
COMP311: 
COMPUTER ORGANIZATION!

Lecture 3: Memory Review, Basic Circuits
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Logistics Updates

■ First quiz next Thursday!

■ First written assignment will be released tomorrow!

– Due a week after that

2



Summarizing our review so far…

■ ALL modern computers represent signed integers using a 

two’s-complement representation

■ Two’s-complement representations eliminate the need for 

separate addition and subtraction units 

– Addition is identical using either unsigned and two’s-

complement numbers

■ Finite representations of numbers on computers leads to 

anomalies

– Overflow! 

■ Floating-point numbers have separate fraction and exponent 

components.
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Today: Let’s Dig into Computer Organization!

■ Every computer has at least three basic units
– Input/Output

■ where data arrives from the outside world

■ where data is sent to the outside world

■ where data is archived for the long term (i.e. when the lights go out)

– Memory

■ where data is stored (numbers, text, lists, arrays, data structures)

– Central Processing Unit
■ where data is manipulated, analyzed, etc. 4

I/O
(Input/Output)

CPU
(Central 

Processing 

Unit)

Memory

Where bits arrive from and 
are sent to

Where bits are processed Where bits are stored



Today: Let’s Dig into Computer Organization!

■ Input/Output

– converts symbols to bits and vice versa

– where the analog “real world” meets the digital “computer world”

– must somehow synchronize to the CPU’s clock

■ Memory

– stores bits that represent information

– every unit of memory has an “address” and “contents”,

■ Central Processing Unit

– besides processing, it also coordinates data’s movements between units 
5

keyboard

hard drive

display

adder

shifter

logic

01001010

10001001

11100000

Where bits arrive from and 
are sent to

Where bits are processed Where bits are stored



What do we mean by “processing”?
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■ A CPU performs low-level operations called INSTRUCTIONS

■ Arithmetic

- ADD X to Y then put the result in Z

- SUBTRACT X from Y then put the result back in Y

■ Logical

- Set Z to 1 if X AND Y are 1, otherwise set Z to 0

(AND X with Y then put the result in Z)

- Set Z to 1 if X OR Y are 1, otherwise set Z to 0

(OR X with Y then put the result in Z)

■ Comparison

- Set Z to 1 if X is EQUAL to Y, otherwise set Z to 0

- Set Z to 1 if X is GREATER THAN OR EQUAL to Y, otherwise set Z to 0

■ Control

- Skip the next INSTRUCTION if Z is EQUAL to 0



Anatomy of an Instruction
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What to do:
add
sub
and
or
beq
bne

Where to put
the result

Who to apply
the operation to…

variables, constants, etc..

Nearly all instructions can be made to fit a common template…

    OPCODE   DESTINATION, OPERAND1, OPERAND2

Issues remaining ...

• Which operations to include?

• Where to get variables and constants?

• Where to store the results?

CPU

Memory



How Memory is Organized
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■ A group of bits!

■ Groups of bits can represent various types of data

– Integers, Signed integers. Floating-point values, Strings, Pixels

■ Memory is organized as a vector of bits with indices called “addresses”

0    1   2    3   4   5    6   7    8   9  10  11 12 13 14 15 16  17 18 19 20  21  22 23 24 
25 26 27 

0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 ... A vector
of bits

Bits have 
indices called 
“addresses”

We can address 
groups of bits like a 
vector. For example 
the 8-bits from 
[12:20], might be 
the number “42”.

[                         ]



MORE 211 REVIEW: 
MEMORY
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Storing Data in Memory
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Each of these rows can 

store one byte of data

1 byte = 8 bits



Storing Data in Memory
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0b0000 0101

0b0000 0100

0b1111 1110

Each of these rows can 

store one byte of data

Let’s say we want to store the 

number 5 in the top row, 4 in 

the next row, and -2 in the 

next row. 

1 byte = 8 bits



Byte Addresses
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0b0000 0101

0b0000 0100

0b1111 1110

0

1

2

3

4

5

6

7

8

9

10

11

Byte 

Address

To reference each of these 

locations, we use something 

called a byte address.

Note that these addresses 

are not stored anywhere!

1 byte = 8 bits



Storing Larger Data

■ What if I want to store an integer?

– sizeof(int) = 4 bytes
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Variables whose types are 

larger than one byte span 

multiple addresses in memory!



