Probability: Review

• The state of the world is described using *random variables*

• Probabilities are defined over *events*
 – Sets of world states characterized by propositions about random variables
 – E.g., D_1, D_2: rolls of two dice
 • $P(D_1 > 2)$
 • $P(D_1 + D_2 = 11)$
 – W is the state of the weather
 • $P(W = \text{“rainy”} \lor W = \text{“sunny”})$
Kolmogorov’s axioms of probability

- For any propositions (events) A, B:
 - $0 \leq P(A) \leq 1$
 - $P(\text{True}) = 1$ and $P(\text{False}) = 0$
 - $P(A \lor B) = P(A) + P(B) - P(A \land B)$
Joint probability distributions

- A **joint distribution** is an assignment of probabilities to every possible *atomic event*

<table>
<thead>
<tr>
<th>P(Cavity, Toothache)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity = false ∧ Toothache = false</td>
<td>0.8</td>
</tr>
<tr>
<td>Cavity = false ∧ Toothache = true</td>
<td>0.1</td>
</tr>
<tr>
<td>Cavity = true ∧ Toothache = false</td>
<td>0.05</td>
</tr>
<tr>
<td>Cavity = true ∧ Toothache = true</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Marginal probability distributions

<table>
<thead>
<tr>
<th>P(Cavity, Toothache)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity = false ∧ Toothache = false</td>
<td>0.8</td>
</tr>
<tr>
<td>Cavity = false ∧ Toothache = true</td>
<td>0.1</td>
</tr>
<tr>
<td>Cavity = true ∧ Toothache = false</td>
<td>0.05</td>
</tr>
<tr>
<td>Cavity = true ∧ Toothache = true</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(Cavity)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity = false</td>
<td>?</td>
</tr>
<tr>
<td>Cavity = true</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(Toothache)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toothache = false</td>
<td>?</td>
</tr>
<tr>
<td>Toothache = true</td>
<td>?</td>
</tr>
</tbody>
</table>
Marginal probability distributions

• Given the joint distribution $P(X, Y)$, how do we find the marginal distribution $P(X)$?

$$P(X = x) = P((X = x \land Y = y_1) \lor \ldots \lor (X = x \land Y = y_n)) = P((x, y_1) \lor \ldots \lor (x, y_n))$$

• General rule: to find $P(X = x)$, sum the probabilities of all atomic events where $X = x$.
Conditional probability
Conditional probability

- For any two events A and B, $P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A, B)}{P(B)}$
Conditional distributions

- A conditional distribution is a distribution over the values of one variable given fixed values of other variables.

<table>
<thead>
<tr>
<th>P(Cavity, Toothache)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity = false ∧ Toothache = false</td>
<td>0.8</td>
</tr>
<tr>
<td>Cavity = false ∧ Toothache = true</td>
<td>0.1</td>
</tr>
<tr>
<td>Cavity = true ∧ Toothache = false</td>
<td>0.05</td>
</tr>
<tr>
<td>Cavity = true ∧ Toothache = true</td>
<td>0.05</td>
</tr>
</tbody>
</table>

| P(Cavity | Toothache = true) | |
|------------|-------------------|
| Cavity = false | 0.667 |
| Cavity = true | 0.333 |

| P(Cavity|Toothache = false) | |
|----------------------|---------|
| Cavity = false | 0.941 |
| Cavity = true | 0.059 |

| P(Toothache | Cavity = true) | |
|----------------|----------------|
| Toothache= false | 0.5 |
| Toothache = true | 0.5 |

| P(Toothache | Cavity = false) | |
|---------------|-----------------|
| Toothache= false | 0.889 |
| Toothache = true | 0.111 |
Normalization trick

- To get the whole conditional distribution $P(X | y)$ at once, select all entries in the joint distribution matching $Y = y$ and renormalize them to sum to one.

<table>
<thead>
<tr>
<th>$P(Cavity, Toothache)$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Cavity = false \land Toothache = false$</td>
<td>0.8</td>
</tr>
<tr>
<td>$Cavity = false \land Toothache = true$</td>
<td>0.1</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = false$</td>
<td>0.05</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = true$</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Select

<table>
<thead>
<tr>
<th>Toothache, Cavity = false</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Toothache = false$</td>
<td>0.8</td>
</tr>
<tr>
<td>$Toothache = true$</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Renormalize

| $P(Toothache | Cavity = false)$ | |
|---------------------|--|
| $Toothache = false$ | 0.889 |
| $Toothache = true$ | 0.111 |
Normalization trick

• To get the whole conditional distribution $P(X | y)$ at once, select all entries in the joint distribution matching $Y = y$ and renormalize them to sum to one.

