Scheduling real-time mixed-criticality jobs

Sanjoy Baruah!>*, Vincenzo Bonifaci?, Gianlorenzo D’Angelo®, Haohan Li',
Alberto Marchetti-Spaccamela®, Nicole Megow?, and Leen Stougie®

L The University of North Carolina, Chapel Hill, NC, USA.

{baruah,lihaohan}@cs.unc.edu.

2 Max-Planck-Institut fiir Informatik, Saarbriicken, Germany.

{bonifaci,nmegow}@mpi-inf .mpg.de

3 Universita degli Studi dell’Aquila, Monteluco di Roio, Italy.

gianlorenzo.dangelo@univaq.it
4 Sapienza University of Rome, Rome, Italy. alberto@dis.uniromal.it
5 Vrije Universiteit, and CWI, Amsterdam, The Netherlands. 1stougie@feweb.vu.nl

Abstract. Many safety-critical embedded systems are subject to certi-
fication requirements; some systems may be required to meet multiple
sets of certification requirements, from different certification authorities.
Certification requirements in such “mixed-criticality” systems give rise to
interesting scheduling problems, that cannot be satisfactorily addressed
using techniques from conventional scheduling theory. In this paper, we
study a formal model for representing such mixed-criticality workloads.
We demonstrate first the intractability of determining whether a sys-
tem specified in this model can be scheduled to meet all its certifica-
tion requirements, even for systems subject to two sets of certification
requirements. Then we quantify, via the metric of processor speedup fac-
tor, the effectiveness of two techniques, reservation-based scheduling and
priority-based scheduling, that are widely used in scheduling such mixed-
criticality systems, showing that the latter of the two is superior to the
former. We also show that the speedup factors are tight for these two
techniques.

1 Introduction

Due to cost and increased chip computational power, there is an increasing
trend in embedded systems towards implementing multiple functionalities upon
a single shared computing platform. It is typically the case that not all these
functionalities are equally critical for the overall successful performance of the
system. The analysis of such mized criticality systems has been identified as one
of the core foundational focal areas in the emerging discipline of Cyber Phys-
ical Systems. Coming up with procedures that will allow for the cost-effective
certification of such mixed-criticality systems has been recognized as a unique,
particularly challenging, collection of problems [3]. Recognizing these challenges,

* Supported in part by AT&T, IBM, and Sun Corps.; NSF grants CNS 0834270 and
CNS 0834132; ARO grant W911NF-09-1-0535; and AFOSR grant FA9550-09-1-0549.

several US government R&D organizations including the Air Force Research
Laboratory, the National Science Foundation, the National Security Agency, the
National Aeronautics and Space Administration, etc., have led initiatives such
as the Mixed Criticality Architecture Requirements (MCAR) program aimed at
streamlining the certification process for safety-critical embedded systems; these
initiatives have brought together participants from industry, academia, and stan-
dards bodies to seek out more advanced, efficient, and cost-effective certification
processes. Within this setting, new interesting scheduling problems arise that
will be the focus of this paper.

We illustrate this by an example from the domain of unmanned aerial vehicles
(UAV’s), used for defense reconnaissance and surveillance. The functionalities
on board such UAV’s are classified into two levels of criticality:

— Level 1: the mission-critical functionalities, concerning reconnaissance and
surveillance objectives, like capturing images from the ground, transmitting
these images to the base station, etc.

— Level 2: the flight-critical functionalities: to be performed by the aircraft to
ensure its safe operation.

For permission to operate such UAV’s over civilian airspace (e.g., for border
surveillance), it is mandatory that its flight-critical functionalities be certified
by civilian Certification Authorities (CA’s), which tend to be very conservative
concerning the safety requirements. These CA’s are not interested in the mission-
critical functionalities, which must be validated by the clients and the vendor-
manufacturer. The latter are also interested in the level 2 functionalities, but
typically to standards that are less rigorous than the ones used by the civilian
CA’s. As such, we may consider the level 2 functionalities as a subset of the
level 1 functionalities.

