
Gobang

 Licheng Yu
Department of Computer Science

University of North Carolina at Chapel
Hill

licheng@cs.unc.edu

ABSTRACT
Gobang is an abstract strategy board game, also called Five in a
Row or Gomoku. It is traditionally played with Go pieces (black
and white stones) on a go board with 15 x 15 intersections.
Players alternate in placing a stone of theirs color (black or white)
on an empty intersection. The winner is the first player to get an
unbroken row of fines stones horizontally, vertically, or
diagonally. In this project, we implement an Android App of this
game, supporting two-player mode and one-player mode.

CCS CONCEPTS
• Algorithm → MinMax, MinMax with alpha-beta pruning•
Android → Application, Game

KEYWORDS
MinMax, alpha-beta pruning, Android, Gobang

1 INTRODUCTION
Gobang is widely popular in Asia. Most parents would love to
teach their children to play this game. In this project, we
implement an android app – Gobang. It has two features. The first
feature is supporting two players playing against each other. The
second feature is supporting one player playing against artificial
intelligence (AI). In this mode, we provide two variants, where
one is difficulty selection (easy, medium, hard) and the other is
who goes first selection (player goes first or AI goest first). In
Figure 1, we show the GUI interface of our designed app.

2 Implementation details

2.1 GUI interface
 In the MainActivity, we provide two buttons – one-player
mode and two-player mode. Each button points to a new view. As
there are 15x15 buttons insides a full checker board. It is
impossible to manually add these buttons in layout files. So we
only define LinearLayout in the layout file, and programmatically
add the 15x15 buttons in the java code. We list the function names
used in the GUI interface in Table I.
 For the play-against-AI interface, we use the same functions.
We also design a new java class called chessboard.java for the AI
computing.

Figure 1: Gobang. Figure shows when player (black) has won
the game.

Table I. Functions used for the GUI interface
Function Name Function
void gohome (…) Go back to Main Activity
void restart(…) Restart this game
void addButton(…) Add 15x15 buttons
void setButtonClick(…) Button OnClick function
void SwitchTurn(…) Swith player turn
bool CheckIfWin(…) Check if some player just won
void Red(…) Highlight the five wining stones

2.2 Algorithm: MinMax with alpha-beta pruning
2.2.1 MinMax Algorithm. MinMax is a decision rule used in
decision theory, game theory, statistics and philosophy for
minimizing the possible loss for a worst case (maximum loss)
scenario. Originally formulated for two-player zero-sum game
theory, covering both the cases where players take alternative
moves and those where they make simultaneous moves, it has also
been extended to more complex games and to general decision-
making in the presence of uncertainty.
 The key to the Minmax algorithm is a back and forth between
two players, where the player whose “turn it is” desires to pick the
move with the maximum score. In turn, the scores for each of the
available moves are determined by the opposing player deciding
which of its available moves has the minimum score. And the
scores for the opposing players moves are again determined by the

 Licheng Yu.

2

turn – taking player trying to maximize its score and so on all the
way down the move tree to an end state.
 This algorithm is recursive, it flips back and forth between the
players until a final score is found.
2.2.2 Alpha-beta pruning. Alpha-beta pruning is a search
algorithm that seeks to decrease the number of nodes that are
evaluated by the minmax algorithm in its search tree. It is an
adversarial search algorithm. It stops completely evaluating a
move when at lease one possibility has been found that proves the
move to be worse than a previously examined move. Such moves
need not be evaluated further. When applied to a standard minmax
true, it returns the same move as minmax would, but prunes away
branches that cannot possibly influence the final decision.
 In this app, we do not explore all cases by searching till the end
of the tree. Instead, we pre-define the depth to control the
difficulty of this game. Here, we set depth=0 for easy mode,
depth=2 for medium mode, and depth=4 for hard mode.

Figure 2: An illustration of alpha-beta pruning. The grayed-out
subtrees need not be explored (when moves are evaluated from
left to right), since we know the group of subtress as a whole
yields the value of an equivalent subtree or worse, and as such
cannot influence the final result. The max and min levels
represent the turn of the player and the adversary, respectively.

3 Examples
In this section, we show more examples of our game, specifically
the one-player mode, which is us playing against AI system in
Fig. 3. To give a rough sense about how advanced is the AI. When
playing against AI, my winning rate is below 10%, which
indicates the powerful intelligence of MinMax approach.
 In order to make this happen, we need to evaluate the reward
for each stone placing. The used functions are listed in Table. II.

Table II. Functions used for the AI ChessBoard
Function Name Function
void count (…) #same-color stones in one direction
bool makeSense(…) if it is worthwhile to place the stone
int getvalue(…) evaluate local value placing some stone
int getreward(…) evaluate global reward placing some stone
int[][] getBests(…) local optimal best 8 places for color
int Max(…) Max in MinMax algorithm
int Min(…) Min in MinMax algorithm
int[] putOne(…) place (i, j) to put color stone

Figure 3: Two examples showing “me” wining the game against
AI’s medium and hard level.

