
COMP311:
COMPUTER ORGANIZATION!

Lecture 2: 211 Review

1

tinyurl.com/comp311-fa25

Encoding Positive Integers

Encode positive integers as a sequence of bits.

Each bit is assigned a weight. Ordered from right to left, these

weights are increasing powers of 2. The value of an n-bit number

encoded in this fashion is given by the following formula:

2

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0

Some Important Bits

■ You are going to have to get accustomed to working in binary, but
it will be helpful throughout your career as a computer scientist.

■ Some good ones to know

– The first 10 powers of 2

– The prefixes for powers of 2 that are powers of 10

3

Review: Binary Addition and Overflow

4

Q3 from

last time

10102
01012

+
10012
01112

+

10102
01112

+
01102
01102

+

1111 no 0000

1111

yes

111 11

1100yes no0001

Recall: Signed Integers

■ One strategy is to encode the sign of the integer using one bit.

– Conventionally, the most significant bit is used for the sign.

■ This encoding of signed integers is called “SIGNED MAGNITUDE”

■ The Good

– Easy toe negate, easy to take absolute value

■ The Bad

– Two ways to represent “0”, +0 and -0

– Add/subtract is complicated; depends on the signs
5

S 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

2024

1

-

0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0

Recall: 2’s Complement Notation

■ The 2’s complement representation for signed integers is the

most commonly used signed-integer representation.

■ It is a simple modification of unsigned integers where the most

significant bit is a negative power of 2.

6

Still a “sign bit”
(It must be “1” for
the number to < 0)

-32768
+2024

-30744

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0

Why 2’s complement?

■ In the two’s complement representation for signed integers, the

same binary “addition procedure” (mod 2n) works for adding any

combination of positive and negative numbers.

■ Don’t need a separate “subtraction circuitry” (carries only, no

borrows)

– The “addition procedure” also handles unsigned numbers!

– In 2’s complement adding is "adding" regardless of operand

signs.

– You NEVER need to subtract when you use 2’s-complement.

7

2’s complement tricks
■ Negation: changing the sign of a number

– Invert every bit (i.e. 1 → 0, 0 → 1) and add 1

Example: 4210 = 0000001010102
 -4210 = 1111110101012 + 1 =

 1111110101102
■ Sign-Extension - aligning different sized 2’s complement integers

 (for example when adding an 8-bit number to a 32-bit number)

– Simply copy the sign bit into higher positions

Example: 16-bit version of 42: 4210= 00000000001010102
 16-bit version of -42: -4210= 11111111110101102

8

Two’s Complement

Take 5 minutes to answer question 4 on your worksheets!

9

Q4 from

last time

Two’s Complement

10

4.1: Represent -15 in two’s complement with 7

bits

4.2: What is the minimum number of

bits needed to represent 20 in two’s

complement

4.3: Convert the following two’s

complement number to decimal:

0b 1111 1110

4.4: Convert the following two’s

complement number to decimal:

0b 0011 1000

Unsigned: 0b 000 1111

Flip bits: 0b 111 0000

Add one: 0b 111 0001

Flip bits: 0b 0000 0001

Add one: 0b 0000 0010 → -2

0b 010100

6 bits

Positive, so no need to flip bits

56

Two’s Complement Overflow

Take 5 minutes to answer question 5 on your worksheets!

11

Q5 from

last time

Two’s Complement Overflow

12
12

5.1

5.2

5.3
01112
01012
+

11112
01102

+

10002
10012
+ 11012

10112
+

Overflow
No

Overflow

No

Overflow
Overflow

111

1100

111
7

5

12

+

-4 0101

-1

6

5

+

5

0001

1
-8

-7

-15

+

1 1000

-3

-5

-8

+

-8

1111

Two’s Complement Overflow

■ Overflow: when the result of an operation cannot be represented in

the given number of bits

13

Adding Overflow occurs when

two positive numbers the result is negative

two negative numbers the result is positive

two numbers of opposite

signs

will never occur

Two’s Complement Subtraction

14

-10

4

-14

-10

-4

-14

+

Two’s Complement Subtraction

15

-10

4

-14

-10

-4

-14

+
101102
001002

-

Two’s Complement Subtraction

16

-10

4

-14

-10

-4

-14

+
101102
001002

-
101102
111002
100102

+

Two’s Complement Subtraction

17

-10

4

-14

-10

-4

-14

+
101102
001002

-
101102
111002
100102

+

-10

-4

-6

-10

4

-6

+
101102
111002

-
101102
001002
110102

+

Two’s Complement Subtraction

001012
001112

101012
101102

Q1

Q4Q3

Q2

111112
010002

011102
111002

- -

- -

Bitwise Operations

■ Apply the operation to each individual bit position

20

10102

11002

10002

&

10102

11002

11102

|
10102

11002

01102

^

~10102 = 01012

Bitwise Operations: Fill in the blank!

21

■ Fill in the following blanks using the options below. n is an

integer. There are multiple correct answers for each

question.