The difference in certification requirements is expressed by different Worst-
Case Ezxecution Times (WCET) for the execution of any real-time code depend-
ing on the considered critical level. In fact, each CA has its own rules, tools,
etc., for determining the value of the WCET. With reference to the previous
example, the WCET of the same piece of code of a flight critical functionality
has two values: one lower value that express the WCET if we are considering all
mission critical functions and one higher value if we restrict to all flight-critical
functions. On the other side, a level 1 functionality has only one WCET.

We refer to [5] for further explications and motivations for modeling this
certification requirement process. We restrict here to giving an example.

Ezxample 1. Consider a system comprised of two jobs: Jj is flight-critical while Jy
is only mission-critical. Both jobs arrive at time-instant 0, and have their dead-
lines at time-instant 10. J; is characterized by two WCETs: at level 1 its WCET
is P1(1) and at level 2 its WCET is P;(2) (where P;(1) < P;(2)); Jo is charac-
terized by only one WCET Py(1).

Suppose that P;(1) = 3, P1(2) = 5 and P»(1) = 6. Consider the schedule
that first executes J; and then Js.

— The CA responsible for safety-critical certification would determine that J;
completes latest by time-instant 5 and meets its deadline; note that if the
execution time of J; is 5 then in the worst case it is not possible to com-
plete Jy by its deadline; however, this CA is not interested in Js; hence the
system passes certification.

— The CA responsible for mission-critical certification determines that J; com-
pletes latest by time-instant 3, and Jo by time-instant 9. Thus they both
complete by their deadlines, and the system passes certification.

Note that by scheduling first Js and then J; we do not meet the requirements
of the flight critical functionalities. In fact in this case the execution of J; could
start at time 6 and therefore the job does not complete by its deadline if we
assume its WCET of 5.

We thus see that the system is certified as being correct by both the flight-
critical and the mission-critical CA’s, despite the fact that the sum of the
WCET’s at their own criticality level (6 and 5) exceeds the length of the schedul-
ing window over which they are to execute.

On the other side, suppose the deadline of Js would change to 8, then neither
scheduling J; before J; nor scheduling J; before J; can be certified. In this case,
scheduling J; before J, can result in a completion time of Jo at time 9 greater
than .J5’s deadline. O

In Section 2, we present the model for representing mixed-criticality real-
time systems, which has been proposed in [4,5]. This mixed-criticality (MC)
scheduling model extends the conventional model of a real-time job by allowing
for the specification of different WCET’s for a job at different criticality levels.

In previous papers [4,5], the problem to decide schedulability of a given MC
system was conjectured to be NP-hard, but a proof was never given. We do so
here in Section 3. However, the exact complexity of the problem remains open,
since it is not clear if the problem is actually in NP. We prove that it is, if the
number of criticality levels is a constant. Otherwise, we can only show that it is
in PSPACE.

In the same section we present an algorithm that decides MC-schedulability
efficiently for a special case.

In Section 4 we study the two techniques that are most widely used in design-
ing mixed-criticality systems for certifiability; we quantify the sub-optimality of
both techniques via the metric of processor speedup factor (cf. resource augmen-
tation in performance analysis of approximation algorithms, as initiated in [7]).
The results here extend the results in [5], who considered the techniques for dual-
criticality systems, i.e., in which there are only two different criticality levels. Our
results improve the results in [4], where also the techniques for L criticality levels
are studied. Moreover, we prove here that our results are tight.

2 Model and definitions

We consider a mixed-criticality (MC) system with L criticality levels, for some L.
A job in an MC system is characterized by a 4-tuple of parameters: J; =
(’I"j, dj, Xj» Pj), where

— 71; € Q4 is the release time;

— d; € Q4 is the deadline, d; > r;;

— Xj € N4 is the criticality of the job;

- P e Qi is a vector, the ¢-th coordinate of which specifies the worst-case
execution time (WCET) estimate of job J; at criticality level £. In a job-
specification we usually represent it by (P;(1),..., P;(L)).

It is natural to assume P;(¢) to be monotonically nondecreasing for increas-
ing £. This we will do throughout, and mention if the assumption can be dropped
where possible. At any moment, we call a job available if its release time has
passed and the job has not yet completed execution.

An instance I of the MC-schedulability problem consists of a set of n jobs.
In this paper we assume that there is only one machine (processor) to execute
the jobs. We allow jobs to be preempted by the machine.

