THREE LOGICIANS WALK INTO A BAR...

DOES EVERYONE WANT BEER?

I DON'T KNOW.

I DON'T KNOW.

YES!
Knowledge-based agents

Knowledge base (KB) = set of sentences in a formal language

Declarative approach to building an agent (or other system):
- Tell it what it needs to know
- Then it can ask itself what to do - answers should follow from the KB

Distinction between data and program

Fullest realization of this philosophy was in the field of expert systems or knowledge-based systems in the 1970s and 1980s
What is logic?

• **Logic** is a formal system for manipulating facts so that true conclusions may be drawn
 – “The tool for distinguishing between the true and the false” – Averroes (12th cen.)

• **Syntax:** rules for constructing valid sentences
 – E.g., $x + 2 \geq y$ is a valid arithmetic sentence, $\geq x2y +$ is not

• **Semantics:** “meaning” of sentences, or relationship between logical sentences and the real world
 – Specifically, semantics defines truth of sentences
 – E.g., $x + 2 \geq y$ is true in a world where $x = 5$ and $y = 7$
Overview

- Propositional logic
- Inference rules and theorem proving
- First order logic
Propositional logic: Syntax

• **Atomic sentence:**
 – A *proposition symbol* representing a true or false statement

• **Negation:**
 – If P is a sentence, $\neg P$ is a sentence

• **Conjunction:**
 – If P and Q are sentences, $P \land Q$ is a sentence

• **Disjunction:**
 – If P and Q are sentences, $P \lor Q$ is a sentence

• **Implication:**
 – If P and Q are sentences, $P \Rightarrow Q$ is a sentence

• **Biconditional:**
 – If P and Q are sentences, $P \iff Q$ is a sentence

• $\neg, \land, \lor, \Rightarrow, \iff$ are called *logical connectives*
Propositional logic: Semantics

- A **model** specifies the true/false status of each proposition symbol in the knowledge base
 - E.g., P is true, Q is true, R is false
 - With three symbols, there are 8 possible models, and they can be enumerated exhaustively

- Rules for evaluating truth with respect to a model:

 $\neg P$ is true iff P is false
 $P \land Q$ is true iff P is true and Q is true
 $P \lor Q$ is true iff P is true or Q is true
 $P \Rightarrow Q$ is true iff P is false or Q is true
 $P \Leftrightarrow Q$ is true iff $P \Rightarrow Q$ is true and $Q \Rightarrow P$ is true
Truth tables

- A **truth table** specifies the truth value of a composite sentence for each possible assignments of truth values to its atoms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

- The truth value of a more complex sentence can be evaluated *recursively* or *compositionally*.
Logical equivalence

- Two sentences are logically equivalent iff they are true in the same models.

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) & \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) & \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) & \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) & \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha & \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \beta \Rightarrow \neg \alpha) & \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \alpha \lor \beta) & \text{implication elimination} \\
(\alpha \Leftrightarrow \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) & \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) & \text{de Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) & \text{de Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) & \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) & \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity, satisfiability

A sentence is **valid** if it is true in **all** models,
e.g., *True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B*

A sentence is **satisfiable** if it is true in **some** model
e.g., *A∨B, C*

A sentence is **unsatisfiable** if it is true in **no** models
e.g., *A∧¬A*
Entailment

- **Entailment** means that a sentence follows from the premises contained in the knowledge base:

\[KB \models \alpha \]

- Knowledge base \(KB \) entails sentence \(\alpha \) if and only if \(\alpha \) is true in all models where \(KB \) is true
 - E.g., \(x = 0 \) entails \(x \times y = 0 \)
 - Can \(\alpha \) be true when \(KB \) is false?

