
COMP311: 
COMPUTER ORGANIZATION!

Lecture 2: 211 Review
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Encoding Positive Integers

Encode positive integers as a sequence of bits. 

Each bit is assigned a weight. Ordered from right to left, these 

weights are increasing powers of 2. The value of an n-bit number 

encoded in this fashion is given by the following formula:
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215 214 213 212 211 210 29   28 27  26  25   24   23  22  21   20

0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0



Some Important Bits

■ You are going to have to get accustomed to working in binary, but 
it will be helpful throughout your career as a computer scientist.

■ Some good ones to know

– The first 10 powers of 2

– The prefixes for powers of 2 that are powers of 10
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Review: Binary Addition and Overflow
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Q3 from 

last time
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Recall: Signed Integers

■ One strategy is to encode the sign of the integer using one bit. 

– Conventionally, the most significant bit is used for the sign.

■ This encoding of signed integers is called “SIGNED MAGNITUDE” 

■ The Good

– Easy toe negate, easy to take absolute value

■ The Bad

– Two ways to represent “0”, +0 and -0

– Add/subtract is complicated; depends on the signs
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Recall: 2’s Complement Notation

■ The 2’s complement representation for signed integers is the 

most commonly used signed-integer representation. 

■ It is a simple modification of unsigned integers where the most 

significant bit is a negative power of 2.
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Still a “sign bit”
(It must be “1” for 
the number to < 0)

-32768
+2024

-30744

215 214 213 212 211 210 29   28 27  26  25   24   23  22  21   20

1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0



Why 2’s complement?

■ In the two’s complement representation for signed integers, the 

same binary “addition procedure” (mod 2n) works for adding any 

combination of positive and negative numbers.

■ Don’t need a separate “subtraction circuitry” (carries only, no 

borrows)

– The “addition procedure” also handles unsigned numbers!

– In 2’s complement adding is "adding" regardless of operand 

signs. 

– You NEVER need to subtract when you use 2’s-complement.
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2’s complement tricks
■ Negation: changing the sign of a number

– Invert every bit (i.e. 1 → 0, 0 → 1) and add 1

Example:  4210 = 0000001010102
      -4210 = 1111110101012 + 1 = 

    1111110101102
■ Sign-Extension - aligning different sized 2’s complement integers

  (for example when adding an 8-bit number to a 32-bit number)

– Simply copy the sign bit into higher positions

Example: 16-bit version of 42:      4210= 00000000001010102
       16-bit version of -42:    -4210= 11111111110101102
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Two’s Complement

Take 5 minutes to answer question 4 on your worksheets!
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Q4 from 

last time



Two’s Complement
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4.1: Represent -15 in two’s complement with 7 

bits

4.2: What is the minimum number of 

bits needed to represent 20 in two’s 

complement

4.3: Convert the following two’s 

complement number to decimal: 

0b 1111 1110

4.4: Convert the following two’s 

complement number to decimal: 

0b 0011 1000

Unsigned: 0b 000 1111

Flip bits: 0b 111 0000

 

Add one: 0b 111 0001

Flip bits: 0b 0000 0001

Add one: 0b 0000 0010 → -2

0b 010100

6 bits

Positive, so no need to flip bits
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Two’s Complement Overflow

Take 5 minutes to answer question 5 on your worksheets!
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Q5 from 

last time



Two’s Complement Overflow
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Two’s Complement Overflow

■ Overflow: when the result of an operation cannot be represented in 

the given number of bits
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Adding Overflow occurs when

two positive numbers the result is negative

two negative numbers the result is positive

two numbers of opposite 

signs 

will never occur



Two’s Complement Subtraction
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Two’s Complement Subtraction
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Two’s Complement Subtraction
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Two’s Complement Subtraction
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Two’s Complement Subtraction

001012
001112

101012
101102

Q1

Q4Q3

Q2

111112
010002

011102
111002

- -

- -



Bitwise Operations

■ Apply the operation to each individual bit position
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10102

11002

10002

&

10102

11002

11102

|
10102

11002

01102

^

~10102 = 01012



Bitwise Operations: Fill in the blank!
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■ Fill in the following blanks using the options below. n is an 

integer. There are multiple correct answers for each 

question.

