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ABSTRACT

Single image super-resolution (SR) is a severely uncon-
strained task. While the self-example-based methods are able
to reproduce sharp edges, they perform poorly for textures.
For recovering the fine details, higher-level image segmen-
tation and corresponding external texture database are em-
ployed in the example-based SR methods, but they involve
too much human interaction. In this paper, we discuss the ex-
isting problems of example-based technique using scale space
analysis. Accordingly, a robust pixel classification method
is designed based on the phase congruency model in scale
space, which can effectively divide images into edges, tex-
tures and flat regions. Then a super-resolution framework is
proposed, which can adaptively emphasize the importance of
high-frequency residuals in structural examples and scale in-
variant fractal property in textural regions. Experimental re-
sults show that our SR approach is able to present both sharp
edges and vivid textures with few artifacts.

Index Terms— Phase congruency, quaternion Gabor,
super-resolution, example-based synthesis, fractal-based en-
hancement

1. INTRODUCTION AND RELATED WORK

Super-resolution refers to the process of obtaining higher-
resolution (HR) images from one lower-resolution (LR) im-
age or multiple LR ones with sub-pixel displacement. In
this paper, we focus on single-image super-resolution method
without consideration of motion estimation problem. Curren-
t single-image super-resolution methods can be divided into
three categories: interpolation-based method, reconstruction-
based method and example-based method.

Among the interpolation-based approaches, bi-linear and
bi-cubic are most commonly used in real-time SR tasks for
high speed and simplicity. However, they are inclined to
produce blurry and jaggy edges. Thus the edge-directed
reconstruction-based methods are proposed for reproducing
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Fig. 1: 4X results of Bi-cubic, gradient profile transformation[2]
and ours. The reproduction of fine edges and vivid textures varies for
each method, while our SR work that combines phase-congruency-
based segmentation and adaptive up-sampling method is able to
highlight both.

smoother edges. By applying different kinds of gradient
priors[1, 2, 3], they are effective in reversing the image degra-
dation process. Yet, these prior models focusing on edge re-
covery tend to leave texture regions untouched. Compared
with them, fractal analysis [4] is applied on image gradient
and reproduced vivid textures via fractal-based enhancement.



Another hot issue is the example-based method, which
takes efforts to fill in the missing high-frequency band us-
ing the provided example database. Generally, the exam-
ple patches are decomposed into the smoothed version and
the residual high-frequency version[5, 6], where the former
bands are used for sample matching and the latter ones are
for missing-information filling. However, a universal external
database tends to produce fairly noisy effect, since it is inca-
pable of maintaining high relevance for every image patch.
To release the strong reliance, self-similar scale-invariance
property was proposed in [7, 8], which constructs the exam-
ple database from the input LR image itself across different
scales. However, some wrongly hallucinated textures were
meanwhile introduced and the analysis of such problem was
lacked.

More recently, [9, 10] tried to combine the texture-based
segmentation and example-based hallucination. Although
this kind of methods provides some encouraging visual re-
sults in textures, it requires too much human interaction in
both content-based segmentation and user-supplied example
database, which limits the general application.

In this paper, we investigate the performance of example-
based method on edges and textures. It is found that these two
kinds of structures present different properties in scale space.
Therefore, we propose a robust pixel classification method
using quaternion phase congruency map, decomposing im-
ages into edge regions, textural regions and flat regions. A
unified super-resolution framework is then proposed, which
can adaptively emphasize the importance on high-frequency
residuals in structural examples and scale invariant fractal
property[4] in textural regions. The advantage of our SR
method can be seen in Figure 1, which is able to highlight
both fine edges and vivid textures.

The rest of our paper is organized as follows: Section 2
discusses the open problems of existing example-based SR
methods. Section 3 introduces the pixel classification method
using quaternion phase congruency map. Section 4 provides
the implementation details of our SR framework. Section 5
compares our method with the state-of-the-art SR methods.
And finally, the conclusion of this work is drawn in Section 6.