- \(KB \models \alpha \) iff \((KB \Rightarrow \alpha)\) is **valid**

- \(KB \models \alpha \) iff \((KB \land \neg \alpha)\) is **unsatisfiable**
Inference

- **Logical inference:** a procedure for generating sentences that follow from a knowledge base KB

- An inference procedure is **sound** if whenever it derives a sentence α, $KB \models \alpha$
 - A sound inference procedure can derive only true sentences

- An inference procedure is **complete** if whenever $KB \models \alpha$, α can be derived by the procedure
 - A complete inference procedure can derive every entailed sentence
Inference

• How can we check whether a sentence α is entailed by KB?
• How about we enumerate all possible models of the KB (truth assignments of all its symbols), and check that α is true in every model in which KB is true?
 – Is this sound?
 – Is this complete?
• Problem: if KB contains n symbols, the truth table will be of size 2^n
• Better idea: use inference rules, or sound procedures to generate new sentences or conclusions given the premises in the KB
Inference rules

• Modus Ponens

\[
\alpha \Rightarrow \beta, \alpha \\
\beta
\]

premises

• And-elimination

\[
\alpha \wedge \beta \\
\alpha
\]
Inference rules

• And-introduction

\[
\begin{align*}
\alpha, \beta \\
\hline
\alpha \land \beta
\end{align*}
\]

• Or-introduction

\[
\begin{align*}
\alpha \\
\hline
\alpha \lor \beta
\end{align*}
\]
Inference rules

• Double negative elimination

\[\neg\neg\alpha \]
\[\alpha \]

• Unit resolution

\[\alpha \lor \beta, \neg\beta \]
\[\alpha \]
Resolution

\[
\frac{\alpha \lor \beta, \neg \beta \lor \gamma}{\alpha \lor \gamma} \quad \text{or} \quad \frac{\alpha \lor \beta, \beta \Rightarrow \gamma}{\alpha \lor \gamma}
\]

• Example:
 \(\alpha\): “The weather is dry”
 \(\beta\): “The weather is rainy”
 \(\gamma\): “I carry an umbrella”
Resolution is complete

\[
\alpha \lor \beta, \neg \beta \lor \gamma
\]

\[
\alpha \lor \gamma
\]

- To prove \(KB \models \alpha \), assume \(KB \land \neg \alpha \) and derive a contradiction
- Rewrite \(KB \land \neg \alpha \) as a conjunction of clauses, or disjunctions of literals
 - *Conjunctive normal form* (CNF)
- Keep applying resolution to clauses that contain *complementary literals* and adding resulting clauses to the list
 - If there are no new clauses to be added, then \(KB \) does not entail \(\alpha \)
 - If two clauses resolve to form an *empty clause*, we have a contradiction and \(KB \models \alpha \)
Complexity of inference

• Propositional inference is co-NP-complete
 – Complement of the SAT problem: $\alpha \models \beta$ if and only if the sentence $\alpha \land \neg \beta$ is unsatisfiable
 – Every known inference algorithm has worst-case exponential running time

• Efficient inference possible for restricted cases
Definite clauses

• A **definite clause** is a disjunction with exactly one positive literal

• Equivalent to \((P_1 \land \ldots \land P_n) \Rightarrow Q\)

• Basis of logic programming (Prolog)

• Efficient (linear-time) complete inference through *forward chaining* and *backward chaining*
Forward chaining

- Idea: find any rule whose premises are satisfied in the KB, add its conclusion to the KB, and keep going until query is found

\[
P \Rightarrow Q \\
L \land M \Rightarrow P \\
B \land L \Rightarrow M \\
A \land P \Rightarrow L \\
A \land B \Rightarrow L \\
A \\
B
\]
Forward chaining example
Backward chaining

Idea: work backwards from the query q:
 to prove q by BC,
 check if q is known already, or
 prove by BC all premises of some rule concluding q
Backward chaining example

[Diagram of a logic tree with nodes labeled P, Q, M, L, A, and B, illustrating the backward chaining process.]
Backward chaining example
Forward vs. backward chaining

- Forward chaining is **data-driven**, automatic processing
 - May do lots of work that is irrelevant to the goal

- Backward chaining is **goal-driven**, appropriate for problem-solving
 - Complexity can be **much less** than linear in size of KB
Summary

• Logical agents apply inference to a knowledge base to derive new information and make decisions

• Basic concepts of logic:
 – syntax: formal structure of sentences
 – semantics: truth of sentences wrt models
 – entailment: necessary truth of one sentence given another
 – inference: deriving sentences from other sentences
 – soundness: derivations produce only entailed sentences
 – completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic

• Forward, backward chaining are linear-time, complete for definite clauses