Probability
Uncertainty

• Let action $A_t = \text{leave for airport} \ t \text{ minutes before flight}$
 – Will A_t get me there on time?

• Problems:
 • Partial observability (road state, other drivers' plans, etc.)
 • Noisy sensors (traffic reports)
 • Uncertainty in action outcomes (flat tire, etc.)
 • Complexity of modeling and predicting traffic

• Hence a purely logical approach either
 • Risks falsehood: “A_{25} will get me there on time,” or
 • Leads to conclusions that are too weak for decision making:
 • A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact, etc., etc.
 • A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight in the airport
Probability

Probabilistic assertions summarize effects of

- **Laziness**: failure to enumerate exceptions, qualifications, etc.
- **Ignorance**: lack of explicit theories, relevant facts, initial conditions, etc.
- Intrinsically random behavior
Making decisions under uncertainty

- Suppose the agent believes the following:
 \[
 \begin{align*}
 &P(A_{25} \text{ gets me there on time}) = 0.04 \\
 &P(A_{90} \text{ gets me there on time}) = 0.70 \\
 &P(A_{120} \text{ gets me there on time}) = 0.95 \\
 &P(A_{1440} \text{ gets me there on time}) = 0.9999
 \end{align*}
 \]

- Which action should the agent choose?
 - Depends on preferences for missing flight vs. time spent waiting
 - Encapsulated by a utility function

- The agent should choose the action that maximizes the expected utility:
 \[
 P(A_t \text{ succeeds}) \times U(A_t \text{ succeeds}) + P(A_t \text{ fails}) \times U(A_t \text{ fails})
 \]

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory
Monty Hall problem

• You’re a contestant on a game show. You see three closed doors, and behind one of them is a prize. You choose one door, and the host opens one of the other doors and reveals that there is no prize behind it. Then he offers you a chance to switch to the remaining door. Should you take it?
Monty Hall problem

• With probability 1/3, you picked the correct door, and with probability 2/3, picked the wrong door. If you picked the correct door and then you switch, you lose. If you picked the wrong door and then you switch, you win the prize.

• Expected payoff of switching:
 \[(1/3) \times 0 + (2/3) \times \text{Prize}\]

• Expected payoff of not switching:
 \[(1/3) \times \text{Prize} + (2/3) \times 0\]
Where do probabilities come from?

• **Frequentism**
 – Probabilities are relative frequencies
 – For example, if we toss a coin many times, \(P(\text{heads}) \) is the proportion of the time the coin will come up heads
 – But what if we’re dealing with events that only happen once?
 • E.g., what is the probability that Republicans will win the presidency in 2012?
 – “Reference class” problem

• **Subjectivism**
 – Probabilities are degrees of belief
 – But then, how do we assign belief values to statements?
 – What would constrain agents to hold consistent beliefs?
Probabilities and rationality

• Why should a rational agent hold beliefs that are consistent with axioms of probability?

• De Finetti (1931): If an agent has some degree of belief in proposition A, he/she should be able to decide whether or not to accept a bet for/against A
 – E.g., if the agent believes that $P(A) = 0.4$, should he/she agree to bet $4 that A will occur against $6 that A will not occur?

• Theorem: An agent who holds beliefs inconsistent with axioms of probability can be tricked into accepting a combination of bets that are guaranteed to lose them money
Random variables

• We describe the (uncertain) state of the world using *random variables*

 ▪ Denoted by capital letters

 – **R**: *Is it raining?*
 – **W**: *What’s the weather?*
 – **D**: *What is the outcome of rolling two dice?*
 – **S**: *What is the speed of my car (in MPH)?*

• Just like variables in CSP’s, random variables take on values in a *domain*

 ▪ Domain values must be mutually exclusive and exhaustive

 – **R** in \{True, False\}
 – **W** in \{Sunny, Cloudy, Rainy, Snow\}
 – **D** in \{(1,1), (1,2), \ldots (6,6)\}
 – **S** in [0, 200]
Events

• Probabilistic statements are defined over events, or sets of world states
 ▪ “It is raining”
 ▪ “The weather is either cloudy or snowy”
 ▪ “The sum of the two dice rolls is 11”
 ▪ “My car is going between 30 and 50 miles per hour”

• Events are described using propositions:
 ▪ R = True
 ▪ W = “Cloudy” \lor W = “Snowy”
 ▪ D \in \{(5,6), (6,5)\}
 ▪ 30 \leq S \leq 50

• Notation: \(P(A) \) is the probability of the set of world states in which proposition A holds
 - \(P(X = x) \), or \(P(x) \) for short, is the probability that random variable X has taken on the value x
Kolmogorov’s axioms of probability

• For any propositions (events) A, B
 ▪ 0 ≤ P(A) ≤ 1
 ▪ P(True) = 1 and P(False) = 0
 ▪ P(A ∨ B) = P(A) + P(B) – P(A ∧ B)
 – Subtraction accounts for double-counting

• Based on these axioms, what is P(¬A)?

