
COMP311:
COMPUTER ORGANIZATION!

Lecture 3: Memory Review, Basic Circuits

1

tinyurl.com/comp311-fa25

Logistics Updates

■ First quiz next Thursday!

■ First written assignment will be released tomorrow!

– Due a week after that

2

Summarizing our review so far…

■ ALL modern computers represent signed integers using a

two’s-complement representation

■ Two’s-complement representations eliminate the need for

separate addition and subtraction units

– Addition is identical using either unsigned and two’s-

complement numbers

■ Finite representations of numbers on computers leads to

anomalies

– Overflow!

■ Floating-point numbers have separate fraction and exponent

components.
3

Today: Let’s Dig into Computer Organization!

■ Every computer has at least three basic units
– Input/Output

■ where data arrives from the outside world

■ where data is sent to the outside world

■ where data is archived for the long term (i.e. when the lights go out)

– Memory

■ where data is stored (numbers, text, lists, arrays, data structures)

– Central Processing Unit
■ where data is manipulated, analyzed, etc. 4

I/O
(Input/Output)

CPU
(Central

Processing

Unit)

Memory

Where bits arrive from and
are sent to

Where bits are processed Where bits are stored

Today: Let’s Dig into Computer Organization!

■ Input/Output

– converts symbols to bits and vice versa

– where the analog “real world” meets the digital “computer world”

– must somehow synchronize to the CPU’s clock

■ Memory

– stores bits that represent information

– every unit of memory has an “address” and “contents”,

■ Central Processing Unit

– besides processing, it also coordinates data’s movements between units
5

keyboard

hard drive

display

adder

shifter

logic

01001010

10001001

11100000

Where bits arrive from and
are sent to

Where bits are processed Where bits are stored

What do we mean by “processing”?

6

■ A CPU performs low-level operations called INSTRUCTIONS

■ Arithmetic

- ADD X to Y then put the result in Z

- SUBTRACT X from Y then put the result back in Y

■ Logical

- Set Z to 1 if X AND Y are 1, otherwise set Z to 0

(AND X with Y then put the result in Z)

- Set Z to 1 if X OR Y are 1, otherwise set Z to 0

(OR X with Y then put the result in Z)

■ Comparison

- Set Z to 1 if X is EQUAL to Y, otherwise set Z to 0

- Set Z to 1 if X is GREATER THAN OR EQUAL to Y, otherwise set Z to 0

■ Control

- Skip the next INSTRUCTION if Z is EQUAL to 0

Anatomy of an Instruction

7

What to do:
add
sub
and
or
beq
bne

Where to put
the result

Who to apply
the operation to…

variables, constants, etc..

Nearly all instructions can be made to fit a common template…

 OPCODE DESTINATION, OPERAND1, OPERAND2

Issues remaining ...

• Which operations to include?

• Where to get variables and constants?

• Where to store the results?

CPU

Memory

How Memory is Organized

8

■ A group of bits!

■ Groups of bits can represent various types of data

– Integers, Signed integers. Floating-point values, Strings, Pixels

■ Memory is organized as a vector of bits with indices called “addresses”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27

0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 ... A vector
of bits

Bits have
indices called
“addresses”

We can address
groups of bits like a
vector. For example
the 8-bits from
[12:20], might be
the number “42”.

[]

MORE 211 REVIEW:
MEMORY

9

Storing Data in Memory

10

Each of these rows can

store one byte of data

1 byte = 8 bits

Storing Data in Memory

11

0b0000 0101

0b0000 0100

0b1111 1110

Each of these rows can

store one byte of data

Let’s say we want to store the

number 5 in the top row, 4 in

the next row, and -2 in the

next row.

1 byte = 8 bits

Byte Addresses

12

0b0000 0101

0b0000 0100

0b1111 1110

0

1

2

3

4

5

6

7

8

9

10

11

Byte

Address

To reference each of these

locations, we use something

called a byte address.

Note that these addresses

are not stored anywhere!

1 byte = 8 bits

Storing Larger Data

■ What if I want to store an integer?

