Local search algorithms

- In many optimization problems, the state space is the space of all possible complete solutions.
- We have an objective function that tells us how “good” a given state is, and we want to find the solution (goal) by minimizing or maximizing the value of this function.
Example: n-queens problem

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- **State space**: all possible n-queen configurations
- What’s the **objective function**?
 - Number of pairwise conflicts
Example: Traveling salesman problem

- Find the shortest tour connecting a given set of cities
- **State space**: all possible tours
- **Objective function**: length of tour
Local search algorithms

• In many optimization problems, the state space is the space of all possible complete solutions
• We have an objective function that tells us how “good” a given state is, and we want to find the solution (goal) by minimizing or maximizing the value of this function
• The start state may not be specified
• The path to the goal doesn’t matter

• In such cases, we can use local search algorithms that keep a single “current” state and gradually try to improve it
Example: \(n \)-queens problem

- Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal
- **State space:** all possible \(n \)-queen configurations
- **Objective function:** number of pairwise conflicts
- What’s a possible local improvement strategy?
 - Move one queen within its column to reduce conflicts

\[
\begin{align*}
\text{h = 5} & \\
\text{h = 2} & \\
\text{h = 0} &
\end{align*}
\]
Example: n-queens problem

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- **State space:** all possible n-queen configurations
- **Objective function:** number of pairwise conflicts
- What’s a possible local improvement strategy?
 - Move one queen within its column to reduce conflicts

$h = 17$
Example: Traveling Salesman Problem

- Find the shortest tour connecting n cities
- **State space**: all possible tours
- **Objective function**: length of tour
- What’s a possible local improvement strategy?
 - Start with any complete tour, perform pairwise exchanges
Hill-climbing search

• Initialize current to starting state
• Loop:
 – Let next = highest-valued successor of current
 – If value(next) < value(current) return current
 – Else let current = next

• Variants: choose first better successor, randomly choose among better successors
• “Like climbing mount Everest in thick fog with amnesia”
Hill-climbing search

• Is it complete/optimal?
 – No – can get stuck in local optima
 – Example: local optimum for the 8-queens problem

\[h = 1 \]
The state space “landscape”

• How to escape local maxima?
 – Random restart hill-climbing
• What about “shoulders”?
• What about “plateaux”?
Simulated annealing search

• Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency
 – Probability of taking downhill move decreases with number of iterations, steepness of downhill move
 – Controlled by annealing schedule

• Inspired by tempering of glass, metal
Simulated annealing search

- Initialize \textit{current} to starting state
- For $i = 1$ to ∞
 - If $T(i) = 0$ return \textit{current}
 - Let \textit{next} = random successor of \textit{current}
 - Let $\Delta = \text{value(} \textit{next} \text{)} - \text{value(} \textit{current} \text{)}$
 - If $\Delta > 0$ then let \textit{current} = \textit{next}
 - Else let \textit{current} = \textit{next} with probability $\exp(\Delta/T(i))$
Effect of temperature

\[\exp(\Delta/T) \]

\(\Delta\)

\(\exp(\Delta/T)\)
Simulated annealing search

• One can prove: If temperature decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching one.

• However:
 – This usually takes impractically long.
 – The more downhill steps you need to escape a local optimum, the less likely you are to make all of them in a row.

• More modern techniques: general family of Markov Chain Monte Carlo (MCMC) algorithms for exploring complicated state spaces.
Local beam search

- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k best successors from the complete list and repeat

- Is this the same as running k greedy searches in parallel?