COMP435: SECURITY CONCEPTS!

Lecture 6: Finish Authentication, Start Crytpo!

tinyurl.com/comp435-fa25

BIOMETRICS

WHAT YOU HAVE, TWO-FACTOR AUTHENTICATION

Means of Authentication

What you know

What you do or what you are

What you have

Where you are

tokens

Authentication by what you have

Def'n: Possession of an item is sufficient for authentication

E.g.,

- keys
- credit card
- hardware token

Hardware Tokens

Demonstrating Possession Remotely

- Challenge-Response
- Synchronized Passcodes

The Challenge-Response piece involves some crypto... We will revisit!

Synchronized Passcodes

passcode

passcode

Two-factor Authentication

Def'n: require two independent means of authentication

E.g., Driver's license:

license: a physical token

picture: biometric authentication

REVOCATION & RESETTING

Revocation

Def'n: cancelling a means of authentication

- Passwords
- Biometrics
- Tokens

Resetting a Password

- 1. Authenticate as user
- 2. Reset password

Q&A

INTRODUCING THE CRYPTOGRAPHIC TOOLBOX

Roadmap

Confidentiality Public Key Symmetric **Encryption** Encryption

Integrity Cryptographic Digital Signatures Hash Message Authentication

Codes

Roadmap

Confidentiality

Symmetric Encryption

Public Key Encryption Integrity

Cryptographic Hash

Digital Signatures

Message Authentication Codes

- Encrypt
- Decrypt
- Plaintext
- Ciphertext
- Cipher

- Encrypt
- Decrypt
- Plaintext
- Ciphertext
- Cipher

Encode a message to obscure its meaning. (Also, encipher)

- Encrypt
- Decrypt
- Plaintext
- Ciphertext
- Cipher

Decode an encrypted message to reveal its original meaning. (Also, decipher)

- Encrypt
- Decrypt
- Ciphertext
- Cipher

- Encrypt
- Decrypt
- Plaintext
- Ciphertext

Encrypted message

Cipher

- Encrypt
- Decrypt
- Plaintext
- Ciphertext
- Cipher

Algorithm for encrypting or decrypting

$$msg = Dec(Enc(msg))$$

$$c = Enc_k(msg)$$

 $msg = Dec_k(c)$

Cryptosystem

Def'n: A system for encryption and decryption

- Encryption algorithm
- Decryption algorithm
- Key generation
- Key management

The security of a cryptosystem should depend only on the secrecy of the keys

Kerckhoffs' Principle

Caesar Cipher

key = 3

BREAKING ENCRYPTION

Encryption and Decryption

$$c = Enc_k(msg)$$

 $msg = Dec_k(c)$

Breaking Encryption

Cryptanalysis

Exhaustive Search

Def'n: Try every possible key until the correct one is found.

Shift Cipher (Caesar Cipher with key)

 $Enc_k(m) \triangleq (m + k) \mod 26$

Shift Cipher (Caesar Cipher with key)

Number of keys to try: 25

```
E.g.,
```

```
Klhy AHz,
Aol huzdly rlf pz pu Zpaalyzvu Ohss.
Zpujlylsf,
Wyvm. Yfu
```

E.g., DES

- 56-bit key
- $10^{10} 10^{15}$ encryptions per second

E.g., DES

- 56-bit key
- $10^{10} 10^{15}$ encryptions per second
- Search time: [75 days, ~1 minute]

much too short for today's computers!

E.g., DES

- 56-bit key
- $10^{10} 10^{15}$ encryptions per second
- Search time: [75 days, ~1 minute]

much too short for today's computers!

On average, the attacker can expect to be successful in the time it takes to search only 2^{55} keys – half the key space!

Computational Security

Cost to break encryption >> value of asset

Time to break encryption >> lifetime of asset

Computational Security

Def'n: Secure against an attacker with fixed computational resources

E.g., An encryption algorithm using 128-bit keys is computationally secure against exhaustive search.