– sizeof(int) = 4 bytes

13

Variables whose types are

larger than one byte span

multiple addresses in memory!

Storing Larger Data

■ Let’s say I want to store an integer whose value is 329,421

14

329421 = 0b 0000 0000 0000 0101 0000 0110 1100 1101

1 int = 4 bytes

Storing Larger Data

■ Let’s say I want to store an integer whose value is 329,421

15

329421 = 0b 0000 0000 0000 0101 0000 0110 1100 1101

1 int = 4 bytes

Data
Byte

Address

0

1

2

3

What order

should we

store the bits?

MSB and LSB

16

0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte

(MSB)

Least Significant Byte

(LSB)

Little Endian Ordering
■ The least significant byte of the integer goes in the lowest

address

17

0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte

(MSB)

Least Significant Byte

(LSB)

Data
Byte

Address

0

1

2

3

Little Endian Ordering
■ The least significant byte of the integer goes in the lowest

address

18

0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte

(MSB)

Least Significant Byte

(LSB)

1100 1101

0000 0110

0000 0101

0000 0000

Data
Byte

Address

0

1

2

3

Big Endian Ordering
■ The least significant byte of the integer goes in the largest

address

19

0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte

(MSB)

Least Significant Byte

(LSB)

Data
Byte

Address

0

1

2

3

Big Endian Ordering
■ The least significant byte of the integer goes in the largest

address

20

0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte

(MSB)

Least Significant Byte

(LSB)

Data
Byte

Address

0

1

2

3

0000 0000

0000 0101

0000 0110

1100 1101

Little Endian Ordering
■ The least significant byte of the integer goes in the lowest

address

21

0b 0000 0000 0000 0101 0000 0110 1100 1101

Most Significant Byte

(MSB)

Least Significant Byte

(LSB)

1100 1101

0000 0110

0000 0101

0000 0000

Data
Byte

Address

0

1

2

3

Little Endian Ordering is dominant in

processor architectures and is what we

will be using in this class!

Working with memory
■ How do you know if an individual row should be interpreted as a

one-byte value or if it is part of a larger number?

– You cannot tell from looking at the memory – you’ll have this

information stored somewhere else!

– When you send memory requests, you specify the address

and the size of data you want to read.

22

23

sizeof(int) = 4 bytes

Byte

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5 90 100 40 11

Integer Array

0 1 2 3 4

24

Byte

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Byte

Address Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11

25

Byte

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Byte

Address Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11

0b 0000 0101

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0101 1010

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0110 0100

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0010 1000

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0000 1011

0b 0000 0000

0b 0000 0000

0b 0000 0000

26

Assuming this array starts at

address 0, this is how it is stored in

memory

Byte

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11

sizeof(int) = 4 bytes

5 90 100 40 11

Integer Array

0 1 2 3 4

27

Byte

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11

5 90 100 40 11

Integer Array

0 1 2 3 4

The address of each element in the array

corresponds to its starting byte in memory.

Since the size of each element in this array is

4 bytes, we can compute the address of any

element by taking its index and multiplying it

by 4.

Base address = address of the start of the array

Address Calculation
■ I have a 10-element integer array whose base address is 20.

What is the address of index 9?

28

WS 2 Q2

Address Calculation
■ I have a 10-element integer array whose base address is 20.

What is the address of index 9?

– array’s base address + index * size of integer

– 20 + 9 * 4 = 56

29

Diagram Configurations
■ Sometimes memory diagrams will show 4 bytes per row instead

of 1 byte per row

– See side-by-side comparison on the next slide

■ This provides a more compact way to visualize the data

■ Much of the data that we are working with is 4 bytes, so this

structure makes it easier to see what is stored in memory

30

31

Byte

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Byte

Address
Data

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

32

Byte

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

90

100

40

11

Byte

Address
Data

5

90

100

40

11

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

33

0b 0000 0101

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0101 1010

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0110 0100

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0010 1000

0b 0000 0000

0b 0000 0000

0b 0000 0000

0b 0000 1011

0b 0000 0000

0b 0000 0000

0b 0000 0000

Byte

Address
Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0b 0000 0000 0000 0000 0000 0000 0000 0101

