COMP311: COMPUTER ORGANIZATION!

Lecture 2: 211 Review

tinyurl.com/comp311-fa25

Encoding Positive Integers

Encode positive integers as a sequence of bits.

Each bit is assigned a weight. Ordered from right to left, these weights are increasing powers of 2. The value of an n-bit number encoded in this fashion is given by the following formula:

 															20
)	0	0	0	0	1	1	1	1	1	1	0	1	0	1	0

Some Important Bits

- You are going to have to get accustomed to working in binary, but it will be helpful throughout your career as a computer scientist.
- Some good ones to know
 - The first 10 powers of 2

- The prefixes for powers of 2 that are powers of 10

Review: Binary Addition and Overflow

Q3 from last time

$$+\frac{1010_{2}}{0101_{2}}$$

$$-\frac{1111}{111}$$

yes

yes

no

Recall: Signed Integers

- One strategy is to encode the sign of the integer using one bit.
 - Conventionally, the most significant bit is used for the sign.
- This encoding of signed integers is called "SIGNED MAGNITUDE"

$$v = -1^{S} \sum_{i=0}^{n-2} 2^{i} b_{i}$$

- 2024

- The Good
 - Easy toe negate, easy to take absolute value
- The Bad
 - Two ways to represent "0", +0 and -0
 - Add/subtract is complicated; depends on the signs

Recall: 2's Complement Notation

- The 2's complement representation for signed integers is the most commonly used signed-integer representation.
- It is a simple modification of unsigned integers where the most significant bit is a negative power of 2.

$$v = -2^{n-1}b_{n-1} + \sum_{i=0}^{n-2} 2^{i}b_{i}$$

Why 2's complement?

- In the two's complement representation for signed integers, the same binary "addition procedure" (mod 2ⁿ) works for adding any combination of positive and negative numbers.
- Don't need a separate "subtraction circuitry" (carries only, no borrows)
 - The "addition procedure" also handles unsigned numbers!
 - In 2's complement adding is "adding" regardless of operand signs.
 - You NEVER need to subtract when you use 2's-complement.

2's complement tricks

- Negation: changing the sign of a number
 - Invert every bit (i.e. $1 \rightarrow 0, 0 \rightarrow 1$) and add 1

Example:
$$42_{10} = 000000101010_2$$

 $-42_{10} = 1111111010101_2 + 1 = 1111111010110_2$

- **Sign-Extension** aligning different sized 2's complement integers (for example when adding an 8-bit number to a 32-bit number)
 - Simply copy the sign bit into higher positions

Example: 16-bit version of 42: $42_{10} = 00000000000101010_2$ 16-bit version of -42: $-42_{10} = 11111111111110101110_2$

Two's Complement

Take 5 minutes to answer question 4 on your worksheets!

Q4 from last time

Two's Complement

4.1: Represent -15 in two's complement with 7 bits

4.2: What is the minimum number of bits needed to represent 20 in two's complement

Unsigned: 0b 000 1111

Flip bits: 0b 111 0000

Add one: 0b 111 0001

0b 010100 **6 bits**

4.3: Convert the following two's complement number to decimal: 0b 1111 1110

Flip bits: 0b 0000 0001

Add one: 0b 0000 0010 → -2

4.4: Convert the following two's complement number to decimal: 0b 0011 1000

Positive, so no need to flip bits 56

Two's Complement Overflow

Take 5 minutes to answer question 5 on your worksheets!

Q5 from last time

Two's Complement Overflow

No Overflow

1111 1101₂ -3 +1011₂ +-5 1000 → -8 -8

Overflow

Overflow

No Overflow

Two's Complement Overflow

 Overflow: when the result of an operation cannot be represented in the given number of bits

Adding	Overflow occurs when
two positive numbers	the result is negative
two negative numbers	the result is positive
two numbers of opposite signs	will never occur

$$^{+} \frac{10110_{2}}{11100_{2}}$$
 10010_{2}

$$\frac{10110_2}{00100_2}$$

$$10110_{2}$$
 11100_{2}
 10010_{2}

$$\frac{10110_{2}}{11100_{2}}$$

$$10110_{2}$$
 10100_{2}
 11010_{2}

Q1
-00101₂
-00111₂

Q2

 $-\frac{10101_2}{10110_2}$

Q3
-\frac{11111_2}{01000_2}

Q4

 $\begin{array}{r}
 01110_{2} \\
 \hline
 11100_{2}
 \end{array}$

Bitwise Operations

Apply the operation to each individual bit position

$$\sim 1010_2 = 0101_2$$

$$\begin{array}{r} & & & & & & & & & \\ & 1010_2 \\ & & & 1100_2 \\ \hline & & & & 1000_2 \end{array}$$

$$\begin{array}{r}
1010_{2} \\
1100_{2} \\
\hline
1110_{2}
\end{array}$$

Bitwise Operations: Fill in the blank!

Q1

■ Fill in the following blanks using the options below. n is an integer. There are multiple correct answers for each question.

First blank AND

OR

XOR

Second blank

n

~n

0b 00...00

0b 11...111

Bitwise Operations: Fill in the blank!

- *A. n* ____ = *n*
 - OR Ob 00...00
 - AND 0b 11...1
 - XOR 0b 00...00
 - AND n
 - OR n
- B. n ____ = 0b 00...00
 - AND 0b 00...00
 - AND ~n
 - XOR n
- C. n ___ = 0b 11...11
 - OR 0b11...11
 - OR ~n
 - XOR ~n

First blank AND OR XOR

Second blank n ~n Ob 00...00 Ob 11...111

Fixed-Point Numbers

- You can always assume that the boundary between 2 bits is a "binary point".
- If you align binary points between addends, there is no effect on how operations are performed.

111111101.0110 =
$$-2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3}$$

= $-128 + 64 + 32 + 16 + 8 + 4 + 1 + 0.25 + 0.125$
= -2.625 **OR**

$$111111101.0110 = -42 \times 2^{-4}$$

= -42 / 16
= -2.625

Repeated Binary Fractions

- Not all fractions can be represented exactly using a finite representation.
 - Ex: $1/3 \rightarrow 0.3333333...$
- In binary, many fractions that you've grown attached to require an infinite number of bits to represent exactly.

Example:
$$1/10 = 0.1_{10} = 0.00011..._2 = 0.19..._{16}$$

 $1/5 = 0.2_{10} = 0.0011..._2 = 0.3..._{16}$
 $1/3 = 0.3_{10} = 0.01..._2 = 0.5..._{16}$

Finite Representations!

- Everything that a realizable computer does is limited by a finite set of bits.
- You may have grown used to infinite digits in math courses...

■ ...However, the concept an infinite supply of zero digits is conceptually elegant, but difficult to physically implement

Overflow: Side Effect of being Finite

 Overflow: when the result of an operation cannot be represented in the given number of bits

1000 0000 0000 00002

211 REVIEW: MEMORY

Storing Data in Memory

Each of these rows can store one byte of data

Storing Data in Memory

Each of these rows can store one byte of data

Let's say we want to store the

number 5 in the top row, 4 in

the next row, and -2 in the

next row.

0b0000 0101
0b0000 0100
0b1111 1110

Byte Addresses

Address

To reference each of these locations, we use something called a byte address.

Note that these addresses are not stored anywhere!

0	0b0000 0101
1	0b0000 0100
2	0b1111 1110
3	
4	
5	
6	
7	
8	
9	
10	
11	

