
Programming Assignment 4

Compiler Project PA4 –
Code Generation

Due: 7/16/24 11:59:59pm

The final programming checkpoint requires generating code that targets x86/x64 processors and the
Linux operating system. In PA4, a miniJava program that passes syntactic and contextual analysis should
be able to generate an executable binary with appropriate file headers.

The code generator can be implemented as an AST visitor with a single traversal. These assignment
instructions will assume you will be using the starter code and doing code generation through the AST
visitor.All new contextual analysis code should be in the package
miniJava.ContextualAnalysis.

Several x86 and ELF resources are linked on the assignments page. These resources will help ensure that
your generated code is accurate. The difficulty of PA4 largely comes from proper planning and difficulty
in testing. As is the case when working with hardware, getting feedback on code correctness is not easy.
To prevent headaches, make sure to read the documentation thoroughly.

Inside CodeGeneration.x64.ISA are common instructions that will help complete the assignment. You
should spend some time reading the starter code to see how x64 code is formed.

1. New miniJava language requirements

• Every program needs exactly one public static void main method with a
single String[] parameter. If the main method is not correctly provided in the input
source code, then that is a code generation error.

• Ensure that every non-void method’s last Statement is a return statement. Do not
overcomplicate this check by checking block statements and validating code paths.

2. Quick overview of registers

RAX, RCX, RDX, RBX: general purpose registers. Often, RCX refers to counters, and RAX is
an accumulator, but registers can be used for anything.

RSP, RBP: Respectively, your stack pointer and stack base pointer. RSP is set before the
program can execute. You can use these as general-purpose registers, but it would not be
advisable.

RSI, RDI: Respectively, a source and destination index. These can be used just like any other
general-purpose register.

R8-R15: Similar to the above, but can only be accessed by setting the appropriate REX

Programming Assignment 4

prefix byte.

System calls require setting some registers to specific values.

For example, the “mmap” system call is given to you:

You can use this system call to create usable memory on the heap. Don’t worry about cleaning up
heap data when no longer referenced.

3. ModRMSIB

The operands of an instruction are specified by an instance of the ModRMSIB class. We have
completed all of the necessary methods for you in the interest of time. The ModR/M byte is
important for encoding x86 instructions because it will follow the opcode and determine how to
interpret the subsequent bytes. It is in control of specifying addressing mode, specifying register
or opcode extension and specifying register or memory location. The Scale-Index-Base byte is
used to extend the addressing capabilities of the ModR/M byte.

Recall that you can have memory-related instructions in the “rm” operand, and plain registers
appear in the “r” operand. Refer to lecture 16 for more details if you are interested, read the
source code we provided, or you can check out these tables too:

Register encoding table: http://ref.x86asm.net/coder64.html#modrm_byte_32_64
SIB encoding table: http://ref.x86asm.net/coder64.html#sib_byte_32_64

4. Runtime Entities

Once you are feel confident with the starter code provided for encoding assembly instructions,
you can move on to code generation by traversing your program’s AST.

The starter code targets the more difficult “position-independent bytecode” format for executable
binaries. This means that we will not know where other segments like “.bss” are located. This
makes it difficult, consider:

Programming Assignment 4

static int a; // Store at .bss+0

static int b; // Store at .bss+4

 static SomeClass someObj; // Store at .bss+12

In the above code, we store uninitialized static data by assigning some offsets in the“.bss”
section. However, we do not know what “.bss” resolves to. As such, for PA4, it is suggested that
you create stack space for each static variable. This stack space can be created at your program’s
entry point before the actual main method code.

In miniJava, an int is 4 bytes long, and any object pointer is 8 bytes. For object pointers
allocated by mmap, you will need all 64 bits. Stack space is limited, so dynamically allocating
objects on the stack will result in many crashes. Thus, the heap must be utilized. Booleans can be
allocated however few bytes you wish, but 1 byte is ideal.

Local variables should be created on the stack as an offset from RBP. This means the runtime
entity for some local variable will be “RBP-X” for some X. You can make sure this stack space
is not utilized by pushing some placeholder memory when you encounter a VarDecl, then
storing some data in the VarDecl AST about where it would be stored as an offset from RBP or
RSP. This offset describes how such a runtime entity can be referred to.

You will want to assign non-static field variables some offset from a base pointer. For example,
if the non-static variables x, b, and c are in some class, an acceptable runtime entity assignment
would be “object base+0”, “+8”, and “+16” for x, b, and c, respectively (Note that this
assumes each variable is 8 bytes long). To resolve such variables, one strategy would be:

I. Local variable “A a”
II. Allocate memory for “new A”, and store via “a = new A”. Call your mmap function,

and the result is in rax.
III. Assume a’s runtime entity is rbp-4. Then, mov [rbp-4],rax.
IV. To access the variable “b”, we would need mov rbx,[rbp-4].
V. Then, [rbx+8] would refer to the location of “a.b”.

In the above example, “a.b” qualified reference is first resolved by getting the “object base” in
step IV, where “a” is the object base. Then the runtime entity “a.b” can resolve as “object
base+offset”, where in this case, it would be +16. As such, a qualified reference’s right-hand-
side runtime entity is resolved in the context of the left-handside reference.