– A. n ___   ________ = n

– B. n  ___   ________ = 0b 00…00

– C. n  ___   ________ = 0b 11…11

 

First blank

AND

OR

XOR

Second blank

n

~n

0b 00…00

0b 11…111

Q1



Bitwise Operations: Fill in the blank!
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– A. n ___   ________ = n

■ OR   0b 00…00 

■ AND 0b 11…1 

■ XOR 0b 00…00 

■ AND n 

■ OR n

– B. n  ___   ________ = 0b 00…00

■ AND 0b 00…00 

■ AND ~n

■ XOR n

– C. n  ___   ________ = 0b 11…11 

■ OR 0b11…11

■ OR ~n

■ XOR ~n

First blank

AND

OR

XOR

Second blank

n

~n

0b 00…00

0b 11…111



Fixed-Point Numbers

■ You can always assume that the boundary between 2 bits is a 

“binary point”. 

■ If you align binary points between addends, there is no effect on 

how operations are performed.
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1
25

1
24

1
26

1
23

1
22

0
21

1
20

0
2-1

1
2-2

1
2-3

0
2-4

1
-27

11111101.0110 = -27 + 26 + 25 + 24 + 23 + 22 + 20 + 2-2 + 2-3
              = -128 + 64 + 32 + 16 + 8 + 4 + 1 + 0.25 + 0.125
              = -2.625 OR
11111101.0110 = -42 × 2-4
              = -42 / 16
              = -2.625



Repeated Binary Fractions

■ Not all fractions can be represented exactly using a finite 

representation. 

– Ex: 1/3 → 0.333333….

■ In binary, many fractions that you’ve grown attached to require an 

infinite number of bits to represent exactly.

Example: 1/10 = 0.110 = 0.00011...2 =0.19...16

  1/5 = 0.210 = 0.0011...2 = 0.3...16

  1/3 = 0.310 = 0.01...2 = 0.5...16



Finite Representations!

■ Everything that a realizable computer does is limited by a finite 

set of bits. 

■ You may have grown used to infinite digits in math courses…

■ …However, the concept an infinite supply of zero digits is 

conceptually elegant, but difficult to physically implement

...00000000042.0000000000...

...00000000000.0000000000...001000
10000000...00000000000.0



Overflow: Side Effect of being Finite

■ Overflow: when the result of an operation cannot be represented 

in the given number of bits

1. 3276710 + 110 = -3276810  0111 1111 1111 11112
                        0000 0000 0000 00012
                   1000 0000 0000 00002
2. -2000010- 2000010 = 2553610 1011 0001 1110 00002
                       + 1011 0001 1110 00002
                    1 0110 0011 1100 00002

3. -3276810 = -3276810   1000 0000 0000 00002
                       0111 1111 1111 11112
       +   0000 0000 0000 00012
                  1000 0000 0000 00002

A certain number can’t 

be negated

Flip bits first, then add 

one 1 negate…



211 REVIEW: 
MEMORY
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Storing Data in Memory

34

Each of these rows can 

store one byte of data

1 byte = 8 bits



Storing Data in Memory
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0b0000 0101

0b0000 0100

0b1111 1110

Each of these rows can 

store one byte of data

Let’s say we want to store the 

number 5 in the top row, 4 in 

the next row, and -2 in the 

next row. 

1 byte = 8 bits



Byte Addresses
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0b0000 0101

0b0000 0100

0b1111 1110

0

1

2

3

4

5

6

7

8

9

10

11

Byte 

Address

To reference each of these 

locations, we use something 

called a byte address.

Note that these addresses 

are not stored anywhere!

1 byte = 8 bits
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