• These axioms are sufficient to completely specify probability theory for discrete random variables
 ▪ For continuous variables, need density functions
Atomic events

• **Atomic event:** a complete specification of the state of the world, or a complete assignment of domain values to all random variables
 – Atomic events are mutually exclusive and exhaustive

• E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct atomic events:

 \[
 \begin{align*}
 \text{Cavity} = \text{false} & \land \text{Toothache} = \text{false} \\
 \text{Cavity} = \text{false} & \land \text{Toothache} = \text{true} \\
 \text{Cavity} = \text{true} & \land \text{Toothache} = \text{false} \\
 \text{Cavity} = \text{true} & \land \text{Toothache} = \text{true}
 \end{align*}
 \]
Joint probability distributions

- A **joint distribution** is an assignment of probabilities to every possible atomic event.

<table>
<thead>
<tr>
<th>Atomic event</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Cavity = false \land Toothache = false$</td>
<td>0.8</td>
</tr>
<tr>
<td>$Cavity = false \land Toothache = true$</td>
<td>0.1</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = false$</td>
<td>0.05</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = true$</td>
<td>0.05</td>
</tr>
</tbody>
</table>

- Why does it follow from the axioms of probability that the probabilities of all possible atomic events must sum to 1?
Joint probability distributions

• Suppose we have a joint distribution \(P(X_1, X_2, \ldots, X_n) \) of \(n \) random variables with domain sizes \(d \)
 – What is the size of the probability table?
 – Impossible to write out completely for all but the smallest distributions

• Notation:
 – \(P(X = x) \) is the probability that random variable \(X \) takes on value \(x \)
 – \(P(X) \) is the distribution of probabilities for all possible values of \(X \)
Marginal probability distributions

• Suppose we have the joint distribution $P(X,Y)$ and we want to find the \textit{marginal distribution} $P(Y)$

\begin{align*}
\text{P(Cavity, Toothache)} & \\
Cavity = false \land Toothache = false & 0.8 \\
Cavity = false \land Toothache = true & 0.1 \\
Cavity = true \land Toothache = false & 0.05 \\
Cavity = true \land Toothache = true & 0.05
\end{align*}

\begin{align*}
\text{P(Cavity)} & \\
Cavity = false & ? \\
Cavity = true & ?
\end{align*}

\begin{align*}
\text{P(Toothache)} & \\
Toothache = false & ? \\
Toothache = true & ?
\end{align*}
Marginal probability distributions

- Suppose we have the joint distribution $P(X,Y)$ and we want to find the marginal distribution $P(Y)$

$$P(X = x) = P((X = x \land Y = y_1) \lor \ldots \lor (X = x \land Y = y_n))$$

$$= P((x, y_1) \lor \ldots \lor (x, y_n)) = \sum_{i=1}^{n} P(x, y_i)$$

- General rule: to find $P(X = x)$, sum the probabilities of all atomic events where $X = x$.
Conditional probability

• Probability of cavity given toothache:
 \[P(\text{Cavity} = \text{true} \mid \text{Toothache} = \text{true}) \]

• For any two events A and B, \[P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(A,B)}{P(B)} \]
Conditional probability

<table>
<thead>
<tr>
<th>(P(Cavity, Toothache))</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cavity = \text{false} \land Toothache = \text{false})</td>
<td>0.8</td>
</tr>
<tr>
<td>(Cavity = \text{false} \land Toothache = \text{true})</td>
<td>0.1</td>
</tr>
<tr>
<td>(Cavity = \text{true} \land Toothache = \text{false})</td>
<td>0.05</td>
</tr>
<tr>
<td>(Cavity = \text{true} \land Toothache = \text{true})</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(P(Cavity))</th>
<th>(P(Toothache))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cavity = \text{false})</td>
<td>0.9</td>
</tr>
<tr>
<td>(Cavity = \text{true})</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- What is \(P(Cavity = \text{true} \mid Toothache = \text{false}) \)?
 \[
 \frac{0.05}{0.85} = 0.059
 \]
- What is \(P(Cavity = \text{false} \mid Toothache = \text{true}) \)?
 \[
 \frac{0.1}{0.15} = 0.667
 \]
Conditional distributions

- A conditional distribution is a distribution over the values of one variable given fixed values of other variables.