2. IMAGE ANALYSIS ON EXAMPLE-BASED SR
METHOD

In example-based SR methods, the alternative examples are
divided into their smoothed version and high-pass filtered ver-
sion, where the former band information are used for match-
ing and the latter one for filling the extra details. However,
the accuracy of texture matching is usually lower than that of
edge. This can be explained from two points of view. First-
ly, the highest spatial-frequency components of the smoothed
version are most important to the matching phase[5, 6]. For
salient edges, they generally contain wider frequency bands
than textures, thus are able to provide more features for higher

matching accuracy. On the contrary, the band of textures are
relatively short. This might introduce examples with low rel-
evance for synthesis, making the hallucination performance
become poor.

Secondly, the edge and line structures have higher redun-
dancies in scale space. As phase encodes the image structure
information, the self-similarity of structure across scales can
be verified using the scalogram of phase. In Figure 2, we in-
vestigate the performance of some structural edge and texture,
which are marked with red and yellow circles. As shown, a
rich redundancy of edge structures can be found across large
scale space, which is consistent with local self-similarity as-
sumption. However, it is not stable for textural regions since
their phases vary a lot beyond a small scale range, which im-
plies textures exhibit low self-similarity across scales. This
phenomenon can be seen in Figure 3, where the up-scaled
line structures are fine and smooth but the textures are wrong-
ly hallucinated with false line-like artifacts. One possible so-
lution to the example deficiency problem is to enlarge local
searching window size for including more alternatives, but it
is a time-consuming way with limited improvement.

Fig. 2: A one dimensional signal that contains both step structure
and texture, and its phase scalogram. Each row of the scalogram is
the result of convolving the signal with a quadrature pair of wavelets
at a certain scale and the vertical axis corresponds to a logarithmic
frequency scale.

3. PIXEL CLASSIFICATION VIA PHASE
CONGRUENCY

According to the former analysis, it is difficult to derive a uni-
versal assumption for effectively selecting good examples for
every types of structures. The works in [10, 9] used a high-
level texture discrimination and performed the synthesis via
user-supplied example database, but they involved too much
human interaction. Different from performing the content-
based segmentation, we employ the phase information of pix-
els to classify them into three structural types: edges, textures



Fig. 3: 4X results of Bi-cubic versus Local self-example on (a)
Line structure and (b) Textures.

Fig. 4: Phase congruency map and computed texture/edge map.

and flat regions.
The key idea of our classification lies in that image fea-

tures can be investigated in a viewpoint of phase congruency.
Given a square wave which consists of infinite number of sine
Fourier components, we can observe that they are exactly in
phase at the point of the upward (downward) step at the angle
of 0 (180) degree, while all other points in the square wave
exhibits low phase consistency. Besides step edges, a wide
range of feature types give rise to points of high phase con-
gruency (PC), like lines, singularities and corners.

The measure of phase congruency[11] at point x is calcu-
lated as,

PC(x) =
|E(x)|∑
nAn(x)

, (1)

which is the ratio of Local Energy |E(x)| over the sum of the
amplitude of every Fourier component An(x).

In [12, 13], the local frequency information of (1) is ob-
tained using banks of complex Gabor wavelets tuned to dif-

ferent spatial frequencies. However, the complex phase con-
gruency map tends to assign image details with a rather high
importance, as shown in Figure 6(a), which makes it hard to
differentiate edges from them. Thus, some efforts need to
made to improve the phase congruency model for presenting
a hierarchical saliency of different image structures.

The previous works in [14] employ quaternion wavelet
transform (QWT) to compute phase congruency instead of
complex wavelet transform (CWT). The quaternion Gabor
wavelet function is formulated as,

Gq(x,u,m) =
uv

2πm2σ2
f

e
−0.5( xu

mσf
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)2−i2πux−j2πvy

,

where u = (u, v)T is the radial center frequency of the filter,
and the Gaussian envelope is truncated by the window x ∈
[−m

2u ,
m
2u ], y ∈ [−m

2v ,
m
2v ]. Here, the parameter m stands for

the number of wavelength included in the window, and σf is
the fraction of the window size corresponding to one standard
deviation of the Gaussian envelop. Further, Gq(x,u,m) can
be reformed as Gq(x,u,m) = qee − iqoe − jqeo + kqoo,
where i, j, k are the imaginary parts of quaternion systems
which obey the rule of i2 = j2 = k2 = ijk = −1, and the
filters qee, q00, qoe, qeo are formulated as,

qee = Acos2πucos2πvy, qoe = −Asin2πucos2πvy,
qeo = −Acos2πuxsin2πvy, qoo = Asin2πuxsin2πvy,

where the amplitude A of these frequency components is cal-
culated as follows,

A =
uv

2πm2σ2
f

e
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.