Storing Larger Data

■ Let’s say I want to store an integer whose value is 329,421
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329421 = 0b 0000 0000 0000 0101 0000 0110 1100 1101

1 int = 4 bytes



Storing Larger Data

■ Let’s say I want to store an integer whose value is 329,421

15

329421 = 0b 0000 0000 0000 0101 0000 0110 1100 1101

1 int = 4 bytes

Data
Byte 

Address

0

1

2

3

What order 

should we 

store the bits?



MSB and LSB
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0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte 

(MSB)

Least Significant Byte

(LSB)



Little Endian Ordering
■ The least significant byte of the integer goes in the lowest 

address
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0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte 

(MSB)

Least Significant Byte

(LSB)

Data
Byte 

Address

0

1

2

3



Little Endian Ordering
■ The least significant byte of the integer goes in the lowest 

address
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0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte 

(MSB)

Least Significant Byte

(LSB)

1100 1101

0000 0110 

0000 0101 

0000 0000 

Data
Byte 

Address

0

1

2

3



Big Endian Ordering
■ The least significant byte of the integer goes in the largest 

address
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0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte 

(MSB)

Least Significant Byte

(LSB)

Data
Byte 

Address

0

1

2

3



Big Endian Ordering
■ The least significant byte of the integer goes in the largest 

address

20

0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte 

(MSB)

Least Significant Byte

(LSB)

Data
Byte 

Address

0

1

2

3

0000 0000 

0000 0101 

0000 0110 

1100 1101



Little Endian Ordering
■ The least significant byte of the integer goes in the lowest 

address

21

0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte 

(MSB)

Least Significant Byte

(LSB)

1100 1101

0000 0110 

0000 0101 

0000 0000 

Data
Byte 

Address

0

1

2

3

Little Endian Ordering is dominant in 

processor architectures and is what we 

will be using in this class! 



Working with memory
■ How do you know if an individual row should be interpreted as a 

one-byte value or if it is part of a larger number?

– You cannot tell from looking at the memory – you’ll have this 

information stored somewhere else!

– When you send memory requests, you specify the address 

and the size of data you want to read.
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sizeof(int) = 4 bytes

Byte 

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5 90 100 40 11

Integer Array

0 1 2 3 4
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Byte 

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Byte 

Address Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11



25

Byte 

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Byte 

Address Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11

0b 0000 0101

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0101 1010

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0110 0100

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0010 1000

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0000 1011

0b 0000 0000

0b 0000 0000

0b 0000 0000
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Assuming this array starts at 

address 0, this is how it is stored in 

memory

Byte 

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11

sizeof(int) = 4 bytes

5 90 100 40 11

Integer Array

0 1 2 3 4
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Byte 

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11

5 90 100 40 11

Integer Array

0 1 2 3 4

The address of each element in the array 

corresponds to its starting byte in memory.

Since the size of each element in this array is 

4 bytes, we can compute the address of any 

element by taking its index and multiplying it 

by 4.

Base address = address of the start of the array



Address Calculation
■ I have a 10-element integer array whose base address is 20. 

What is the address of index 9?

28
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Address Calculation
■ I have a 10-element integer array whose base address is 20. 

What is the address of index 9?

– array’s base address + index * size of integer

– 20 + 9 * 4 = 56

29



Diagram Configurations
■ Sometimes memory diagrams will show 4 bytes per row instead 

of 1 byte per row

– See side-by-side comparison on the next slide

■ This provides a more compact way to visualize the data

■ Much of the data that we are working with is 4 bytes, so this 

structure makes it easier to see what is stored in memory

30
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Byte 

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Byte 

Address
Data

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76
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Byte 

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11

Byte 

Address
Data

5

90

100

40

11

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76
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0b 0000 0101

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0101 1010

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0110 0100

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0010 1000

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0000 1011

0b 0000 0000

0b 0000 0000

0b 0000 0000

Byte 

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0b 0000 0000 0000 0000 0000 0000 0000 0101

0b 0000 0000 0000 0000 0000 0000 0101 1010

0b 0000 0000 0000 0000 0000 0000 0110 0100

0b 0000 0000 0000 0000 0000 0000 0010 1000

0b 0000 0000 0000 0000 0000 0000 0000 1011

Byte 

Address
Data

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76



Addresses in Hex
■ Addresses are normally written in hex, not decimal

■ In this class, we are working in a 32-bit address space, meaning 

that addresses are 4 bytes

■ The rest of the memory diagrams you see in class will look the 

diagrams on the next slide

■ Notice that the compactness of the right diagram allows us to 

display more data at once than the left diagram
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0x00000000