Any secure encryption scheme must have a key space that is not vulnerable to exhaustive search

Def'n: recover key material or plaintext by exploiting flaws in the cryptosystem

Mono-Alphabetic Substitution

abcdefghijklmnopqrstuvwxyz

x e u a d n b k v m r o c q f s y h w g l z i j p t

Mono-Alphabetic Substitution

Number of keys to try: $26! \approx 2^{88}$

E.g.,

GDOOGKDCXEFLGCD

Letter Frequencies in English

Poly-Alphabetic Shift (Vigenère Cipher)

Plaintext: tell them about me

Key: cafe cafe cafec af

Ciphertext: veqp vhjq cbtyv mj

 $Enc_k(m_i) \triangleq (m_i + k_i) \mod 26$

- Cipher-text only attack
- Known-plaintext attack
- Chosen-plaintext attack (CPA)
- Chosen-ciphertext attack (CCA)

- Cipher-text only attack
- Known-plaintext attack
- Chosen-plaintext attack (CPA)
- Chosen-ciphertext attack (CCA)

adversary observes ciphertexts

Cipher-text Only Attack

Given:

Enc, Dec, M, and a ciphertext (ct)

Goal:

Recover a msg such that $m = Dec_{kev}(ct)$

Set-up:

Enc, Dec, M = $\{0, 1\}^n$ K = $\{0,1\}^p$ msg \in M, key \in K ct = Enc_{kev}(msg)

Cipher-text Only Attack

Given:

Enc, Dec, M, and a ciphertext (ct)

Goal:

Recover a msg such that $m = Dec_{kev}(ct)$

Set-up: Enc, Dec, M = $\{0, 1\}^n$ K = $\{0,1\}^p$ msg \in M, key \in K ct = Enc_{kev}(msg)

Enc = Mono-alphabetic substitution

M = {"banana, "orange"}

ct = xmqmqm"

Attacker can figure out m = "banana"

- Cipher-text only attack
- Known-plaintext attack
- Chosen-plaintext attack (CPA)
- Chosen-ciphertext attack (CCA)

adversary learns plaintext-ciphertext pairs

Known-Plaintext Attack

Given:

Enc, Dec, M, $(m_1, c_1), (m_2, c_2) \dots (m_j, c_j)$ and a ciphertext (ct_i)

Goal:

Recover the msg such that $m_i = Dec_{kev}(ct_i)$

Set-up:

Enc, Dec, M = $\{0, 1\}^n$ K = $\{0,1\}^p$ $m_1, m_2 ... m_j \in M$, key $\in K$ $ct_1 = Enc_{key}(m_1)$ $ct_2 = Enc_{key}(m_2) ...$ $ct_i = Enc_{key}(m_i)$

Known-Plaintext Attack

Given:

Enc, Dec, M, $(m_1, c_1), (m_2, c_2) \dots (m_i, c_i)$ and a ciphertext (ct_i)

Goal:

Recover the msg such that $m_i = Dec_{kev}(ct_i)$

Set-up:

Enc, Dec, $M = \{0, 1\}^n$ $K = \{0,1\}^p$ $m_1, m_2 \dots m_i \in M$, key $\in K$ $ct_1 = Enc_{key}(m_1)$ $ct_2 = Enc_{key}(m_2) \dots$ $ct_i = Enc_{kev}(m_i)$

Enc = Shift Cipher Given (m1, c1) = ("abc", "cfg")

Attacker can recover the key and decrypt any future message!

- Cipher-text only attack
- Known-plaintext attack
- Chosen-plaintext attack (CPA)
- Chosen-ciphertext attack (CCA)

Adversary can obtain ciphertext for plaintext of its choosing

Chosen-Plaintext Attack

Given:

Enc, Dec, M, ct and

 $ct_1 = Enc_{key}(m_1)$

 $ct_2 = Enc_{key}(m_2) \dots$

 $ct_i = Enc_{key}(m_i)$

Goal:

Recover the msg such that

 $msg = Dec_{key}(ct)$

Set-up:

Enc, Dec, $M = \{0, 1\}^n$ $K = \{0,1\}^p$ $m \in M$, $key \in K$

 $ct = Enc_{key}(m)$

Chosen-Plaintext Attack

Given:

