
Programming Assignment 2

Compiler Project PA2 –
Abstract Syntax Trees &

Operator Precedence
Due: 7/9/24 11:59:59pm

This is the second programming assignment in your journey to making a compiler. The
goal for this milestone is to create Abstract Syntax Trees (ASTs) for syntactically valid
miniJava programs. This checkpoint will build on your implementation in PA1. There will
be some small grammar changes that you will need to derive.

Abstract Syntax Trees effectively store a valid program’s structure such that we can
iterate through the program’s syntax. We are beyond simply checking syntax validity
but now need to store the source code meaningfully using ASTs.

1. Operator Precedence
Ignoring conditional branching, when we see multiple statements, we can safely
assume that earlier statements execute before later statements. However, within a
statement, that is not necessarily the case. Consider the following expression:

1 + 3 ∗ 4 / 2
Earlier operations in this expression are NOT executed first. Instead, we have
precedence rules. Let’s rewrite the above expression showing precedence.

1 + ((3 ∗ 4) / 2)
Although multiply and divide have the same precedence in miniJava, the multiply
expression is processed first because we process left-to-right. The table below lists
miniJava operators in order of lowest precedence to highest.

The highest precedence expression would be what is left over (LiteralExpr,
NewObjectExpr, NewArrayExpr, IxExpr, CallExpr, RefExpr, and parenthesized
Expression, see page 3 for definitions). To effectively process operators in precedence
order using recursive descent, we must construct a stratified grammar (see Lecture 6).

2. Abstract Syntax Trees
The actual Abstract Syntax Tree objects are mundane to implement. As such, we will
provide all the AST objects you need for PA2 on the course website. Your first step in
your Compiler should be to import the AST java files. First, create a package called
miniJava.AbstractSyntaxTrees and then import all of the AST java files there.

Programming Assignment 2

If you are not tracking line numbers for each Token in your Lexer, create an
empty SourcePosition class inside miniJava.SyntacticAnalyzer. Tracking line
numbers is highly recommended, extra credit in PA5, but nonetheless optional. If you
choose not to track them, whenever a SourcePosition is necessary for the creation of
an AST, simply pass null for the SourcePosition. Additionally, create a method inside
your Token object called public SourcePosition getTokenPosition(). This method
should return null.

If you are already tracking line numbers or wish to start, you must package
those numbers into the SourcePosition class inside miniJava.SyntacticAnalyzer. The
SourcePosition object can be initialized however you wish (for example, with a line and
column number), but must implement the toString() override method where it will
return a String indicating the source code position. Next, your Token class should be
initialized with a SourcePosition object and stored. Ensure a public method called
getTokenPosition() that returns the stored SourcePosition exists. In your Scanner
implementation, you will likely only need to modify makeToken and nextChar where you
detect line breaks in nextChar, and create a SourcePosition for the token generated in
makeToken. If your implementation differs from the PA1 starter code, ensure that
Tokens are created with SourcePosition.

When troubleshooting your PA2 implementation, modify ASTDisplay.java and change
showPosition to true. This will output your SourcePosition in the AST visual output.
However, when submitting, ensure showPosition is set to false, otherwise the
autograder will not be able to validate your AST implementations.

On the next page, we show the grammar rules once again, but also show which AST
implementation that rule corresponds to.

Programming Assignment 2

Program ::= ClassDeclaration* eot Package
ClassDeclaration ::= class id { ClassDecl

 (FieldDeclaration|MethodDeclaration)*}
FieldDeclaration ::= Visibility Access Type id ; FieldDecl
MethodDeclaration ::= Visibility Access (Type|void) id MethodDecl

 (ParameterList?) { Statement* }
Visibility ::= (public|private)? n/a
Access ::= (static)? n/a
Type ::= int | boolean | id | (int|id)[] TypeDenoter
ParameterList ::= Type id (,Type id)* ParameterDeclList
ArgumentList ::= Expression (,Expression)* ExprList
Reference ::= id | this | Reference . id IdRef | ThisRef

 | QualRef
Statement ::= { Statement* } BlockStmt

| Type id = Expression ; VarDeclStmt
| Reference = Expression ; AssignStmt
| Reference[Expression] = Expression ; IxAssignStmt
| Reference (ArgumentList?) ; CallStmt
| return (Expression)? ; ReturnStmt
| if (Expression) Statement IfStmt
(else Statement)?
| while (Expression) Statement WhileStmt

Expression ::= Reference RefExpr
| Reference [Expression] IxExpr
| Reference (ArgumentList?) CallExpr
| unop Expression UnaryExpr
| Expression binop Expression BinaryExpr
| (Expression) Expression
| num LiteralExpr

 (IntLiteral)
| true | false LiteralExpr

 (BooleanLiteral)
| new id() NewObjectExpr
| new (int|id) [Expression] NewArrayExpr

Terminals are in bold.

Programming Assignment 2

3. AST Specifics
This assignment will require you to inspect the files inside the provided
AbstractSyntaxTrees package. Consider WhileStmt ::= while (Expression)
Statement.

Because a WhileStmt takes a conditional expression and a statement (which can be a
BlockStmt if it is multiple lines), it is initialized with exactly those ASTs, an Expression
and a Statement.

There are some trickier details where a MethodDecl takes a FieldDecl (for the Visibility, Access,
Type, id), and tacks on a ParameterDeclList and a StatementList. Similarly, LiteralExpr has to
be initialized with either a BooleanLiteral or IntLiteral. If a corresponding “else” does not exist
for IfStmt, then the Statement for the “else” parameter in IfStmt should be null. For this reason,
before creating the AST in question, you may want to review the corresponding AST
implementation.

4. Programming Assignment
Your Parser’s parse method should return an AST object (specifically Package). Similarly, your
parse methods, such as parseType, should return the associated AST object, such as TypeDenoter.
Parse methods with multiple ASTs associated with them should return an abstract version of that AST.
For example, parseStatement should return Statement, but the method itself may create a
BlockStmt, ReturnStmt, WhileStmt, etc.

The main method inside Compiler.java should no longer output “Success” when there are no syntax
errors. Instead, initialize an ASTDisplay object and call showTree on the AST returned by your
parse method. Do not output anything else when there are no errors. When there is a syntax error,
ensure “Error” is output on the first line by itself as usual, then output any error messages.

Programming Assignment 2

The above code is syntactically valid (even if this.b is not defined) and results in:

Programming Assignment 2

The above text is generated by the Visitor called ASTDisplay (already implemented for
you). Visitors initiate a depth-first traversal of the source code passed to your compiler. Every time
ASTDisplay visits a contained (child node) element, it requires that element output any text with more
indentation:

This output determines whether your compiler created the AST correctly, including checking proper
operator precedence rules.

Note: “Package” will not resolve automatically. Inside your Parser object, ensure that you import
specifically miniJava.AbstractSyntaxTrees.Package alongside
miniJava.AbstractSyntaxTrees.*, where the latter makes referencing ASTs easier.

When submitting to the autograder, ensure that your folder names and filenames do not have whitespace
in them. Your files may have whitespace in them, but the names cannot. Ensure that “showPosition”
is set to false inside ASTDisplay.java.