The corresponding components of local energy in a given LR
image I(x, y) can be calculated across scales,

ee(x, y) = I(x, y) ∗ qee, eo(x, y) = I(x, y) ∗ qeo,
oe(x, y) = I(x, y) ∗ qoe, oo(x, y) = I(x, y) ∗ qoo,

E(x, y) =
√
(
∑
n ee(x, y))

2+(
∑
n eo(x, y))

2+(
∑
n oe(x, y))

2+(
∑
n oo(x, y))

2.

And the sum of amplitudes of all the frequency components
can be expressed by

∑
n An =

∑
n

√
(ee(x, y))2 + eo(x, y))2 + oe(x, y))2 + oo(x, y))2,

where n denotes scale n that is selected by varying center fre-
quency (u, v). Plugging E(x, y) and

∑
nAn into (1), we can

calculate the quaternion phase congruency at I(x, y).
One advantage of quaternion phase congruency is that it

can extract the most significant structures as its congruency
requires tighter consistency of three phase components across
scales, while the ones extracted by complex phase congruen-
cy are determined by a single phase. Thus, the most salient



Fig. 5: Our SR framework.

structures like edges, singularities, corners can be more em-
phasized via quaternion phase congruency, as shown in Fig-
ure 4(b). Moreover, phase congruency is a dimensionless
measurement that is invariant to illumination and contrast. A
threshold of 0.3-0.4 is typically used for determining the fea-
ture significance[12]. For higher accuracy, we apply the Ot-
su’s method[15] to calculate the optimal threshold for pick-
ing up the most salient structures. The edge classification re-
sult can be seen in Figure 4(d). Another advantage of using
quaternion Gabor wavelet is that the complex phase congru-
ency map can be obtained as a co-product during quaternion
phase congruency computing[14]. By excluding the extracted
edge regions, we further use the complex PC map to efficient-
ly separate the left details and flat regions. The computed
binary texture map of ”child” is shown in Figure 4(c).

4. OUR SUPER-RESOLUTION FRAMEWORK

Given the classification map that divides given LR image into
edges, textures, and flat regions, we can now apply different
SR strategies on the proper parts. The adaptive SR framework
is presented in Figure 5.

4.1. Edge Synthesis using Local Self-Examples

Compared with most edge-focused SR methods that exploit
statistical gradient priors to reproduce sharp edges[1, 2, 3],
the self-example-based synthesis is able to present more fine
edges, as shown in the lip part of Figure 1. One reason is that
the heavily unconstrained interpolation before gradient trans-
formation would make edges diffuse. On the contrary, the
redundancy of self-examples across scales can provide suf-
ficient high-frequency band for reproducing fine-scale struc-
tures. Thus, the self-example-based method is chosen for up-
sampling the edges in our scheme.

Assuming the edge map of the input LR image L is E,
the up-sampled image HE with emphasis on edges can be
calculated in an iterative way, as the local structure invariance
property holds better between successive small scales[8],

Y0(L. ∗ E)
s1→ Y1

s2→ · · · si→ Yi
si+1→ Yi+1 · · ·→Yout(HE), (2)

where Yi is the i-th synthesized image, si is the small magni-
fication factor for the i-th stage.

4.2. Fractal-based Texture Enhancement

Loss of details often leads to unnatural images with large
homogeneous texture regions. Those edge-directed SR
approaches[1, 2, 3] emphasize little on textures. As for
the example-based SR methods, they suffer either deficien-
cy of self-similar examples or strong reliance on the external
database. To produce realistic textures, the scale invariance of
fractal features in the local gradient field was applied in[4].