In summary, static variables are offset from some initial location on the stack. Local variables are
offset from the stack frame’s base pointer (or stack pointer). Instance variables are offset from
some base pointer loadable from elsewhere.

6. Call / Return

When you call a method, you should create a new stack frame for local variables to be offset
from. When you return, you should clean up the stack so that you do not overutilize the stack.

Programming Assignment 4

There is a heavy reduction in points if you do not clean up the stack after a function returns. This
is something you have learned in other classes but covered here briefly.

The calling convention for static methods is to push evaluated expressions in reverse order. This
means that SomeClass.MyStaticMethod(a+b, c); would push “c” onto the stack
first, then the result of “a+b” second. Then, inside the method, you would refer to parameter
variables offset from your current stack frame (e.g., rbp+8).

Non-static methods have a hidden extra parameter, “this.” This means that a.b(x) is
actually: b(a,x), where “a” becomes “this” for the method body. Similarly, c(x) would
actually be c(this,x).

Do not forget to clean up “this” on the stack when returning. Cleanup of the stack entails
reclaiming rsp by increasing its value.

You should be generating code sequentially. This means that when you begin a method, then
_asm.size() will contain the address of the next instruction. When calling a method, you
might not know where that method is located in the assembly. As such, you should keep track of
such “Unknown Runtime Entities” and patch them when you know the start address of a method
whose code has not yet been generated.

You can decorate your AST with a patch list for each MethodDecl such that when that
MethodDecl is visited, you can patch instructions that call that method.

Additionally, you need to keep track of where your main method is (and initialization code if
any) so that you can create the ELF file appropriately later. This entrypoint is an offset from the
start of the code (offset from zero), not the virtual address it will be loaded at.

7. System.out.println

This method takes an int parameter. You will need to write the assembly for the SYS_write
system call (RAX=1). The output requires a null-terminated string of characters. You need to
output the raw integer passed as a parameter. Note, this means that 48 = the printable number ‘0’.
You do not need to do any fancy conversion from integers to ascii characters. Just make sure
there exists a null terminator after whatever bytes you output. The autograder will not use values
above 0xFF.

You will need to research how the write system call works. Use the mmap example.

8. Instruction Patching

After an Instruction has been added to the InstructionList, the listIdx field is filled.
You can use this field to replace this instruction later. For example, in an IfStmt, you do not
necessarily know where to jump to. Instead, create a placeholder (“jle 0” with new
CondJmp(Condition.LE,0)). Then, when you know where to jump to, you can call

Programming Assignment 4

_asm.patch with the proper listIdx of the conditional jump, and replace it with the proper
value. Make sure you patch instructions with new instructions of the same size. An example is
given in the comments in the starter code.

9. ELF Generation

This part is also already completed for you in the interest of time.

There are three sections worth noting: .text, .bss, null, and .shstrtab. We needed to set the sh_type
and sh_flags for these sections appropriately. Similarly, we set the p_type and p_flags for the
program header segment and text segment. Review this code, it may come up. We output an
“a.out” file (as shown in the starter code) if there were no other errors. If you do not output an
“a.out” file, that implies your compiler thinks there was an error.

Unlike earlier assignments, this indicates whether the input source code passes or not. There is
no need to output “Error” or “Success,” and you may output whatever you like.

10. Autograder Information

Because the challenge of PA4 relies a bit more on your ability to research topics and implement
what you find, the autograder is also done differently. Some simple autograder tests are made
available for you, but you should test your solution more thoroughly to make sure your
implementation is correct.

First, check to make sure your ELF is being read correctly by using the resources listed on the
first page. Second, you can copy the raw data from your “a.out” file and check to make sure the
bytecode corresponds to what assembly you were expecting. If this proves challenging, try
outputting the bytecode to console in your compiler, and then pasting it into the website
disassembler.

To test Linux x86_64 binaries, you can ssh into the following server:

ssh comp520@home.digital-haze.org -p 52025

The password is: comp520
Create a folder for yourself (mkdir myonyen && cd myonyen). Then, on subsequent
connections, just cd myonyen to enter that directory.

You have access to the objdump, readelf, and gcc/g++ if you need to test your output.

Programming Assignment 4

First, run your code locally:

java -cp bin miniJava.Compiler /your/test/file.java

Then, when you have generated the a.out file, upload it to your folder on the test server, then
make sure to “chmod u+x a.out” then “./a.out” to make sure it outputs the expected
output. DO NOT UPLOAD YOUR COMPILER SOURCE CODE.

To upload your files, you can use FileZilla for an easier drag-and-drop interface, but you will still
need to ssh to actually execute the file.

In FileZilla, go to your server manager, and add the following:

Then you can drag your “a.out” file into your onyen folder, chmod and run it in ssh.

Consider what your compiler is capable of (arrays, objects, static variables, etc.) and create test
java input files. Ensure that any output from System.out.println matches what you were
expecting. Additionally, consult a hex-ascii table to make sure your output is actually readable.
For example, System.out.println(10) is just a line break, and will not output the
number “10.” Instead, System.out.println(49)and System.out.println(48)
will output the letters ‘10’.

Submit your completed project to the autograder. Ensure only relevant .java files are uploaded.