– A. n ___ ________ = n

– B. n ___ ________ = 0b 00…00

– C. n ___ ________ = 0b 11…11

First blank

AND

OR

XOR

Second blank

n

~n

0b 00…00

0b 11…111

Q1

Bitwise Operations: Fill in the blank!

22

– A. n ___ ________ = n

■ OR 0b 00…00

■ AND 0b 11…1

■ XOR 0b 00…00

■ AND n

■ OR n

– B. n ___ ________ = 0b 00…00

■ AND 0b 00…00

■ AND ~n

■ XOR n

– C. n ___ ________ = 0b 11…11

■ OR 0b11…11

■ OR ~n

■ XOR ~n

First blank

AND

OR

XOR

Second blank

n

~n

0b 00…00

0b 11…111

Fixed-Point Numbers

■ You can always assume that the boundary between 2 bits is a

“binary point”.

■ If you align binary points between addends, there is no effect on

how operations are performed.

23

1
25

1
24

1
26

1
23

1
22

0
21

1
20

0
2-1

1
2-2

1
2-3

0
2-4

1
-27

11111101.0110 = -27 + 26 + 25 + 24 + 23 + 22 + 20 + 2-2 + 2-3
 = -128 + 64 + 32 + 16 + 8 + 4 + 1 + 0.25 + 0.125
 = -2.625 OR
11111101.0110 = -42 × 2-4
 = -42 / 16
 = -2.625

Repeated Binary Fractions

■ Not all fractions can be represented exactly using a finite

representation.

– Ex: 1/3 → 0.333333….

■ In binary, many fractions that you’ve grown attached to require an

infinite number of bits to represent exactly.

Example: 1/10 = 0.110 = 0.00011...2 =0.19...16

 1/5 = 0.210 = 0.0011...2 = 0.3...16

 1/3 = 0.310 = 0.01...2 = 0.5...16

Finite Representations!

■ Everything that a realizable computer does is limited by a finite

set of bits.

■ You may have grown used to infinite digits in math courses…

■ …However, the concept an infinite supply of zero digits is

conceptually elegant, but difficult to physically implement

...00000000042.0000000000...

...00000000000.0000000000...001000
10000000...00000000000.0

Overflow: Side Effect of being Finite

■ Overflow: when the result of an operation cannot be represented

in the given number of bits

1. 3276710 + 110 = -3276810 0111 1111 1111 11112
 0000 0000 0000 00012
 1000 0000 0000 00002
2. -2000010- 2000010 = 2553610 1011 0001 1110 00002
 + 1011 0001 1110 00002
 1 0110 0011 1100 00002

3. -3276810 = -3276810 1000 0000 0000 00002
 0111 1111 1111 11112
 + 0000 0000 0000 00012
 1000 0000 0000 00002

A certain number can’t

be negated

Flip bits first, then add

one 1 negate…

211 REVIEW:
MEMORY

33

Storing Data in Memory

34

Each of these rows can

store one byte of data

1 byte = 8 bits

Storing Data in Memory

35

0b0000 0101

0b0000 0100

0b1111 1110

Each of these rows can

store one byte of data

Let’s say we want to store the

number 5 in the top row, 4 in

the next row, and -2 in the

next row.

1 byte = 8 bits

Byte Addresses

36

0b0000 0101

0b0000 0100

0b1111 1110

0

1

2

3

4

5

6

7

8

9

10

11

Byte

Address

To reference each of these

locations, we use something

called a byte address.

Note that these addresses

are not stored anywhere!

1 byte = 8 bits

	Slide 1: COMP311: Computer Organization!
	Slide 2: Encoding Positive Integers
	Slide 3: Some Important Bits
	Slide 4: Review: Binary Addition and Overflow
	Slide 5: Recall: Signed Integers
	Slide 6: Recall: 2’s Complement Notation
	Slide 7: Why 2’s complement?
	Slide 8: 2’s complement tricks
	Slide 9: Two’s Complement
	Slide 10: Two’s Complement
	Slide 11: Two’s Complement Overflow
	Slide 12: Two’s Complement Overflow
	Slide 13: Two’s Complement Overflow
	Slide 14: Two’s Complement Subtraction
	Slide 15: Two’s Complement Subtraction
	Slide 16: Two’s Complement Subtraction
	Slide 17: Two’s Complement Subtraction
	Slide 18: Two’s Complement Subtraction
	Slide 20: Bitwise Operations
	Slide 21: Bitwise Operations: Fill in the blank!
	Slide 22: Bitwise Operations: Fill in the blank!
	Slide 23: Fixed-Point Numbers
	Slide 24: Repeated Binary Fractions
	Slide 25: Finite Representations!
	Slide 26: Overflow: Side Effect of being Finite
	Slide 33: 211 Review: Memory
	Slide 34: Storing Data in Memory
	Slide 35: Storing Data in Memory
	Slide 36: Byte Addresses