0b 0000 0000 0000 0000 0000 0000 0101 1010

0b 0000 0000 0000 0000 0000 0000 0110 0100

0b 0000 0000 0000 0000 0000 0000 0010 1000

0b 0000 0000 0000 0000 0000 0000 0000 1011

Byte

Address
Data

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

Addresses in Hex
■ Addresses are normally written in hex, not decimal

■ In this class, we are working in a 32-bit address space, meaning

that addresses are 4 bytes

■ The rest of the memory diagrams you see in class will look the

diagrams on the next slide

■ Notice that the compactness of the right diagram allows us to

display more data at once than the left diagram

34

35

0x00000000

Byte

Address Data

0x00000001

0x00000002

0x00000003

Each row stores one byte of data Each row stores four bytes of data

0x00000004

0x00000005

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000A

0x0000000B

0x00000000

Byte

Address Data

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

0x00000020

0x00000024

0x00000028

0x0000002C

Size of Memory Address
■ The size of our memory

determines the number of

bits we need to address it

■ For example, if our memory

can only hold 8 bytes, we

will need log2(8) = 3 bits to

address the memory

36

Byte

Address
Data

0b000

0b001

0b010

0b011

0b100

0b101

0b110

0b111

Size of Memory Address
■ If the size of our memory is 4 GB, how many bits do we need

to address our memory? (1GB = 230 bytes)

37

WS 2 Q3

Size of Memory Address
■ If the size of our memory is 4 GB, how many bits do we need

to address our memory? (1GB = 230 bytes)

38

log2(4 GB)

log2(22 * 230)

log2(232)

32

BASIC CIRCUITS

59

A Substrate for Computation

60

■ We can build devices for processing and representing bits

using almost any physical phenomenon

- magnetic flux
- trained elephants
- falling water
- turning gears
- DNA sequences
- polarization of a photon

Wait! Some of those
might have potential...

1 0 1 0 0

1 1 0 1 0
0 1

Using Electromagnetic Phenomena

61

▪ Some EM things we could encode bits with:

▪ voltages, phase, currents, frequency

▪ With today’s technologies voltages are most often used.

▪ Voltage pros:

▪ easy generation, detection

▪ voltage changes can be very fast

▪ lots of engineering knowledge

▪ Voltage cons:

▪ easily affected by environment

▪ DC connectivity required?

▪ R & C effects slow things down

Voltage and Current
■ Voltage

– The force that makes electrons flow

– Measured in Volts (V)

■ Current

– The rate of flow of electrons

– Measured in Amperes (A)

62

Representing Information with Voltages

63

Representation of each point (x, y) in a B&W Picture:

 0 volts: BLACK
 1 volt: WHITE
 0.37 volts: 37% Gray
 etc.

Representation of a picture:
 Scan points in some prescribed
 raster order… generate voltage
 waveform

How much
information

at each point?

Information Processing = Computation

64

First, let’s consider some processing blocks:

vCopyv

INVv 1-v

Let’s Build a System!

65

?

Copy INV

Copy INV

Copy INV

Copy INV

output

(In Theory)
input

(Reality)

Contracts: Key to System Design

66

A SYSTEM is a structure that is “guaranteed” to exhibit a specified behavior,
assuming all of its components obey their specified behaviors.

How is this achieved?

Through Contracts

Every system component will have clear obligations and
responsibilities. If these are maintained we have every
right to expect the system to behave as planned. If
contracts are violated all bets are off.

Digital Contracts

67

Why DIGITAL?

 … because it keeps the contracts SIMPLE!

It’s the price we pay for this robustness?

All the information that we

transfer between components

is only one bit!

But, in exchange, we get reliable, modular,

and reproducible systems.

0 or 1

The Digital Abstraction

68

Real World

“Ideal”
Abstract World

Volts or
Electrons or
Ergs or Gallons

Bits

0/
1

Keep in mind, the real world is not digital, we engineer it to behave that way.
We coerce real physical phenomena to implement digital designs!

