

Compiler Project Extra
Credit Opportunities
Due: 7/25/24 11:59:59pm

Assume PA1 – PA5 grades are normalized to 100 points. With the Compiler worth 50% of your
grade, each extra credit point is worth 0.5% of your course grade.

Each extra credit item has requirements. Some require you to supply tests that can check the
proper functionality of any additional implementation. These tests do not have to be exhaustive,
but please provide at least two input files (one fail, one pass).

Some extra credit items do not have to be implemented in all parts of the compiler. For example,
the push-down automata is only a PA1 constraint and does not require redoing the rest of the
compiler (PA2-PA4). If an extra credit item requires multiple PA checkpoints to be reached, you
are allowed to partially complete it for partial credit, but only where it makes sense to award
partial credit (no trivial additions).

There are many extra credit items that are not listed here. You can come up with your own extra
credit options, but please provide how many points you think that item should be worth. (It may
be worthwhile to ask the course staff for such).

Points Tests PAs Description
1 Y All Allow initialization expressions for static fields.
1 Y All Parameterized class constructions. Only one constructor per

class unless method overloading
2 Y All For loops. Specify the new Grammar in your PA5.
2 Y PA4 Do both: Short circuit && and || expressions, where

“FALSE && …” will not evaluate subsequent expressions and
“TRUE || …” will not evaluate subsequent expressions.

4 Y All Implement String. Note, “String.length” must resolve to a
proper variable, and “double quoted string data” needs to be
parsed. You do not need to implement BinExpr on Strings

1 Y PA3-4 Fix System.out.println to allow for a String parameter
1 Y PA3-4 Implement “.length” for arrays in PA3 and PA4
2-4 N PA1 Implement PA1 with a PDA (and optionally PA2)
1-5 N PA4 Try to minimize the register usage of PA4
2 Y PA2-3 Implement method overloading (signature is by parameter list,

not return type)
1-2 Y PA4 Implement method overloading in PA4 as well, and an

additional pointfor overloading constructors.

3-15 Y All Enable instanceof and super, and allow classes to extend other
classes. Make sure type-checking is extended appropriately
and ensureall methods are virtual methods.

1 N PA3 Do a single traversal for Identification and Type-Checking
* N PA4 Apply some optimization algorithms. Ensure you specify how

many points you think it should be worth (amount awarded is
not guaranteed).

1-3 Y PA4 Come up with a secret handshake (a specific consecutive set of
Statements) that does no meaningful computation, but if
detected by your compiler, your compiler will then do
something special. For example, swap all multiply and
addition operations. Or, when storing data in an
(Ix)AssignStmt, encode data with an XOR, and decode when
reading data (that way original values are only seen in
registers, but the memory always looks corrupted). Or simply
output something on the screen that isn’t a part of the normal
code.

1 N PA3 In contextual analysis, you required a return statement at the
end of every non-void method. Extend this functionality to
ensure all code PATHS end with a return statement instead for
non-void methods.

1 N PA4 Extend ModRMSIB (if you haven’t already) to ensure proper
use of the values for mod=00 and 01. This means only writing
zero/one byte when you otherwise pick mod=10 and greedily
always output 4 bytes.

5-20 N All Enable the use of shared libraries. This will require you to
either redo the ELFMaker entirely or cleverly add on imports
via PLT. Additional points come from properly implementing
bss. For that, you will need to read into the GOT/PLT sections
to find where is “bss” during runtime.

* Y PA1-3,
PA4

Try implementing features in other programming languages.
How about a foreach loop using the .length parameter?
Something more difficult could be adding operator
overloading from C++. Specify how many points you think
such an extension is worth, and whether you
implemented it in PA4 as well.

1 Y PA1-3 Add support for float.
1-3 Y PA4 Add support for float in PA4
1 Y All Add support for char. Make sure you can parse single quotes.
1 N PA4 Every executable that is generated by your compiler has a

special signature hidden somewhere. Just a blob of binary data
that is never accessed or written to by the input source code.

This will act as a fingerprint where you can trace who used
your compiler for binaries.

1-3 N PA4 Be evil and use CPUID to detect the manufacturer string of
whatever is running your executable. If it isn’t a wanted CPU,
do evil things like unoptimized code or random pointless loops
injected into the code.

4-5 Y PA4 Try targeting MIPS (If you are taking COMP-541, target only
the subset to see if you can get it to run on the emulator)

3-8 Y PA4 Change your ELFMaker to something else, see if you can get
your program to run Windows, an M1+ processor, etc

2-4 N PA4 Add the ability to automatically garbage collect objects that
are no longer referenced (sys_munmap)

1-3 Y All Create some intricate code (e.g., Sieve of Eratosthenes,
Shortest-path,etc.) that runs in miniJava.

