
Programming Assignment 3  

Compiler Project PA3 –  
Identification & Type Checking 

Due: 7/16/24 11:59:59pm  
  

The goal for this milestone is to ensure that the input miniJava program complies with the semantics of 
the miniJava language. Syntactic constraints were accomplished in PA1 and PA2, and now we will finish 
the contextual constraints. After this checkpoint, passing source code files are valid miniJava programs. 
Note, miniJava is not Java, so take care in implementing contextual constraints as the implementation 
may be simpler than expected. In PA3, miniJava and Java will now begin to differ noticeably. 
 
From this point forward, the AST classes are yours. You can add, edit, or remove them as you see fit. 
Maintain a list of changes to the ASTs and submit that with your PA3 as a text file called 
“ASTChanges.txt”. 
 
All new contextual analysis code should be in the package miniJava.ContextualAnalysis.  
 
This document will assume you will do identification and type-checking in two separate traversals. 
Additionally, any additional contextual constraints implemented that belong to neither are not a separate 
traversal, but instead are built in to either of the two mentioned traversals. 
 
1. NullLiteral Extension 
The literal “null” should be added to miniJava. This literal can be assigned to any object and tested for 
equality/inequality against any object. Under the provided ASTs in PA2, NullLiteral should extend 
Terminal or Reference. When extending reference, the created AST should be NullReference. 
For Syntactic Analysis, a LiteralExpr or NullReference can be created at the highest 
precedence level.  
 
Ensure your Visitor interface is updated to visitNullLiteral/Reference. You can remove 
ASTDisplay.java entirely, but it is still helpful for debugging, so it would be easier to update 
ASTDisplay instead. 
 
public Object visitNullLiteral(NullLiteral nl, String arg) {  

show(arg, quote(nl.spelling) + " " + nl.toString());  
return null;  

} 
 
2. Identification 
The identification process takes an identifier and resolves where that identifier is declared. It is 
recommended that you add a Declaration field to the Identifier AST.  
 
There exist a few ways for you to implement identification. The textbook (optional textbook #2) 
recommends a weighty vector-based version storing every ClassDecl, MemberDecl, and 
LocalDecl. Then, resolving an identifier would involve checking the vector in reverse order until a 
suitable Declaration can be found.  
 



Programming Assignment 3  

This is easier accomplished through Scoped Identification (see Lecture 09 and briefly covered here). 
Scoped Identification involves a stack of identifier to declaration maps. 
 
Scoped Identification. (Shorthand: SI)  
 

Level 0 Class Names (ClassDecl) 
Level 1 Method and Field Names (MemberDecl) 
Level 2+ Parameters, and Local Variables (LocalDecl) 

 
A single IDTable is a map where an identifier string maps to a Declaration. The IDTable for 
level 1 is special as it must resolve context. This is because multiple class declarations may use the same 
identifier for their fields or methods. Thus, for level 1, the IDTable may require some customization. 
For example, the IDTable for level 1 can take a context (ClassDecl) and identifier as input, and map 
to a MemberDecl.  
 
For simplicity, a single globally shared SI object is recommended.  
 
SI is easiest done through a Stack of IDTable: Stack<HashMap<String, Declararion>>. 
Level 0 and Level 1 are always present. How you choose to make another class’s private members 
invisible is up to you.  
 
You can either choose to check private members manually when referenced in other classes, or you can 
modify the IDTables themselves so that external private identifiers are no longer present. Despite the 
latter sounding more elegant and sometimes easier to implement, it is less desirable when it comes to 
error reporting. Reporting “that identifier is private” is clearer than “that identifier cannot be resolved to a 
declaration.”  
 
SI Methods.  
 
SI has four methods: openScope, closeScope, addDeclaration, and findDeclaration. 
Every time you openScope, you push a new IDTable on the stack. The closeScope method pops 
one IDTable from the stack. The method addDeclaration will add an entry to the top-most 
IDTable that maps a String to a Declaration. It should throw an IdentificationError if that 
name already exists at that level or level 2+. Lastly, findDeclaration will take an Identifier as 
an input (and optionally a context), and return that Identifier’s Declaration, if one exists.  
 
When you visit a method, your SI will enter a new scope. When a BlockStmt is visited, your SI will 
enter a new scope again. In such a created scope, whenever a VarDecl is visited, the top-most 
IDTable in SI is updated where that VarDecl’s name (a String) will map to that VarDecl via 
addDeclaration.  
 
When finished visiting a BlockStmt or method, the SI will closeScope. Any local/parameter 
variables declared in the now-closed scope are no longer accessible and no longer hide lower-scope-level 
identifiers.  
 



Programming Assignment 3  

When visiting an identifier, find the associated Declaration in the IDTables. If there is no 
declaration, then that is an IdentificationError. You do not have to continue Contextual Analysis 
after an ID error. If a Declaration is found, then that Identifier’s Declaration field in the 
ASTs should be updated as a quick way to know where that Identifier is declared without needing to 
traverse with IDTables again. 
 
3. Out-of-order Identification 
Simply put, you can only reference something if it was declared. However, in miniJava and Java, you 
can reference a Class and member variables of a Class that is defined later. Thus, the traversal order 
requires some thought.  

 
Before you visit the methods in a class, it makes sense to 
appropriately update your IDTables for level 0 and 1.  
 