<table>
<thead>
<tr>
<th>P(Cavity, Toothache)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Cavity = false \land Toothache = false$</td>
</tr>
<tr>
<td>$Cavity = false \land Toothache = true$</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = false$</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = true$</td>
</tr>
</tbody>
</table>

| P(Cavity | Toothache = true) |
|---------------------|
| $Cavity = false$ | 0.667 |
| $Cavity = true$ | 0.333 |

| P(Cavity | Toothache = false) |
|---------------------|
| $Cavity = false$ | 0.941 |
| $Cavity = true$ | 0.059 |

| P(Toothache | Cavity = true) |
|--------------|
| $Toothache = false$ | 0.5 |
| $Toothache = true$ | 0.5 |

| P(Toothache | Cavity = false) |
|--------------|
| $Toothache = false$ | 0.889 |
| $Toothache = true$ | 0.111 |
Normalization trick

- To get the whole conditional distribution $P(X | y)$ at once, select all entries in the joint distribution matching $Y = y$ and renormalize them to sum to one.

<table>
<thead>
<tr>
<th>$P(Cavity, Toothache)$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Cavity = false \land Toothache = false$</td>
<td>0.8</td>
</tr>
<tr>
<td>$Cavity = false \land Toothache = true$</td>
<td>0.1</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = false$</td>
<td>0.05</td>
</tr>
<tr>
<td>$Cavity = true \land Toothache = true$</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Select

<table>
<thead>
<tr>
<th>Toothache, Cavity = false</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toothache= false</td>
<td>0.8</td>
</tr>
<tr>
<td>Toothache = true</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Renormalize

| $P(Toothache | Cavity = false)$ | |
|---------------------|---|
| Toothache= false | 0.889 |
| Toothache = true | 0.111 |
Normalization trick

• To get the whole conditional distribution $P(X \mid y)$ at once, select all entries in the joint distribution matching $Y = y$ and renormalize them to sum to one.

• Why does it work?

$$
\frac{P(x, y)}{\sum_{a'} P(x', y)} = \frac{P(x, y)}{P(y)} \quad \text{by marginalization}
$$
Product rule

• Definition of conditional probability: \[P(A \mid B) = \frac{P(A, B)}{P(B)} \]

• Sometimes we have the conditional probability and want to obtain the joint:

\[P(A, B) = P(A \mid B)P(B) = P(B \mid A)P(A) \]
Product rule

- Definition of conditional probability:
 \[P(A \mid B) = \frac{P(A,B)}{P(B)} \]

- Sometimes we have the conditional probability and want to obtain the joint:
 \[P(A, B) = P(A \mid B)P(B) = P(B \mid A)P(A) \]

- The chain rule:
 \[
P(A_1, \ldots, A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1, A_2)\ldots P(A_n \mid A_1, \ldots, A_{n-1})
 = \prod_{i=1}^{n} P(A_i \mid A_1, \ldots, A_{i-1})
 \]
The Birthday problem

• We have a set of n people. What is the probability that two of them share the same birthday?
• Easier to calculate the probability that n people do not share the same birthday
• Let $P(i | 1, \ldots, i-1)$ denote the probability of the event that the ith person does not share a birthday with the previous $i-1$ people:
 \[P(i | 1, \ldots, i-1) = \frac{365 - i + 1}{365} \]
• Probability that n people do not share a birthday:
 \[\frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^n} \]
• Probability that n people do share a birthday: one minus the above
The Birthday problem

- For 23 people, the probability of sharing a birthday is above 0.5!

Bayes Rule

The product rule gives us two ways to factor a joint distribution:

\[P(A, B) = P(A | B)P(B) = P(B | A)P(A) \]

Therefore, \[P(A | B) = \frac{P(B | A)P(A)}{P(B)} \]

Why is this useful?

