Review: Search problem formulation

- Initial state
- Actions
- Transition model
- Goal state
- Path cost

- What is the optimal solution?
- What is the state space?
Review: Tree search

• Initialize the fringe using the starting state
• While the fringe is not empty
 – Choose a fringe node to expand according to search strategy
 – If the node contains the goal state, return solution
 – Else expand the node and add its children to the fringe

• To handle repeated states:
 – Keep an explored set; add each node to the explored set every time you expand it
 – Every time you add a node to the fringe, check whether it already exists in the fringe with a higher path cost, and if yes, replace that node with the new one
Search strategies

• A search strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions:
 – Completeness: does it always find a solution if one exists?
 – Optimality: does it always find a least-cost solution?
 – Time complexity: number of nodes generated
 – Space complexity: maximum number of nodes in memory

• Time and space complexity are measured in terms of
 – b: maximum branching factor of the search tree
 – d: depth of the optimal solution
 – m: maximum length of any path in the state space (may be infinite)
Uninformed search strategies

• **Uninformed** search strategies use only the information available in the problem definition

• Breadth-first search
• Uniform-cost search
• Depth-first search
• Iterative deepening search
Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

• Expand shallowest unexpanded node
• Implementation:
 – fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

• Expand shallowest unexpanded node
• Implementation:
 – *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - *fringe* is a FIFO queue, i.e., new successors go at end

![Graph diagram]
Properties of breadth-first search

• **Complete?**
 Yes (if branching factor b is finite)

• **Optimal?**
 Yes – if cost = 1 per step

• **Time?**
 Number of nodes in a b-ary tree of depth d: $O(b^d)$
 (d is the depth of the optimal solution)

• **Space?**
 $O(b^d)$

• Space is the bigger problem (more than time)
Uniform-cost search

• Expand least-cost unexpanded node
• Implementation: fringe is a queue ordered by path cost (priority queue)
• Equivalent to breadth-first if step costs all equal

• Complete?
 Yes, if step cost is greater than some positive constant ε (we don’t want infinite sequences of steps that have a finite total cost)

• Optimal?
 Yes – nodes expanded in increasing order of path cost

• Time?
 Number of nodes with path cost \leq cost of optimal solution (C^*), $O(b^{C^*/\varepsilon})$
 This can be greater than $O(b^d)$: the search can explore long paths consisting of small steps before exploring shorter paths consisting of larger steps

• Space?
 $O(b^{C^*/\varepsilon})$
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node

• Implementation:
 – *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO queue, i.e., put successors at front
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

- **Complete?**
 Fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 → complete in finite spaces

- **Optimal?**
 No – returns the first solution it finds

- **Time?**
 Could be the time to reach a solution at maximum depth m: $O(b^m)$
 Terrible if m is much larger than d
 But if there are lots of solutions, may be much faster than BFS

- **Space?**
 $O(bm)$, i.e., linear space!
PREPARING FOR A DATE:

WHAT SITUATIONS MIGHT I PREPARE FOR?
1) MEDICAL EMERGENCY
2) DANCING
3) FOOD TOO EXPENSIVE

WHAT KINDS OF EMERGENCIES CAN HAPPEN?
1) SNAKEBITE
2) LIGHTNING STRIKE
3) FALL FROM CHAIR

HMM. WHICH SNAKES ARE DANGEROUS? LET'S SEE...
1) A) CROTALID
2) CORN SNAKE
3) GARTER SNAKE
4) COPPERHEAD

THE RESEARCH COMPARING SNAKE VENOMS IS SCATTERED AND INCONSISTENT. I'LL MAKE A SPREADSHEET TO ORGANIZE IT.

I'M HERE TO PICK YOU UP. YOU'RE NOT DRESSED?

BY LD50, THE INLAND TAIPAN HAS THE DEADLIEST VENOM OF ANY SNAKE!

I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.

http://xkcd.com/761/
Iterative deepening search

- Use DFS as a subroutine
 1. Check the root
 2. Do a DFS searching for a path of length 1
 3. If there is no path of length 1, do a DFS searching for a path of length 2
 4. If there is no path of length 2, do a DFS searching for a path of length 3...
Iterative deepening search

Limit = 0
Iterative deepening search

Limit = 1
Iterative deepening search

Limit = 2

Diagram showing the iterative deepening search process.
Iterative deepening search
Properties of iterative deepening search

- **Complete?**
 Yes

- **Optimal?**
 Yes, if step cost = 1

- **Time?**

 \[(d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + b^d = O(b^d)\]

- **Space?**
 \[O(bd)\]
Informed search

• Idea: give the algorithm “hints” about the desirability of different states
 – Use an *evaluation function* to rank nodes and select the most promising one for expansion

• Greedy best-first search
• A* search
Heuristic function

- Heuristic function $h(n)$ estimates the cost of reaching goal from node n
- Example:
Heuristic for the Romania problem
Greedy best-first search

• Expand the node that has the lowest value of the heuristic function $h(n)$
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- **Complete?**
 No – can get stuck in loops
Properties of greedy best-first search

- **Complete?**
 No – can get stuck in loops
- **Optimal?**
 No
Properties of greedy best-first search

• **Complete?**
 No – can get stuck in loops

• **Optimal?**
 No

• **Time?**
 Worst case: $O(b^m)$
 Best case: $O(bd)$ – If $h(n)$ is 100% accurate

• **Space?**
 Worst case: $O(b^m)$
How can we fix the greedy problem?
A* search

• Idea: avoid expanding paths that are already expensive
• The evaluation function $f(n)$ is the estimated total cost of the path through node n to the goal:

$$f(n) = g(n) + h(n)$$

$g(n)$: cost so far to reach n (path cost)
$h(n)$: estimated cost from n to goal (heuristic)
A* search example
A* search example
A* search example
A* search example

