Review: Search problem formulation

- Initial state
- Actions
- Transition model
- Goal state
- Path cost

- What is the optimal solution?
- What is the state space?
Review: Tree search

- Initialize the **fringe** using the **starting state**
- While the fringe is not empty
 - Choose a fringe node to expand according to **search strategy**
 - If the node contains the **goal state**, return solution
 - Else **expand** the node and add its children to the fringe
Search strategies

• A search strategy is defined by picking the order of node expansion.

• Strategies are evaluated along the following dimensions:
 – **Completeness**: does it always find a solution if one exists?
 – **Optimality**: does it always find a least-cost solution?
 – **Time complexity**: number of nodes generated
 – **Space complexity**: maximum number of nodes in memory

• Time and space complexity are measured in terms of
 – b: maximum branching factor of the search tree
 – d: depth of the optimal solution
 – m: maximum length of any path in the state space (may be infinite)
Uninformed search strategies

- **Uninformed** search strategies use only the information available in the problem definition
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Iterative deepening search
Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

• Expand shallowest unexpanded node
• Implementation:
 – *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

• Expand shallowest unexpanded node
• Implementation:
 – *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

```
A
  
B       C
  
D   E   F   G
```
Properties of breadth-first search

- **Complete?**
 Yes (if branching factor \(b \) is finite)

- **Optimal?**
 Yes – if cost = 1 per step

- **Time?**
 Number of nodes in a \(b \)-ary tree of depth \(d \): \(O(b^d) \)
 \((d \text{ is the depth of the optimal solution})\)

- **Space?**
 \(O(b^d) \)

- Space is the bigger problem (more than time)
Uniform-cost search

- Expand least-cost unexpanded node
- Implementation: fringe is a queue ordered by path cost (priority queue)
- Equivalent to breadth-first if step costs all equal

- **Complete?**
 Yes, if step cost is greater than some positive constant ε

- **Optimal?**
 Yes – nodes expanded in increasing order of path cost

- **Time?**
 Number of nodes with path cost \leq cost of optimal solution (C^*), $O(b^{C^*/\varepsilon})$
 This can be greater than $O(b^d)$: the search can explore long paths consisting
 of small steps before exploring shorter paths consisting of larger steps

- **Space?**
 $O(b^{C^*/\varepsilon})$
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node

• Implementation:
 – *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - \textit{fringe} = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *fringe* = LIFO queue, i.e., put successors at front

\[\text{A} \rightarrow \text{B} \rightarrow \text{D} \rightarrow \text{E} \rightarrow \text{F} \rightarrow \text{G} \]
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

• **Complete?**
 Fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 \(\rightarrow\) complete in finite spaces

• **Optimal?**
 No – returns the first solution it finds

• **Time?**
 Could be the time to reach a solution at maximum depth \(m: O(b^m)\)
 Terrible if \(m\) is much larger than \(d\)
 But if there are lots of solutions, may be much faster than BFS

• **Space?**
 \(O(bm)\), i.e., linear space!
Iterative deepening search

- Use DFS as a subroutine
 1. Check the root
 2. Do a DFS searching for a path of length 1
 3. If there is no path of length 1, do a DFS searching for a path of length 2
 4. If there is no path of length 2, do a DFS searching for a path of length 3...
Iterative deepening search
Iterative deepening search

Limit = 1
Iterative deepening search

Limit = 2
Iterative deepening search

Limit = 3
Properties of iterative deepening search

- **Complete?**
 Yes

- **Optimal?**
 Yes, if step cost = 1

- **Time?**
 \[(d+1)b^0 + d b^1 + (d-1)b^2 + ... + b^d = O(b^d)\]

- **Space?**
 \[O(bd)\]
Informed search

• Idea: give the algorithm “hints” about the desirability of different states
 – Use an *evaluation function* to rank nodes and select the most promising one for expansion

• Greedy best-first search
• A* search
Heuristic function

- Heuristic function $h(n)$ estimates the cost of reaching goal from node n
- Example:
Heuristic for the Romania problem
Greedy best-first search

• Expand the node that has the lowest value of the heuristic function $h(n)$
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- **Complete?**
 - No – can get stuck in loops
Properties of greedy best-first search

- **Complete?**
 No – can get stuck in loops

- **Optimal?**
 No
Properties of greedy best-first search

• Complete?
 No – can get stuck in loops

• Optimal?
 No

• Time?
 Worst case: $O(b^m)$
 Best case: $O(bd)$ – If $h(n)$ is 100% accurate

• Space?
 Worst case: $O(b^m)$
How can we fix the greedy problem?
A* search

- Idea: avoid expanding paths that are already expensive
- The evaluation function $f(n)$ is the estimated total cost of the path through node n to the goal:

$$f(n) = g(n) + h(n)$$

$g(n)$: cost so far to reach n (path cost)
$h(n)$: estimated cost from n to goal (heuristic)
A* search example
Admissible heuristics