- Can get diagnostic probability \(P(\text{cavity} | \text{toothache}) \) from causal probability \(P(\text{toothache} | \text{cavity}) \)
- Can update our beliefs based on evidence
- Important tool for probabilistic inference
Bayes Rule example

• Marie is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year (5/365 = 0.014). Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain on Marie's wedding?
Bayes Rule example

• Marie is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year \(\frac{5}{365} = 0.014\). Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain on Marie's wedding?

\[
P(\text{Rain} | \text{Predict}) = \frac{P(\text{Predict} | \text{Rain})P(\text{Rain})}{P(\text{Predict})}
\]

\[
= \frac{P(\text{Predict} | \text{Rain})P(\text{Rain})}{P(\text{Predict} | \text{Rain})P(\text{Rain}) + P(\text{Predict} | \neg\text{Rain})P(\neg\text{Rain})}
\]

\[
= \frac{0.9 \times 0.014}{0.9 \times 0.014 + 0.1 \times 0.986} = 0.111
\]
Bayes rule: Another example

- 1% of women at age forty who participate in routine screening have breast cancer. 80% of women with breast cancer will get positive mammographies. 9.6% of women without breast cancer will also get positive mammographies. A woman in this age group had a positive mammography in a routine screening. What is the probability that she actually has breast cancer?
Bayes rule: Another example

• 1% of women at age forty who participate in routine screening have breast cancer. 80% of women with breast cancer will get positive mammographies. 9.6% of women without breast cancer will also get positive mammographies. A woman in this age group had a positive mammography in a routine screening. What is the probability that she actually has breast cancer?

\[
P(\text{Cancer} | \text{Positive}) = \frac{P(\text{Positive} | \text{Cancer})P(\text{Cancer})}{P(\text{Positive})} = \frac{P(\text{Positive} | \text{Cancer})P(\text{Cancer})}{P(\text{Positive} | \text{Cancer})P(\text{Cancer}) + P(\text{Positive} | \neg \text{Cancer})P(\neg \text{Cancer})}
\]

\[
= \frac{0.8 \times 0.01}{0.8 \times 0.01 + 0.096 \times 0.99} = 0.0776
\]
Independence

• Two events A and B are independent if and only if
 \[P(A \land B) = P(A) \cdot P(B) \]
 – In other words, \(P(A \mid B) = P(A) \) and \(P(B \mid A) = P(B) \)
 – This is an important simplifying assumption for
 modeling, e.g., Toothache and Weather can be
 assumed to be independent

• Are two mutually exclusive events independent?
 – No, but for mutually exclusive events we have
 \[P(A \lor B) = P(A) + P(B) \]

• Conditional independence: A and B are conditionally
 independent given C iff
 \[P(A \land B \mid C) = P(A \mid C) \cdot P(B \mid C) \]
Conditional independence: Example

- **Toothache**: boolean variable indicating whether the patient has a toothache
- **Cavity**: boolean variable indicating whether the patient has a cavity
- **Catch**: whether the dentist’s probe catches in the cavity

If the patient has a cavity, the probability that the probe catches in it doesn't depend on whether he/she has a toothache

\[P(\text{Catch} \mid \text{Toothache}, \text{Cavity}) = P(\text{Catch} \mid \text{Cavity}) \]

Therefore, **Catch** is conditionally independent of **Toothache** given **Cavity**

Likewise, **Toothache** is conditionally independent of **Catch** given **Cavity**

\[P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \]

Equivalent statement:

\[P(\text{Toothache}, \text{Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity}) \]
Conditional independence: Example

• How many numbers do we need to represent the joint probability table \(P(\text{Toothache, Cavity, Catch}) \)?
 \(2^3 - 1 = 7 \) independent entries

• Write out the joint distribution using chain rule:
 \[
P(\text{Toothache, Catch, Cavity})
 = P(\text{Cavity}) P(\text{Catch} \mid \text{Cavity}) P(\text{Toothache} \mid \text{Catch, Cavity})
 = P(\text{Cavity}) P(\text{Catch} \mid \text{Cavity}) P(\text{Toothache} \mid \text{Cavity})

 \]

• How many numbers do we need to represent these distributions?
 \(1 + 2 + 2 = 5 \) independent numbers

• In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in \(n \) to linear in \(n \)
Probabilistic inference

- In general, the agent observes the values of some random variables X_1, X_2, \ldots, X_n and needs to reason about the values of some other unobserved random variables Y_1, Y_2, \ldots, Y_m
 - Figuring out a diagnosis based on symptoms and test results
 - Classifying the content type of an image or a document based on some features

- This will be the subject of the next few lectures