As a common tool in texture analysis, fractal analysis
looks into the texture regions from a geometrical view. Re-
garding the textures as a fractal set, the fractal dimension
is supposed to remain unchanged to bi-Lipschitz transforma-
tion, which infers the up-scaling has no effect on its dimen-
sion. By choosing gradient as the fractal measures, the invari-
ance property can be turned into gradient recovering,

grad(H(x)) = T (x)β ‖grad(Yi(x))‖
‖grad(Yi(x))α‖+εgrad(HE(x))

α

+(1− T (x))grad(HE(x)), (3)

where x denotes pixel position, T is the binary texture map,
H is the final SR output, and ’grad’ extracts the gradient. Pa-
rameters α and β jointly keep the scale invariance of fractal
dimension and fractal length of local gradients[4]. The ef-
fect of detail enhancement can be seen in the texture parts of
Figure 1(c).

Fig. 6: The pixel classification map, where ”red” denotes edges,
”yellow” denotes the textures and the left flat regions are marked
with ”blue”.

5. EXPERIMENTS AND DISCUSSIONS

For evaluating the performance of the proposed pixel classifi-
cation method and the super-resolution scheme, we compare
our approach with the state-of-art methods on some common
SR testing images. In Figure 6, we show the image decompo-
sition results using quaternion phase congruency, where the



most salient edges are highlighted with red lines and the tex-
ture regions are colored with yellow. We observe that the re-
sults are consistent with human perception.

Then we show our SR results as well as those of the state-
of-art methods in Figure 7,8,9. It can be observed that the
edge-directed methods like [1, 2, 3] present smooth edges but
tend to leave large textural areas over-smoothed; The self-
example-based methods in [7, 8] can reproduce more fine
lines but meanwhile introducing some line-like artifacts into
textural regions. On the contrary, our method is able to pro-
vide both fine edges and enhanced textures due to perform-
ing proper SR methods on corresponding regions. The ad-
vantages can be seen more clearly in the parts framed by red
rectangles and yellow ones. Besides, we provide the RMSE
(Root Mean Square Error) and SSIM (Structural Similarity)
values of ”child” in Table 1. These objective quality assess-
ments also show the proposed method is comparable to others
1. Moreover, as we only perform example matching on the
classified edge regions, the computation load can be reduced
compared with other example-based SR methods depending
on the amount of edge structures, as listed in the time record
of Table 12. (The test platform is MATLAB on Intel Core-i7
CPU with 8GB memory.) Note

Table 1: RMSE/SSIM/TIME of different 4X methods on
”child” of size 128× 128

Method RMS /SSIM /TIME(s) Method RMS /SSIM /TIME(s)
Bi-cubic 15.85 / 0.71 / 0.3 Freeman02[5] 23.48 / 0.58 / 1228

Glasner09[7] 23.44 / 0.58 /− Fattal11[8] 23.85 / 0.59 / 124
Fattal07[3] 23.40 / 0.62 / 6 Xu13[4] 25.14 / 0.56 / 7.4
Shan08[1] 17.92 / 0.68 /12 Ours 23.23 / 0.60 / 106

6. CONCLUSION

In this paper, we analyze the limitation of example-based S-
R methods using scale analysis. For better performance on
textures, image classification becomes necessary for break-
ing the limits. Different from the methods that semi-
automatically segment textures according to the contents, the
proposed pixel-classification method applies phase congruen-
cy map, dividing images into edge regions, textural regions
and flat regions. By performing self-example-based synthe-
sis and fractal-based enhancement on proper regions, our SR
method is able to present both fine lines and vivid textures.
In the future work, we will take the noise resistance of phase
congruency into consideration for upsampling noisy LR im-
ages.

1Note Bi-cubic and Shan08 however get the highest evaluations but with
worse visual results, one reason is that they well maintain the consistency
with LR images while other example-based methods might produce some
pixel-shift effects as they focus on high-frequency recovery.

2The time of Fattal07 is reported by [3] in C++ and that of Shan08 is
calculated using their software under CPU mode; Glasner09 is lack of com-
putation time.
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Fig. 7: Comparisons of 4X results on ”child”.

Fig. 8: Comparisons of 4X results on ”can” using different methods.

Fig. 9: Comparisons of 4X results on ”koala” using different methods.