This will require manually iterating through the members 
(fieldDeclList and methodDeclList) and storing them in 
your IDTables. If you wish, you can ignore private methods and 
fields and add those only when processing that specific class. Make 
sure to remove those Declarations from your tables when 
leaving that class. If not using this strategy, you can manually check 
to ensure private variables in other Classes are not accessed when 
resolving Declarations later.  
 
Note that QualRef (e.g. “a.b.c.x” on the left) is also done 
slightly differently. The identifier “b” is a local variable, but it is 
resolved in the context of “a.b” where “a” is declared as an “A” 
type. As such, qualified references bypass level 2+ for everything but 
the left-most reference (in this case, “a” is still a local variable). 
 
 
 

 
4. More on contexts (static context, QualRef context) 

In a QualRef: For miniJava, if the left-hand-side is a class name and NOT a 1+ variable, then the right-
hand-side must be a static member. For example, when resolving “A.x”, when A must be a class, then x 
must be a static member of A. Additionally, the lefthand-side cannot be a method (e.g. 
A.someMethod.b.c is not valid).  

In a static method: You can only access static member variables and other static member methods (and 
locals of course). The keyword “this” is an identification error as it does not make sense in a static 
context. 

 
 
 



Programming Assignment 3  

 
5. Pre-defined Names 

There are no imports in miniJava, so we introduce a small number of predefined declarations to support 
some minimal functionality.  

class System { public static _PrintStream out; }  

class _PrintStream { public void println( int n ){} } 

 class String { }  

Before processing anything contextual, you must manually add these to your IDTables… 

While String has no members, it enables the declaration of your main method:  

public static void main(String[] args).  

Because these are predefined, there cannot exist a custom class named String, _PrintStream, or 
System. When initializing the TypeDenoter for String, change the type to a new 
BaseType(TypeKind.UNSUPPORTED) for use in type checking later. 

6. Identification Implementation 

Identification should be implemented through the Visitor interface. Create your 
miniJava.ContextualAnalysis package and create an Identification.java in that package. If 
doing SI, then create your ScopedIdentification class as well.  

Carefully consider what you want your parameter and return types to be for the Visitor interface. Not 
every method will need to return something, and most will return null. Similarly, some methods will not 
use the passed parameter. 

7. Type Checking 

Type checking starts from the leaf nodes of your AST and works bottom-up. Because Identification maps 
all identifiers to their declaration, the TypeDenoter for each identifier is also known.  

The UNSUPPORTED type is not compatible with any type other than ERROR. The ERROR type is 
compatible with every type. If two types are incompatible, then report an error and the resultant type will 
be the ERROR type.  

Ensure any assignment occurs with an Expression that resolves to the type of that variable. Calling a 
method also requires this type of check. There is no typecasting in miniJava. The table below resolves 
most type-checking rules. 



Programming Assignment 3  

 

 

Recall that NullLiteral can be assigned to any object. This means you will need a special type-
checking rule when assigning/comparing an object/classtype to null. Similarly, you must carefully 
consider the type-checking of a new operation. 

Type-Checking Implementation.  
 
Type-checking should also implement the Visitor interface. Create your type-checking class inside the 
miniJava.ContextualAnalysis package. Most type-checking implementations return a TypeDenoter 
and do not utilize the parameter. As such, it is recommended to implement 
Visitor<Object,TypeDenoter>.  
 
Most nodes will synthesize a TypeDenoter, and AST nodes that compare multiple types will ensure 
those types are compatible. When there is a type-checking error, you can continue type-checking. 
 

 
 
Note that calling a method also requires type checking. Ensure the number of parameters matches and the 
types match. Note parameter variables are being assigned expressions in a method call, thus type 
checking is necessary. The return statement should also match the type of the method. 
 
8. Error Reporting 
 
If there is an identification error, do not proceed to type-checking. If there is either a syntactic, 
identification, or type-checking error, output “Error” on the first line by itself 
(System.out.println), and any subsequent lines may contain useful output. If the input code 
passes all checks, output “Success” on the first line by itself. 
 
 



Programming Assignment 3  

Other Contextual Errors.  
 
Note there are other types of contextual errors that do not fit in either Type-Checking or Identification. 
These other contextual can be placed in either, or a third traversal can be created. In Java, you cannot 
have a declaration in its own scope. You also cannot reference a variable currently being declared, even if 
that variable is available in an earlier scope. 
 

 
 
In PA4, you will be required to ensure the last statement in a non-void method is a return statement. In 
PA5, this can optionally be made more complex by ensuring all paths have a return statement at the end, 
but for PA4 a simple enforced return at the end is required, and not a return within a block statement. You 
can choose to add this constraint now in PA3 or later in PA4, but do not do the more difficult PA5 
optional constraint now, as that would interfere with the PA4 autograder. 
 
9. Single Traversal 
 
You can implement both type-checking and identification in a single traversal if you wish, but it is 
unnecessary. This is an extra credit item for PA5. In such traversals, the parameter is usually a context (an 
IDTable or null to signify use of ScopedIdentification) and the return type is 
TypeDenoter. The parameter is not always a copy of your SI object or an IDTable. There are many 
ways to accomplish this, but you do not have to for PA3. 


