
 1

Software Shadows For Ray Tracing Using Hardware Cameras
Kyle Moore

kjmoore@cs.unc.edu

Abstract
The goal of ray tracing is to create images that
are as accurate to real life as possible. Unfortu-
nately, attaining this goal typically requires an
extremely large amount of processing time. In
this paper I propose a method for creating accu-
rate soft shadows using graphics hardware to
accelerate the process.

1. Introduction
I came up with this approach while working on
the soft shadow algorithm of my ray tracer. The
soft shadows my ray tracer was originally pro-
ducing had noticeable pattern effects. Although
jittering and anti-aliasing helped somewhat, the
patterns persisted. The only way I found to fix
this problem was to increase the number of
shadow rays per sample. However, as the num-
ber of shadow rays increased, the render times
increased exponentially. I was not satisfied with
this as render times were already quite high.

I began to consider alternate approaches to my
current method, and developed this new ap-
proach in the process. This new approach at-
tempts to use the GPU to simulate shooting
many shadow rays at once. Offloading some of
the work to the GPU also allows for perform-
ance gains due to parallelization.

2. Previous Works
In this section, I cover some previous ap-
proaches to this problem that are similar to my
approach.

2.1 Cone Tracing
In the early days of computer graphics when ray
tracing was the state of the art, Amanatides [1]
realized that shooting a single line ray was a
pretty poor approximation of how light behaved
in nature. He proposed a technique where line
rays are replaced with cone-shaped rays. This
creates areas of intersection as opposed to point
intersections. These areas are more accurate
than point samples and effectively give you soft

shadows, anti-aliasing, and numerous desired
effects.

The drawback, however, is that the cone inter-
sections are very difficult to calculate and re-
quire a significant amount of computation. For
this reason, this technique never became popu-
lar. Instead, distributed ray tracing became the
norm as it produced images of equal quality with
much less complexity. My approach shares
some ideas with this paper but ultimately is quite
different.

2.2 Geometry-based Soft
Shadow Volumes
The second paper I looked at [2] sounded like it
might have a similar approach to mine, as I
wanted to use graphics hardware to create shad-
ows. As I read further, I found that their ap-
proach was a forward approach, where shadow
silhouettes are found and polygons are used to
cast shadows onto an object. This method was
designed for modern graphics pipelines. My
approach is a backwards approach, so I won’t go
into any more detail about their technique.

2.3 Soft shadow volumes for ray
tracing
The technique described in [3] tries to solve the
same problems I hope to solve using similar
methods. Their approach samples the light
source from the point to be shaded. However,
the amount of light occluded is not calculated by
sampling the light with a hardware camera as in
my approach. Instead, occluder silhouettes are
found and the amount of occlusion is determined
by computing areas based on these silhouettes.
My technique simplifies this by removing sil-
houette detection and letting the hardware ap-
proximate the areas of occlusion directly with
sampling.

 2

3. Approach
My approach is quite simple. First, a proxy of
the scene is created. This proxy scene need not
have any colors or material properties, only ge-
ometry. Also, the geometry in this proxy scene
only needs to be approximate – high polygon
spheres won’t improve image quality greatly as
the general shape matters most (the number of
rasterized pixels in a low-poly sphere and a
high-poly sphere are not very different).

Next, the ray tracer is to be run normally, except
for when it comes to casting shadow rays. In-
stead of casting a bunch of shadow rays, a hard-
ware camera is positioned at the point where the
shadow rays would be emanating from. It is
aimed towards the light that is currently being
sampled, and the camera frustum is set such that
the far clipping plane of the frustum is the same
shape as the light source. It is assumed in this
approach that all light sources are quads.

The scene is then rendered to a viewport. The
size of the viewport determines how accurately
the light is sampled. Essentially the pixels in the
hardware render act as a group of shadow rays.
Because of this it is possible to simulate a large
number of shadow rays efficiently. In my im-
plementation, a viewport size of 32x32 seemed
to be the upper limit of quality. Going higher
created no noticeable increase in image quality.