• A heuristic $h(n)$ is **admissible** if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n

• An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic

• Example: straight line distance never overestimates the actual road distance

• Theorem: If $h(n)$ is admissible, A^* is optimal
Optimality of A*

• Proof by contradiction
 – Let \(n^* \) be an optimal goal state, i.e., \(f(n^*) = C^* \)
 – Suppose a solution node \(n \) with \(f(n) > C^* \) is about to be expanded
 – Let \(n' \) be a node in the fringe that is on the path to \(n^* \)
 – We have \(f(n') = g(n') + h(n') \leq C^* \)
 – But then, \(n' \) should be expanded before \(n \) – a contradiction
Optimality of A*

- In other words:
 - Suppose A* terminates its search at n^*
 - It has found a path whose *actual cost* $f(n^*) = g(n^*)$ is lower than the *estimated cost* $f(n)$ of any path going through any fringe node
 - Since $f(n)$ is an *optimistic* estimate, there is no way n can have a successor goal state n' with $g(n') < C^*$
Optimality of A*

• A* is optimally efficient – no other tree-based algorithm that uses the same heuristic can expand fewer nodes and still be guaranteed to find the optimal solution
 – Any algorithm that does not expand all nodes with $f(n) < C^*$ risks missing the optimal solution
Properties of A*

- **Complete?**

 Yes – unless there are infinitely many nodes with \(f(n) \leq C^* \)

- **Optimal?**

 Yes

- **Time?**

 Number of nodes for which \(f(n) \leq C^* \) (exponential)

- **Space?**

 Exponential
Designing heuristic functions

• Heuristics for the 8-puzzle

\[h_1(n) = \text{number of misplaced tiles} \]

\[h_2(n) = \text{total Manhattan distance (number of squares from desired location of each tile)} \]

![Start State](image1.png)

\[h_1(\text{start}) = 8 \]

\[h_2(\text{start}) = 3+1+2+2+2+3+3+2 = 18 \]

• Are \(h_1 \) and \(h_2 \) admissible?
Heuristics from relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem

• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then \(h_1(n) \) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square, then \(h_2(n) \) gives the shortest solution
Dominance

• If h_1 and h_2 are both admissible heuristics and $h_2(n) \geq h_1(n)$ for all n, (both admissible) then h_2 dominates h_1

• Which one is better for search?
 – A^* search expands every node with $f(n) < C^*$ or $h(n) < C^* - g(n)$
 – Therefore, A^* search with h_1 will expand more nodes
Dominance

• Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths):

 • $d=12$

 - IDS = 3,644,035 nodes
 - $A^*(h_1) = 227$ nodes
 - $A^*(h_2) = 73$ nodes

 • $d=24$

 - IDS $\approx 54,000,000,000$ nodes
 - $A^*(h_1) = 39,135$ nodes
 - $A^*(h_2) = 1,641$ nodes
Heuristics from subproblems

- Let $h_3(n)$ be the cost of getting a subset of tiles (say, 1,2,3,4) into their correct positions.
- Can precompute and save the exact solution cost for every possible subproblem instance – *pattern database*
Combining heuristics

• Suppose we have a collection of admissible heuristics $h_1(n)$, $h_2(n)$, ..., $h_m(n)$, but none of them dominates the others

• How can we combine them?

$$h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}$$
Memory-bounded search

- The memory usage of A* can still be exorbitant
- How to make A* more memory-efficient while maintaining completeness and optimality?

- Iterative deepening A* search
- Recursive best-first search, SMA*
 - Forget some subtrees but remember the best f-value in these subtrees and regenerate them later if necessary

- Problems: memory-bounded strategies can be complicated to implement, suffer from “thrashing”
Comparison of search strategies

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time complexity</th>
<th>Space complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>$O(b^d)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>UCS</td>
<td>Yes</td>
<td>Yes</td>
<td>Number of nodes with $g(n) \leq C^*$</td>
<td></td>
</tr>
<tr>
<td>DFS</td>
<td>No</td>
<td>No</td>
<td>$O(b^m)$</td>
<td>$O(bm)$</td>
</tr>
<tr>
<td>IDS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>$O(b^d)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Greedy</td>
<td>No</td>
<td>No</td>
<td>Worst case: $O(b^m)$ Best case: $O(bd)$</td>
<td></td>
</tr>
<tr>
<td>A*</td>
<td>Yes</td>
<td>Yes</td>
<td>Number of nodes with $g(n)+h(n) \leq C^*$</td>
<td></td>
</tr>
</tbody>
</table>