• Why does it work?

$$\frac{P(x, y)}{\sum_{x'} P(x', y)} = \frac{P(x, y)}{P(y)}$$
by marginalization
Product rule

- Definition of conditional probability:
 \[P(A \mid B) = \frac{P(A, B)}{P(B)} \]

- Sometimes we have the conditional probability and want to obtain the joint:
 \[P(A, B) = P(A \mid B)P(B) = P(B \mid A)P(A) \]
Product rule

- Definition of conditional probability:
 \[P(A \mid B) = \frac{P(A, B)}{P(B)} \]

- Sometimes we have the conditional probability and want to obtain the joint:
 \[P(A, B) = P(A \mid B)P(B) = P(B \mid A)P(A) \]

- The chain rule:
 \[
P(A_1, \ldots, A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1, A_2) \cdots P(A_n \mid A_1, \ldots, A_{n-1})
 = \prod_{i=1}^{n} P(A_i \mid A_1, \ldots, A_{i-1})
\]
Bayes Rule

• The product rule gives us two ways to factor a joint distribution:

\[P(A, B) = P(A \mid B)P(B) = P(B \mid A)P(A) \]

• Therefore,

\[P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} \]

• Why is this useful?
 – Can get diagnostic probability, e.g., \(P(\text{cavity} \mid \text{toothache}) \) from causal probability, e.g., \(P(\text{toothache} \mid \text{cavity}) \)

\[P(\text{Cause} \mid \text{Evidence}) = \frac{P(\text{Evidence} \mid \text{Cause})P(\text{Cause})}{P(\text{Evidence})} \]
 – Can update our beliefs based on evidence
 – Important tool for probabilistic inference
Independence

• Two events A and B are independent if and only if $P(A, B) = P(A) P(B)$
 – In other words, $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$
 – This is an important simplifying assumption for modeling, e.g., *Toothache* and *Weather* can be assumed to be independent

• Are two *mutually exclusive* events independent?
 – No, but for mutually exclusive events we have $P(A \lor B) = P(A) + P(B)$

• **Conditional independence**: A and B are *conditionally independent* given C iff $P(A, B \mid C) = P(A \mid C) P(B \mid C)$
Conditional independence: Example

- **Toothache**: boolean variable indicating whether the patient has a toothache
- **Cavity**: boolean variable indicating whether the patient has a cavity
- **Catch**: whether the dentist's probe catches in the cavity

- If the patient has a cavity, the probability that the probe catches in it doesn't depend on whether he/she has a toothache
 \[P(\text{Catch} \mid \text{Toothache}, \text{Cavity}) = P(\text{Catch} \mid \text{Cavity}) \]
- Therefore, Catch is conditionally independent of Toothache given Cavity
- Likewise, Toothache is conditionally independent of Catch given Cavity
 \[P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \]
- Equivalent statement:
 \[P(\text{Toothache}, \text{Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity}) \]
Conditional independence: Example

- How many numbers do we need to represent the joint probability table \(P(\text{Toothache}, \text{Cavity}, \text{Catch}) \)?
 \[2^3 - 1 = 7 \text{ independent entries} \]
- Write out the joint distribution using chain rule:
 \[
P(\text{Toothache}, \text{Catch}, \text{Cavity}) \\
 = P(\text{Cavity}) \ P(\text{Catch} | \text{Cavity}) \ P(\text{Toothache} | \text{Catch, Cavity}) \\
 = P(\text{Cavity}) \ P(\text{Catch} | \text{Cavity}) \ P(\text{Toothache} | \text{Cavity})
\]
- How many numbers do we need to represent these distributions?
 \[1 + 2 + 2 = 5 \text{ independent numbers} \]
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in \(n \) to linear in \(n \)
Naïve Bayes model

• Suppose we have many different types of observations (symptoms, features) that we want to use to diagnose the underlying cause

• It is usually impractical to directly estimate or store the joint distribution \(P(Cause, Effect_1, \ldots, Effect_n) \).

• To simplify things, we can assume that the different effects are conditionally independent given the underlying cause

• Then we can estimate the joint distribution as
Naïve Bayes model

• Suppose we have many different types of observations (symptoms, features) that we want to use to diagnose the underlying cause.

• It is usually impractical to directly estimate or store the joint distribution $P(Cause, Effect_1, \ldots, Effect_n)$.

• To simplify things, we can assume that the different effects are conditionally independent given the underlying cause.

• Then we can estimate the joint distribution as

$$P(Cause, Effect_1, \ldots, Effect_n) = P(Cause) \prod_i P(Effect_i \mid Cause)$$

• This is usually not accurate, but very useful in practice.
Example: Naïve Bayes Spam Filter

- **Bayesian decision theory**: to minimize the probability of error, we should classify a message as spam if $P(\text{spam} \mid \text{message}) > P(\neg \text{spam} \mid \text{message})$
 - *Maximum a posteriori (MAP)* decision

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret. ...