Noise

Manufacturing
Variations

A Digital Processing Element

69

• A combinational device is a digital element that has

– one or more digital inputs

– one or more digital outputs

– a functional specification that details the value of each output for every

possible combination of valid input values

– a timing specification consisting (at a minimum) an upper bound

propagation delay, tpd, on the required time for the device to compute the

specified valid output values from an arbitrary set of stable, valid input

values

input A

input B

input C

output Y

Output a “1” if at
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.

I will generate a valid
output in no more than

2 minutes after
seeing valid inputs

A Combinational Digital System

70

A system of interconnected elements is combinational if:

▪ Each circuit element is combinational

▪ Every input is connected to exactly one output or directly to some

source of 0’s or 1’s

▪ The circuit contains no directed cycles

▪ But, in order to realize digital processing, elements we have one

more requirement!

Nose Margins

71

■ Key idea:

Don’t allow “0” to be mistaken for a “1” or vice versa

■ Use the same “uniform bit-representation convention”, for

every component in our digital system

■ To implement devices with high reliability, we outlaw “close

calls” via a representation convention which forbids a range

of voltages between “0” and “1”.

■ Ensure the valid input range is more tolerant (larger) than the

valid output range
Our definition of valid does not preclude inputs and outputs from passing through invalid
values. In fact, they must, but only during transitions. Our specifications allow for this (i.e.
outputs are specified sometime (Tpd) after after inputs become valid).

Digital Processing Elements (Gates)

72

Some digital processing elements occur so frequently that we give them
special names and symbols

AND
I will output a
‘1’ if all my
inputs are ‘1’

A

B
Y OR

I will output a
‘1’ if any of my
inputs are ‘1’

A

B
Y

A Y

A

B
YXOR

I will only output a
‘1’ if an odd number
of my inputs are ‘1’

buffer inverter

I will output the
complement of

my input
A Y

I will copy and
restore my input

to my output

Q: What is the point of a buffer?
Doesn’t a wire do the same thing?
A: A buffer restores marginal digital
signals, because the output is as good
or “better” than the input (i.e. it
solves that bad image problem from
slide 7).

Digital Processing Elements (Gates)

73

Some digital processing elements occur so frequently that we give them
special names and symbols

AND
A

B
Y OR

A

B
Y

A Y

A

B
YXOR

buffer inverter

A Y

How do we make gates?

74

■ A controllable switch is the common

link of all computing technologies

■ Switches control voltages by creating

and opening paths between higher and

lower potentials

■ Closed circuit:

– fully connected, allows electricity

to flow uninterrupted

■ Open circuit

– A circuit that contains a broken

connection

– Electricity stops flowing at the point

where the connection was lost

Lo
ad

This symbol
indicates a
“low” or
ground
potential

This symbol
indicates a “high”
potential, or the
voltage of the
power supply

Switches

75

Open (off) Closed (on)

Electricity can flow through a closed switch, it cannot flow through

an open switch

Switches

76

Open (off) Closed (on)

Let’s say we apply 5V to the left side of the switch

▪ If the switch is open, we don’t necessarily know the voltage on the right

▪ Would need to see the full circuit to determine the voltage

▪ If the switch is closed, the voltage on the right is 5V

5V ??? 5V 5V

Switches

77

Open (off) Closed (on)

Let’s say we apply 0V to the left side of the switch

▪ If the switch is open, we don’t necessarily know the voltage on the right

▪ Would need to see the full circuit to determine the voltage

▪ If the switch is closed, the voltage on the right is 0V

5V ??? 5V 5V

Switches in Series

78

Current can only flow between the two ends if both switches are closed

current_flow = switch0 AND switch1

switch0 switch1 switch0 switch1

switch0 switch1
switch0 switch1

Switches in Parallel

79

Current can flow between the two ends if either of the switches is closed

current_flow = switch0 OR switch1

switch0

switch1

switch0

switch1

switch0

switch1

switch0

switch1

Digital Variables and Functions

80

■ A binary variable, 0 or 1, can represent the state of switch

– on or off, open or closed

■ The setting of switches can be used to turn on and off other switches

to compose more complicated functions.