Byte 

Address Data

0x00000001

0x00000002

0x00000003

Each row stores one byte of data Each row stores four bytes of data

0x00000004

0x00000005

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000A

0x0000000B

0x00000000

Byte 

Address Data

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

0x00000020

0x00000024

0x00000028

0x0000002C



Size of Memory Address
■ The size of our memory 

determines the number of 

bits we need to address it

■ For example, if our memory 

can only hold 8 bytes, we 

will need log2(8) = 3 bits to 

address the memory

36

Byte 

Address
Data

0b000

0b001

0b010

0b011

0b100

0b101

0b110

0b111



Size of Memory Address
■ If the size of our memory is 4 GB, how many bits do we need 

to address our memory? (1GB = 230 bytes)

37
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Size of Memory Address
■ If the size of our memory is 4 GB, how many bits do we need 

to address our memory? (1GB = 230 bytes)

38

log2(4 GB)

log2(22 * 230)

log2(232)

32



BASIC CIRCUITS

59



A Substrate for Computation

60

■ We can build devices for processing and representing bits 

using almost any physical phenomenon

- magnetic flux
- trained elephants
- falling water
- turning gears
- DNA sequences
- polarization of a photon

Wait! Some of those
might have potential...

1     0     1      0      0

1     1     0     1     0
0    1



Using Electromagnetic Phenomena

61

▪ Some EM things we could encode bits with:

▪ voltages, phase, currents, frequency

▪ With today’s technologies voltages are most often used.

▪ Voltage pros:

▪ easy generation, detection

▪ voltage changes can be very fast

▪ lots of engineering knowledge

▪ Voltage cons:

▪ easily affected by environment

▪ DC connectivity required?

▪ R & C effects slow things down



Voltage and Current
■ Voltage

– The force that makes electrons flow

– Measured in Volts (V)

■ Current

– The rate of flow of electrons

– Measured in Amperes (A)

62



Representing Information with Voltages

63

Representation of each point (x, y) in a B&W Picture:

 0 volts:  BLACK
 1  volt:   WHITE
 0.37 volts: 37% Gray
 etc.

Representation of a picture:
    Scan points in some prescribed
    raster order… generate voltage
    waveform

How much 
information

at each point?



Information Processing = Computation
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First, let’s consider some processing blocks:

vCopyv

INVv 1-v



Let’s Build a System!
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?

Copy INV

Copy INV

Copy INV

Copy INV

output

(In Theory)
input

(Reality)  



Contracts: Key to System Design

66

A SYSTEM is a structure that is “guaranteed” to exhibit a specified behavior, 
assuming all of its components obey their specified behaviors.

How is this achieved? 

 
Through Contracts

Every system component will have clear obligations and
responsibilities. If these are maintained we have every 
right to expect the system to behave as planned. If 
contracts are violated all bets are off.



Digital Contracts
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Why DIGITAL?

 … because it keeps the contracts SIMPLE!

It’s the price we pay for this robustness?

All the information that we 

transfer between components 

is only one bit!

But, in exchange, we get reliable, modular, 

and reproducible systems. 

0 or 1



The Digital Abstraction

68

Real World

“Ideal”
Abstract World

Volts or
Electrons or
Ergs or Gallons

Bits

0/
1

Keep in mind, the real world is not digital, we engineer it to behave that way. 
We coerce real physical phenomena to implement digital designs!

Noise

Manufacturing
Variations



A Digital Processing Element
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• A combinational device is a digital element that has

– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each output for every 

possible combination of valid input values

– a timing specification consisting (at a minimum) an upper bound 

propagation delay, tpd, on the required time for the device to compute the 

specified valid output values from an arbitrary set of stable, valid input 

values

input A

input B

input C

output Y

Output a “1” if at 
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after 
seeing valid inputs



A Combinational Digital System

70

A system of interconnected elements is combinational if:

▪ Each circuit element is combinational

▪ Every input is connected to exactly one output or directly to some 

source of 0’s or 1’s

▪ The circuit contains no directed cycles

▪ But, in order to realize digital processing, elements we have one 

more requirement!



Nose Margins

71

■ Key idea: 

Don’t allow “0” to be mistaken for a “1” or vice versa

■ Use the same “uniform bit-representation convention”, for 

every component in our digital system

■ To implement devices with high reliability, we outlaw “close 

calls” via a representation convention which forbids a range 

of voltages between “0” and “1”.

■ Ensure the valid input range is more tolerant (larger) than the 

valid output range
Our definition of valid does not preclude inputs and outputs from passing through invalid 
values. In fact, they must, but only during transitions. Our specifications allow for this (i.e. 
outputs are specified sometime (Tpd) after after inputs become valid). 