Ok, I know this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY $99
Example: Naïve Bayes Spam Filter

- **Bayesian decision theory**: to minimize the probability of error, we should classify a message as spam if
 \[P(\text{spam} \mid \text{message}) > P(\neg\text{spam} \mid \text{message}) \]
 - **Maximum a posteriori (MAP)** decision

- Apply Bayes rule to the posterior:
 \[
P(\text{spam} \mid \text{message}) = \frac{P(\text{message} \mid \text{spam})P(\text{spam})}{P(\text{message})}
 \]
 \[
P(\neg\text{spam} \mid \text{message}) = \frac{P(\text{message} \mid \neg\text{spam})P(\neg\text{spam})}{P(\text{message})}
 \]

- Notice that \(P(\text{message}) \) is just a constant normalizing factor and doesn’t affect the decision

- Therefore, to classify the message, all we need is to find
 \[P(\text{message} \mid \text{spam})P(\text{spam}) \] and \[P(\text{message} \mid \neg\text{spam})P(\neg\text{spam}) \]
Example: Naïve Bayes Spam Filter

• We need to find $P(\text{message} \mid \text{spam}) P(\text{spam})$ and $P(\text{message} \mid \neg\text{spam}) P(\neg\text{spam})$

• The message is a sequence of words (w_1, \ldots, w_n)

• *Bag of words* representation
 – The order of the words in the message is not important
 – Each word is conditionally independent of the others given message class (spam or not spam)

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidential and top secret. ...

Ok, I know this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working fine being stuck in the corner, but when I plugged it in, hit the power nothing happened.

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY $99
Bag of words illustration

US Presidential Speeches Tag Cloud

http://chir.ag/projects/preztags/
Bag of words illustration

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/
Example: Naïve Bayes Spam Filter

- We need to find $P(\text{message} \mid \text{spam}) P(\text{spam})$ and $P(\text{message} \mid \neg \text{spam}) P(\neg \text{spam})$
- The message is a sequence of words (w_1, \ldots, w_n)
- **Bag of words** representation
 - The order of the words in the message is not important
 - Each word is conditionally independent of the others given message class (spam or not spam)

$$P(\text{message} \mid \text{spam}) = P(w_1,\ldots,w_n \mid \text{spam}) = \prod_{i=1}^{n} P(w_i \mid \text{spam})$$

- Our filter will classify the message as spam if

$$P(\text{spam}) \prod_{i=1}^{n} P(w_i \mid \text{spam}) > P(\neg \text{spam}) \prod_{i=1}^{n} P(w_i \mid \neg \text{spam})$$
Example: Naïve Bayes Spam Filter

\[
P(\text{spam} \mid w_1, \ldots, w_n) \propto P(\text{spam}) \prod_{i=1}^{n} P(w_i \mid \text{spam})
\]

- **posterior**
- **prior**
- **likelihood**
Parameter estimation

- In order to classify a message, we need to know the prior \(P(\text{spam})\) and the likelihoods \(P(\text{word} \mid \text{spam})\) and \(P(\text{word} \mid \neg \text{spam})\)
 - These are the parameters of the probabilistic model
 - How do we obtain the values of these parameters?

<table>
<thead>
<tr>
<th>prior</th>
<th>(P(\text{word} \mid \text{spam}))</th>
<th>(P(\text{word} \mid \neg \text{spam}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>spam: 0.33</td>
<td>the: 0.0156</td>
<td>the: 0.0210</td>
</tr>
<tr>
<td>(\neg\text{spam}: 0.67)</td>
<td>to: 0.0153</td>
<td>to: 0.0133</td>
</tr>
<tr>
<td></td>
<td>and: 0.0115</td>
<td>of: 0.0119</td>
</tr>
<tr>
<td></td>
<td>of: 0.0095</td>
<td>2002: 0.0110</td>
</tr>
<tr>
<td></td>
<td>you: 0.0093</td>
<td>with: 0.0108</td>
</tr>
<tr>
<td></td>
<td>a: 0.0086</td>
<td>from: 0.0107</td>
</tr>
<tr>
<td></td>
<td>with: 0.0080</td>
<td>and: 0.0105</td>
</tr>
<tr>
<td></td>
<td>from: 0.0075</td>
<td>a: 0.0100</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Parameter estimation

- How do we obtain the prior $P(\text{spam})$ and the likelihoods $P(\text{word} \mid \text{spam})$ and $P(\text{word} \mid \neg\text{spam})$?
 - Empirically: use training data

$$P(\text{word} \mid \text{spam}) = \frac{\text{# of word occurrences in spam messages}}{\text{total # of words in spam messages}}$$

- This is the maximum likelihood (ML) estimate, or estimate that maximizes the likelihood of the training data:

$$\prod_{d=1}^{D} \prod_{i=1}^{n_d} P(w_{d,i} \mid \text{class}_{d,i})$$

d: index of training document, i: index of a word