A Simple Function: Turning on a Light

81

■ By simply adding a power

source and connecting a load

(light bulb) our controlled

switch can use a binary

variable to control a light.

■ This simple logic expression

describes the output as a

function of its inputs.

– We say that L(x) = x is a

logic function and that x is

an input variable x.

x light

0 OFF

1 ON

L(x) = x

Functions with Two Switches

82

■ Two switches can be

connected either in series or

in parallel

■ Using a series connection,

the light will be turned on only

if both switches are closed. If

either switch is open, the light

will be off.

– L(x1, x2) = x1 · x2

where L = 1 if x1 = 1 and

x2 = 1, L = 0 otherwise.

■ · is logical AND
Two basic two-input logic functions

Functions with Two Switches

83

■ With a parallel connection of

the two switches, the light will

be on if either the x1 or x2

switch is closed. The light will

also be on if both switches

are closed. The light will be

off only if both switches are

open.

– L(x1, x2) = x1 + x2

where L = 1 if x1 = 1 or x2

= 1 or if x1 = x2 = 1,

L = 0 if x1 = x2 = 0.

■ ”+” is logical OR
Two basic two-input logic functions

A Three-Switch Function

84

■ Three switches can be used to

control the light in more

complex ways. This series-

parallel connection of switches

realizes the logic function:

– L(x1, x2, x3) = (x1 + x2) · x3

■ The light is on if x3 = 1 and, at

the same time, at least one of

the x1 or x2 are 1.

A Three-Switch Function

85

WS 2 Q4

	Slide 1: COMP311: Computer Organization!
	Slide 2: Logistics Updates
	Slide 3: Summarizing our review so far…
	Slide 4: Today: Let’s Dig into Computer Organization!
	Slide 5: Today: Let’s Dig into Computer Organization!
	Slide 6: What do we mean by “processing”?
	Slide 7: Anatomy of an Instruction
	Slide 8: How Memory is Organized
	Slide 9: MORE 211 Review: Memory
	Slide 10: Storing Data in Memory
	Slide 11: Storing Data in Memory
	Slide 12: Byte Addresses
	Slide 13: Storing Larger Data
	Slide 14: Storing Larger Data
	Slide 15: Storing Larger Data
	Slide 16: MSB and LSB
	Slide 17: Little Endian Ordering
	Slide 18: Little Endian Ordering
	Slide 19: Big Endian Ordering
	Slide 20: Big Endian Ordering
	Slide 21: Little Endian Ordering
	Slide 22: Working with memory
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Address Calculation
	Slide 29: Address Calculation
	Slide 30: Diagram Configurations
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Addresses in Hex
	Slide 35
	Slide 36: Size of Memory Address
	Slide 37: Size of Memory Address
	Slide 38: Size of Memory Address
	Slide 59: Basic Circuits
	Slide 60: A Substrate for Computation
	Slide 61: Using Electromagnetic Phenomena
	Slide 62: Voltage and Current
	Slide 63: Representing Information with Voltages
	Slide 64: Information Processing = Computation
	Slide 65: Let’s Build a System!
	Slide 66: Contracts: Key to System Design
	Slide 67: Digital Contracts
	Slide 68: The Digital Abstraction
	Slide 69: A Digital Processing Element
	Slide 70: A Combinational Digital System
	Slide 71: Nose Margins
	Slide 72: Digital Processing Elements (Gates)
	Slide 73: Digital Processing Elements (Gates)
	Slide 74: How do we make gates?
	Slide 75: Switches
	Slide 76: Switches
	Slide 77: Switches
	Slide 78: Switches in Series
	Slide 79: Switches in Parallel
	Slide 80: Digital Variables and Functions
	Slide 81: A Simple Function: Turning on a Light
	Slide 82: Functions with Two Switches
	Slide 83: Functions with Two Switches
	Slide 84: A Three-Switch Function
	Slide 85: A Three-Switch Function