Digital Processing Elements (Gates)

72

Some digital processing elements occur so frequently that we give them 
special names and symbols

AND
I will output a
‘1’ if all my 
inputs are ‘1’

A

B
Y OR

I will output a 
‘1’ if any of my
inputs are ‘1’

A

B
Y

A Y

A

B
YXOR

I will only output a 
‘1’ if an odd number
of my inputs are ‘1’

buffer inverter

I will output the
complement of

my input
A Y

I will copy and
restore my input

to my output

Q: What is the point of a buffer? 
Doesn’t a wire do the same thing?
A: A buffer restores marginal digital 
signals, because the output is as good 
or “better” than the input (i.e. it 
solves that bad image problem from 
slide 7).



Digital Processing Elements (Gates)

73

Some digital processing elements occur so frequently that we give them 
special names and symbols

AND
A

B
Y OR

A

B
Y

A Y

A

B
YXOR

buffer inverter

A Y



How do we make gates?
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■ A controllable switch is the common 

link of all computing technologies

■ Switches control voltages by creating 

and opening paths between higher and 

lower potentials 

■ Closed circuit: 

– fully connected, allows electricity 

to flow uninterrupted

■ Open circuit

– A circuit that contains a broken 

connection

– Electricity stops flowing at the point 

where the connection was lost

Lo
ad

This symbol 
indicates a 
“low” or 
ground 
potential

This symbol 
indicates a “high” 
potential, or the 
voltage of the 
power supply



Switches
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Open (off) Closed (on)

Electricity can flow through a closed switch, it cannot flow through 

an open switch



Switches
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Open (off) Closed (on)

Let’s say we apply 5V to the left side of the switch

▪ If the switch is open, we don’t necessarily know the voltage on the right

▪ Would need to see the full circuit to determine the voltage

▪ If the switch is closed, the voltage on the right is 5V

5V ??? 5V 5V



Switches

77

Open (off) Closed (on)

Let’s say we apply 0V to the left side of the switch

▪ If the switch is open, we don’t necessarily know the voltage on the right

▪ Would need to see the full circuit to determine the voltage

▪ If the switch is closed, the voltage on the right is 0V

5V ??? 5V 5V



Switches in Series

78

Current can only flow between the two ends if both switches are closed

current_flow = switch0 AND switch1

switch0 switch1 switch0 switch1

switch0 switch1
switch0 switch1



Switches in Parallel

79

Current can flow between the two ends if either of the switches is closed

current_flow = switch0 OR switch1

switch0

switch1

switch0

switch1

switch0

switch1

switch0

switch1



Digital Variables and Functions

80

■ A binary variable, 0 or 1, can represent the state of switch

– on or off, open or closed

■ The setting of switches can be used to turn on and off other switches 

to compose more complicated functions.



A Simple Function: Turning on a Light

81

■ By simply adding a power 

source and connecting a load 

(light bulb) our controlled 

switch can use a binary 

variable to control a light.

■ This simple logic expression 

describes the output as a 

function of its inputs. 

– We say that L(x) = x is a 

logic function and that x is 

an input variable x.

x light

0 OFF

1 ON

L(x) = x



Functions with Two Switches

82

■ Two switches can be 

connected either in series or 

in parallel 

■ Using a series connection, 

the light will be turned on only 

if both switches are closed. If 

either switch is open, the light 

will be off.

– L(x1, x2) = x1 · x2

where L = 1 if x1 = 1 and 

x2 = 1, L = 0 otherwise.

■  ·  is logical AND
Two basic two-input logic functions



Functions with Two Switches

83

■ With a parallel connection of 

the two switches, the light will 

be on if either the x1 or x2 

switch is closed. The light will 

also be on if both switches 

are closed. The light will be 

off only if both switches are 

open. 

– L(x1, x2) = x1 + x2

where L = 1 if x1 = 1 or x2 

= 1 or if x1 = x2 = 1, 

L = 0 if x1 = x2 = 0.

■ ”+” is logical OR
Two basic two-input logic functions



A Three-Switch Function

84

■ Three switches can be used to 

control the light in more 

complex ways. This series-

parallel connection of switches 

realizes the logic function:

– L(x1, x2, x3) = (x1 + x2) · x3

■ The light is on if x3 = 1 and, at 

the same time, at least one of 

the x1 or x2 are 1.



A Three-Switch Function

85
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