from Ny = 100 fine classes. Each fine class has

500 training images and 100 test images. These 100 fine
classes are further grouped into N. = 20 coarse classes,
with exactly 5 fine classes in each coarse class. For example,
the coarse class flowers contains 5 different fine classes:
orchid, poppy, rose, sunflower and tulip. See Fig. 2 for some
example classes on this dataset.

For each fine class, we randomly choose half of the train-
ing images to be part of the coarse label subset S;.yq-s¢ and
the remaining half to be part of the fine label subset Spe,
i.e. |Scoarse] = |Sfine] = 0.5]S| where S = Scoarse USfine.
We use a small set of images from the training set as
validation to set the hyperparameters. Once the optimal
hyperparameter is chosen, we reset our model and learn it
on the entire training set. All the images are preprocessed
with global contrast normalization and ZCA whitening as in
[20], [8].

As stated in Sec. IV-D, the weighting parameter A helps to
balance the relative importance of our two loss components.
We first conduct a series of experiments to see how the
performance varies when A changes. The result is shown

IFC100 denotes a fully connected layer with an output volume of 100.
N =100 for CIFAR100 dataset and 387 for ImageNet subset.

method NIN AlexNet
baseline 51.28 45.98
ours 57.40 49.15
upper bound | 64.32[8] 52.80

Table I: Results on the CIFAR100 dataset. We report the
overall accuracy of the fine label prediction. We consider
two base models: NIN, AlexNet. For each base model, we
compare our method (2nd row) with a baseline approach
(1st row) which ignores S.,qrse and learns a standard
classification using only S¢ine. Our method significantly
outperforms the baseline in all cases. We also show the
result of an oracle model (3rd row). This oracle model
is obtained by learning a standard classification model on
S fine U Scoarse, but it uses the fine labels for Scoqrse (While
our method uses the coarse labels on S¢oqrse). This oracle
model can be considered as an upper bound for our method.

in Fig. 5. Based on this result, we set the hyperparameter
A =1 for all the following experiments in this paper.

Table I (2nd row) shows the result of our method (trained
on S = Stine UScoarse) Using each of the two base models.
For comparison, we consider a baseline method that learns
the model using only the subset S;y.. In other word, this is
a standard classification model trained on Syn.. The result
of this baseline approach is shown in Table I (Ist row).
Our approach significantly outperforms the baseline method
in all cases. For both the baseline and our approach, NIN
performs much better than AlexNet on this dataset. This is
probably because this dataset is relatively small. Although
AlexNet is a powerful model, it is designed for large-scale
datasets (e.g. ImageNet) and might be prone to overfitting
on small datasets (e.g. CIFAR100).

We also consider an oracle model learned from the entire
training data S' = SfineUScoarse, but the learning algorithm
has access to the fine labels on S.oqrse as well. In other
words, this is similar to the baseline method (1st row in
Table I), but the oracle model is trained on a larger training
dataset. The result of this oracle will establish an upper
bound for our method, i.e. this is the performance that our
model can achieve in the extreme case when the entire
training data have fine labels. The result of this oracle model
is shown in Table I (3st row).

Fig. 6 shows some qualitative examples of the our method
and the baseline NIN model on the CIFAR100 dataset. As
we can see from the first two rows, compared with the
baseline model, the top-5 predictions made by our model are
more semanticly relevant to the ground truth and contains
more fine classes from the same coarse class as the ground
truth. For example, for the rose (one of the fine classes from
the coarse class flowers) image in the 2nd row, our model
has 5 fine classes belonging to the coarse class flowers as its
top-5 guesses while the baseline model has only two. This
also holds true even for the failure cases in the 3rd row.



In addition, we have found that the base network is easily
fooled by objects with similar shape or color from other
coarse classes. For example, in the 4th row, the baseline
model misclassifies ray and shark (both belong to the coarse
class fish) as dolphin, which is from another coarse class
aquatic mammals. This is probably because the example
images of ray and shark highly resemble those of dolphin.
However, our model is able to avoid this kind of mistakes
since it is trained to leverage the knowledge from extra
coarsely labeled data.

C. ImageNet

We use a subset of the ILSVRC 2010 dataset [1] as our
second dataset and this dataset has also been used in [4]
for the same problem. We follow the experiment setup in
[4]. The leaf synsets of ILSVRC 2010 are collected as fine
classes and their parents as coarse classes, and the class
subtrees that overlap are ignored. The original training set
are reduced to have 487K images for N, = 143 coarse
classes and Ny = 387 fine classes. Among those 143 coarse
classes, 94 of them have 2 fine classes, 26 of them have 3
fine classes, and the rest have 4-9 fine classes. There are
between 1.4K and 9.8K images for each coarse class and
between 668 and 2.4K images for each fine class. For the
validation set and test set, there are 50 and 150 images per
fine class respectively. The reduced training set is then split
into two disjoint sets for each fine class. The set S¢oqrse has
only coarse labels, while the set Sy;n. has both fine labels
and coarse labels. We assume [Scoarse| = |Sfine| = 0.5]5]
unless specified otherwise.

During both training and testing time, the original images
are resized to have a minimum side of 256 pixels. Randomly
cropped and flipped 224x224 patches are forwarded into the
learning algorithms. During testing, we follow the 10-view
testing in [3]. The predictions of ten 224x224 patches (the
center patch and 4 corner patches as well as their horizontal
reflections) are averaged as the final prediction.

It is worth noting that we train all the models from scratch.
In computer vision, a common practice for learning CNNs
is to use some model pre-trained from ImageNet as the
starting point and fine-tune the model on the training data
[15]. However, this is problematic in our setting. The fine
classes on this dataset are a subset of ImageNet. So any
model pre-trained on ImageNet would implicitly have seen
the fine labels of a large portion of the images from Seoqrse-
Because of this, we choose to learn the model from scratch
without using any pre-trained models.