Once the render is complete, a count of the num-
ber of pixels that got rasterized is found and di-
vided by the viewport size to yield the total light
occlusion percentage. The NVOcclusionQuery
makes this task simpler. Figure 1 depicts the
entire process.

4. Results
To test this approach I compared the image qual-
ity and render times of my ray tracer before and
after the addition of the new technique. Render
times can be seen in Table 1. My first imple-
mentation, which I’m calling “hardware camera
naïve”, is employing the hardware render when-
ever an intersection is detected. “Camera w/
optimizations” means that a few optimizations
were put into place to prevent unnecessary ren-
derings from being done, such as when the point

Area Light Source

Occluder

Surface

Hardware Camera

View Frustum

Camera’s ViewCamera’s View
Average Pixels to get
Occlusion percentage
Average Pixels to get
Occlusion percentage

Figure 1: Using hardware cameras to calculate light occlusion

of
samples

Shadow
rays

Hardware
camera
naive

Camera w/
Optimiza-

tions
4x4 42 secs 151 secs

17x17 152 secs 158 secs

32x32 447 secs 160 secs 96 secs

64x64 181 secs

128x128 241 secs

Table 1: Render times

 3

is in complete shadows or no shadows.

As can be seen in Table 1, this approach can
help improve render quality while decreasing
render times. The 32x32 camera render took 96
seconds, where as the 17x17 software shadow
rays render took 152 seconds and was not as
accurate. Figure 2 comparatively show the ren-
ders.

5. Future Work
The current implementation of this approach
does not reach the full potential of paralleliza-
tion between the CPU and the GPU. Because of
this, the graphics pipeline is constantly starved.
I would like to improve my ray tracer such that
it can be working on multiple pixels simultane-
ously. This would help keep the graphics hard-
ware running at full potential.

Using NVOcclusionQuery, one could conceive
of a method to handle any shape light using this
technique. The modifications to the current ap-
proach would be simple. First, one would need
to modify the camera frustum to ensure the
geometric model of a light could fit in it. Sec-
ond, using NVOcclusionQuery, render a model
of the light to get the total number of pixels the
light can possibly occupy. Then render the
scene and render the light again with NVOcclu-
sionQuery. The new pixel count divided by the
original count is the percentage of the light seen
by the spot being sampled. In this way, a light
source of any shape could be handled.

Another idea that came to me while I was work-
ing on this project was to try a similar approach

for global illumination. Since global illumina-
tion occurs from diffuse light bounces – which
are inherently fuzzy – a basic hardware render-
ing of the scene could be sufficient to calculate
believable global illumination at a low cost.

6. Conclusions
Although the results of this project are nothing
spectacular, I believe it serves well as a proof of
concept. It may be a lost cause from the start,
since programmable GPUs already facilitate ray
tracer quality rendering at interactive frame
rates. Nevertheless, it was interesting to try to
augment a software ray tracer with graphics
hardware. Overall, I would consider this project
successful.

7. Acknowledgements
I would like to thank Anselmo Lastra for his
guidance and for suggesting the use of the
NVOcclusionQuery.

8. References
[1] J. Amanatides. “Ray tracing with cones.” In
Proceedings of the 11th Annual Conference on
Computer Graphics and interactive Techniques
H. Christiansen, Ed. SIGGRAPH '84. ACM
Press, New York, NY, pp. 129-135, 1984.

[2] U. Assarsson and T. Akenine-Möller. “A
geometry-based soft shadow volume algorithm
using graphics hardware.” ACM Trans. Graph.
22, 3 pp. 511-520, Jul. 2003.

Figure 2: Quality comparison

 4

[3] S. Laine, T. Aila, U. Assarsson, J. Lehtinen
and T. Akenine-Möller. “Soft shadow volumes
for ray tracing.” ACM Trans. Graph. 24, 3, pp.
1156-1165, Jul. 2005.