Straight-line distance to Bucharest

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobros: 242
- Eforie: 161
- Fagaras: 176
- Giurgiu: 77
- Hirssova: 151
- Iasi: 262
- Luga: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesi: 10
- Rinniku Vlaea: 193
- Sibiu: 253
- Timisoara: 329
- Urzicieni: 80
- Vaslui: 199
- Zerind: 374
A* search example
A* search example
Another example

Admissible heuristics

• A heuristic $h(n)$ is **admissible** if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n

• An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic

• Example: straight line distance never overestimates the actual road distance

• **Theorem:** If $h(n)$ is admissible, A^* is optimal
Optimality of A*

- Suppose A* terminates its search at \(n^* \)
- It has found a path whose actual cost \(f(n^*) = g(n^*) \) is lower than the estimated cost \(f(n) \) of any path going through any fringe node
- Since \(f(n) \) is an optimistic estimate, there is no way \(n \) can have a successor goal state \(n' \) with \(g(n') < C^* \)
Optimality of A*

• A* is optimally efficient – no other tree-based algorithm that uses the same heuristic can expand fewer nodes and still be guaranteed to find the optimal solution
 – Any algorithm that does not expand all nodes with $f(n) < C^*$ risks missing the optimal solution
Properties of A*

• **Complete?**
 Yes – unless there are infinitely many nodes with $f(n) \leq C^*$

• **Optimal?**
 Yes

• **Time?**
 Number of nodes for which $f(n) \leq C^*$ (exponential)

• **Space?**
 Exponential
Designing heuristic functions

• Heuristics for the 8-puzzle

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance (number of squares from desired location of each tile)} \]

\[h_1(\text{start}) = 8 \]
\[h_2(\text{start}) = 3 + 1 + 2 + 2 + 2 + 2 + 3 + 3 + 2 = 18 \]

• Are \(h_1 \) and \(h_2 \) admissible?
Heuristics from relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem
• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution
Heuristics from subproblems

- Let $h_3(n)$ be the cost of getting a subset of tiles (say, 1,2,3,4) into their correct positions.
- Can precompute and save the exact solution cost for every possible subproblem instance – *pattern database*.
Dominance

• If h_1 and h_2 are both admissible heuristics and $h_2(n) \geq h_1(n)$ for all n, (both admissible) then h_2 dominates h_1

• Which one is better for search?
 – A* search expands every node with $f(n) < C^*$ or $h(n) < C^* - g(n)$
 – Therefore, A* search with h_1 will expand more nodes
Dominance

• Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths):

 • $d=12$
 - IDS = 3,644,035 nodes
 - $A^*(h_1) = 227$ nodes
 - $A^*(h_2) = 73$ nodes

 • $d=24$
 - IDS $\approx 54,000,000,000$ nodes
 - $A^*(h_1) = 39,135$ nodes
 - $A^*(h_2) = 1,641$ nodes
Combining heuristics

• Suppose we have a collection of admissible heuristics $h_1(n), h_2(n), \ldots, h_m(n)$, but none of them dominates the others

• How can we combine them?

$$h(n) = \max\{h_1(n), h_2(n), \ldots, h_m(n)\}$$
Weighted A* search

• Idea: speed up search at the expense of optimality

• Take an admissible heuristic, “inflate” it by a multiple $\alpha > 1$, and then perform A* search as usual

• Fewer nodes tend to get expanded, but the resulting solution may be suboptimal (its cost will be at most α times the cost of the optimal solution)
Example of weighted A* search

Heuristic: 5 * Euclidean distance from goal
Example of weighted A* search

Heuristic: 5 * Euclidean distance from goal

Compare: Exact A*
Memory-bounded search

• The memory usage of A* can still be exorbitant
• How to make A* more memory-efficient while maintaining completeness and optimality?

• Iterative deepening A* search
• Recursive best-first search, SMA*
 – Forget some subtrees but remember the best f-value in these subtrees and regenerate them later if necessary

• Problems: memory-bounded strategies can be complicated to implement, suffer from “thrashing”
Uninformed search strategies

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time complexity</th>
<th>Space complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>(O(b^d))</td>
<td>(O(b^d))</td>
</tr>
<tr>
<td>UCS</td>
<td>Yes</td>
<td>Yes</td>
<td>Number of nodes with (g(n) \leq C^*)</td>
<td></td>
</tr>
<tr>
<td>DFS</td>
<td>No</td>
<td>No</td>
<td>(O(b^m))</td>
<td>(O(bm))</td>
</tr>
<tr>
<td>IDS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>(O(b^d))</td>
<td>(O(bd))</td>
</tr>
</tbody>
</table>

Definitions:
- \(b\): maximum branching factor of the search tree
- \(d\): depth of the optimal solution
- \(m\): maximum length of any path in the state space
- \(C^*\): cost of optimal solution
All search strategies

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time complexity</th>
<th>Space complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>$O(b^d)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>UCS</td>
<td>Yes</td>
<td>Yes</td>
<td>Number of nodes with $g(n) \leq C^*$</td>
<td></td>
</tr>
<tr>
<td>DFS</td>
<td>No</td>
<td>No</td>
<td>$O(b^m)$</td>
<td>$O(bm)$</td>
</tr>
<tr>
<td>IDS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>$O(b^d)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Greedy</td>
<td>No</td>
<td>No</td>
<td>Worst case: $O(b^m)$</td>
<td>Best case: $O(bd)$</td>
</tr>
<tr>
<td>A*</td>
<td>Yes</td>
<td>Yes</td>
<td>Number of nodes with $g(n)+h(n) \leq C^*$</td>
<td></td>
</tr>
</tbody>
</table>