Enc, Dec, M, ct and

 $ct_1 = Enc_{key}(m_1)$

 $ct_2 = Enc_{key}(m_2) \dots$

 $ct_j = Enc_{key}(m_j)$

Goal:

Recover the msg such that $msg = Dec_{kev}(ct)$

Set-up:

Enc, Dec, $M = \{0, 1\}^n$

 $K = \{0,1\}^p$

 $m \in M$, key $\in K$

 $ct = Enc_{key}(m)$

$$K = \{a-z\}^3$$

key: "key"

M = {"a", "b", "c"}

 \rightarrow

CPA adversary can request Enc("a"), Enc("b"), Enc("c"), Enc("a") again, and learn the key

- Cipher-text only attack
- Known-plaintext attack
- Chosen-plaintext attack (CPA)
- Chosen-ciphertext attack (CCA)

Adversary can obtain decryption for ciphertext of its choosing

Chosen-Ciphertext Attack

Given:

Enc, Dec, M, ct and

 $m1_1 = Dec_{key}(ct_1)$

 $m_2 = Enc_{key}(ct_2) \dots$

 $m_j = Enc_{key}(ct_j)$

Goal:

Recover the msg such that

 $msg = Dec_{key}(ct)$

Set-up:

Enc, Dec, $M = \{0, 1\}^n$

 $K = \{0,1\}^p$

 $m \in M$, key $\in K$

 $ct = Enc_{key}(m)$

 $K = \{0, 1\}^8$ Want to decrypt some given ct

 \rightarrow

Chooses: $c_1 = ct XOR 0000_0001$

Can query: $m_1 = Dec_k(c_1)$ to try to

recover m such that $m = Dec_k(ct)$

Chosen-Ciphertext Attack

Given:

Enc, Dec, M, ct and

 $m1_1 = Dec_{key}(ct_1)$

 $m_2 = Enc_{key}(ct_2) \dots$

 $m_j = Enc_{key}(ct_j)$

Goal:

Recover the msg such that

 $msg = Dec_{key}(ct)$

Set-up:

Enc, Dec, $M = \{0, 1\}^n$

 $K = \{0,1\}^p$

 $m \in M$, key $\in K$

 $ct = Enc_{key}(m)$

 $K = \{0, 1\}^8$ Want to decrypt some given ct

 \rightarrow

Chooses: $c_1 = ct XOR 0000_0001$

Can query: $m_1 = Dec_k(c_1)$ to try to

recover m such that $m = Dec_k(ct)$

- Cipher-text only attack
- Known-plaintext attack
- Chosen-plaintext attack (CPA)
- Chosen-ciphertext attack (CCA)

passive attacks

active attacks

Klhy AHz, Aol huzdly rlf pz pu Zpaalyzvu Ohss. Zpujlylsf, Wyvm. Yfhu

ONE TIME PAD

One Time Pad (Vernam Cipher)

$$c_i = p_i \oplus k_i$$

 $p_i = c_i \oplus k_i$

One Time Pad (Vernam Cipher): Encryption

One Time Pad (Vernam Cipher): Decryption

One Time Pad

- Symmetric encryption algorithm
- Stream cipher
- Substitution cipher

One Time Pad

- Symmetric encryption algorithm
- Stream cipher
- Substitution cipher

each unit of the plaintext is replaced with a unit of ciphertext

One Time Pad Keys

- Key material is as long as message
- Key material is never reused
- Key material is kept secret
- Key material is chosen uniformly at random

uniformly at random

sampled from a uniform distribution

uniformly at random

Unbiased, Deterministic

Biased, Nondeterministic

One Time Pad

- Key material is as long as message
- Key material is never reused
- Key material is kept secret
- Key material is chosen uniformly at random

OTP offers information-theoretical security

Information-Theoretical Security

Def'n: Security derives from information theory

OTP is information-theoretically secure:

- Attacker cannot recover plaintext without the key
- Not susceptible to cryptanalysis
- Not susceptible to exhaustive search

Worksheet Q2-5

OTP

- Provides perfect secrecy
- Does not provide integrity
- Difficult to use in practice