Following [4], we evaluate the performance of our
model by varying the relative size of Scoarse and Sfine.
We first fix |Scoarse] = 0.5|S| and vary |Sfpine] €
{0.1]5],0.2|S|,0.5|S|}. Table IT shows how the performance
varies with different sizes of |S;,.| when using either NIN
or AlexNet as the base model. Again, we compare our
method with the baseline that only uses S;,. and the upper

|S finel 0.1]S| 0.2]S| 0.5]|9] 0.1]S] 0.2]S] 0.5]9]

baseline 32.51 43.90 56.49 39.28 50.58 63.40

ours 50.77 56.70 65.97 58.43 62.27 67.23

upper bound | 62.47 64.11 66.93 64.98 65.45 68.73
NIN AlexNet

Table II: Results on ImageNet (with either NIN or AlexNet
as the base model) for different Sy, sizes. We fix
[Scoarse] = 0.5|S| and set |Sfine| to 0.1]S], 0.2]S| and
0.5|S|. Similarly to Table I, we compare our method (2nd
row) with the baseline method (1st row) that only uses Sine.
We also list the results of the oracle model (3rd row) to
provide an upper bound for our method.

[Stinel [ 0A[S]_02[S] 05[]
[4] 14.71 16.37 18.46
ours (NIN) 50.77 56.70 65.97
ours (AlexNet) 58.43 62.27 67.23

Table III: Comparison of our methods (with either NIN or
AlexNet as the base model) with previous work in [4] for
different S¢;n sizes on ImageNet. We fix |Scoqrse| = 0.5|5]
and set |Sfine| to 0.1]S|, 0.2|S| and 0.5|S|. Again, we
compare our method (2nd row) with the baseline method (1st
row) that only uses Sfine. Our method outperforms the
results in [4]. The relative improvement is more significant
when the fine labeled dataset is smaller.

bound performance from the oracle model. We can see that
when |Syine| becomes larger, all the models perform better.
Both of our models obtain a performance very close to that
of the oracle model (65.97% vs 66.93% for NIN, 67.23%
vs 68.73% for AlexNet). This clearly shows the ability of
our model to utilize the extra coarsely labeled data.

For comparison, we also list the our method (with NIN or
AlexNet as the base model) with [4] in Table III. Since [4]
is not a CNN-based method, it performs much worse than
ours. In fact, even our baseline trained only on S¢;,. can
significantly outperform [4].

Next we fix [Sfine] = 0.5]S] and vary [Scoarse| €
{0.1]S],0.2]5|,0.5|S|}. The results are shown in Table IV.
When |Scoarse| becomes larger, the performance of our
method increases as well. Note that the performance of
the baseline stays the same since the baseline only uses
|Stinel, so increasing |Scoqrse| Will not have any effect on
the baseline.

We compare our methods with [4] in Table V when we
fix |Stine| and vary |[Scoqrse|. Again, our method performs
significantly better since [4] is not a CNN-based approach.

Fig. 7 shows some qualitative examples of the our method
and the base model (NIN) on the ImageNet dataset. From
the examples, we can make observations similar to those on
the CIFAR100 dataset. The first three rows show that our
model has the ability to make more relevant predictions.
The last row shows examples where the baseline model is
confused by similar objects from other coarse classes, while
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Figure 6: Qualitative examples of baseline NIN model and our model on the CIFAR100 dataset. Ground-truth labels are
marked in red. We use * to indicate that the fine classes belong to the same coarse class as the ground-truth. The first three
rows show that our model can predict more relevant objects in its top-5 guesses. In addition, the ability of our model to
utilize extra coarse labels during training helps it to avoid misclassifying objects into similar objects that belong to another

coarse class. Examples are in the 4th row.

[Seoarse] | OS] 0.2[S]  05IS] || 0.1]S] 0.2[S] 0.5[3]

baseline 56.49 56.49 56.49 63.40 63.40 63.40

ours 62.53 62.78 65.97 64.19 65.00 67.23

upper bound 63.09 63.54 66.93 65.02 65.94 68.73
NIN AlexNet

Table IV: Results on ImageNet (with either NIN or AlexNet
as the base model) for different S. 45 Sizes. We fix
|Srinel = 0.5|S| and set |Scoarse| to 0.1]S], 0.2]S] and
0.5]S|. The accuracy increases when there are more coarse
labeled data available.

|Scoarsel 0.1]S| 0.2]S] 0.5|95]
[4] 17.87 18.13 18.46

ours (NIN) 62.53 62.78 65.97
ours (AlexNet) 64.19 65.00 67.23

Table V: Comparison of our methods (with either NIN or
AlexNet as the base model) with previous work in [4] for
different Scoqrse sizes on ImageNet. We fix |Sfine| = 0.55|
and set |Scoarse| to 0.1|S], 0.2|S| and 0.5|.S|. We compare
our method (2nd row) with the baseline method (1st row)
that only uses Sfine. Our method outperforms the baseline
with no surprise.

our model can make the correct predictions.

VI. CONCLUSION

In this paper, we have investigated the problem of learning
image classification when a subset of the training data (i.e.
Stine) are annotated with fine labels, while the rest (i.e.
Scoarse) are annotated with coarse labels. Our goal is to

use such weakly labeled data to learn a classifier to predict
the fine labels during testing. We have proposed a CNN-
based approach to address this problem. The commonalities
between fine classes in the same coarse class are naturally
captured by min-pooling in our CNN architecture. Our
experimental results on CIFARIO0 and ImageNet show
that our method outperforms the baseline that learns to
classify fine labels only based on Sfine. Our method also
significantly outperforms previous work [4] addressing the
same problem.
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