To define MC-schedulability we define the notion of a scenario. Each job J;
requires an amount of execution time p; within its time window [r;,d;]. The
value of p; is not known from the specification of J;, but is only discovered by
actually executing the job until it signals that it has completed execution. This
characterizes the uncertainty of the problem. We call a collection of realized
values (p1,p2,...,pn) & scenario of instance I.

We define the criticality level, or shortly criticality, of a scenario (p1,p2, ..., Dn)
of I as the smallest integer ¢ such that p; < P;(¢) for all j =1,...,n. (If there
is no such ¢, we define that scenario to be erroneous.)

Definition 1. A schedule for a scenario (pi1,...,pn) of criticality ¢ is feasible
if every job J; with x; > £ receives execution time p; during its time win-
dow [r;,d;].

A clairvoyant scheduling policy knows the scenario of I, i.e., (p1,...,pn),
prior to determining a schedule for I.

Definition 2. An instance I is clairvoyantly-schedulable if for each scenario
of I there exists a feasible schedule.

By contrast, an on-line scheduling policy discovers the value of p; only by
executing J; until it signals completion. In particular, the criticality level of the
scenario becomes known only by executing jobs. At each time instant, scheduling
decisions can be based only on the partial information revealed thus far.

Definition 3. An on-line scheduling policy is correct for instance I if for any
non-erroneous scenario of instance I the policy generates a feasible schedule.

Definition 4. An instance I is MC-schedulable if it admits a correct on-line
scheduling policy.

The MC-SCHEDULABILITY problem is to determine whether a given instance I
is MC-schedulable or not. A little thought should make it clear that for deciding
MC-schedulability one only needs to consider scenarios in which for each i, p; =
P;(¢) for some ¢. The following is obvious.

Proposition 1. If an instance I is MC-schedulable on a given processor, then I
18 clairvoyantly-schedulable on the same processor.

Ezample 2. Consider an instance of a dual-criticality system: a system with L =
2. Consider an instance I comprised of 4 jobs. Job J3 has criticality level 1 (which
is the lower criticality level), and the other 3 jobs have the higher criticality
level 2.

J1=1(0,3,2,(1,2))
Jo = (0537 17 (232))
J3 = (Oa 9, 27 (L 1))
Ji = (3,5,2,(1,2))

For this example instance, any scenario in which p1, p2, p3, and p, are no larger
than 1, 2, 1, and 1, respectively, has criticality 1; while any scenario not of criti-
cality 1 in which py, ps, p3, and p4 are no larger than 2, 2, 1, and 2, respectively,
has criticality 2. All remaining scenarios are, by definition, erroneous. It is easy
to verify that this instance is clairvoyantly-schedulable.

Policy Sy, described below, is an example of an on-line scheduling policy for
instance I:

So: Execute J; over [0,1]. If J; has remaining execution (i.e., p; is revealed to be
greater than 1), then continue with scheduling policy S; below; else, continue
with executing scheduling policy So below.

Sy: Execute J; over (1,2], J3 over (2,3], and Jy over (3,5].

S9: Execute Jo over (1,3], J3 over (3,4], and Jy over (4,5].

Scheduling policy Sy is however not correct for I, as can be seen by consid-
ering the schedule that is generated on the scenario (1,2,1,2). This particular
scenario has criticality 2, since py = 2 > P4(1) = 1. Hence, a correct sched-
ule would need to complete jobs Ji, J3 and Jy by their deadlines. However, the
schedule generated by Sy has executed Jy for only one unit before its deadline.
In fact, it turns out that instance I is not MC-schedulable.

3 Complexity of MC-Schedulability

In this section we investigate the complexity of the MC-SCHEDULABILITY prob-
lem. We show that it is NP-hard in the strong sense. However, a little thought
should make it clear that it is not trivial to decide if the problem belongs to
NP or not. We prove that it actually belongs to NP if the number of criticality

levels is bounded by a fixed constant. For the general case, in which the number
of criticality levels is part of the input, we show that it belongs to the class
PSPACE, leaving membership to NP as an open question.

A preliminary observation is that determining clairvoyant-schedulability has
the same complexity as the ordinary scheduling problem with only 1 criticality
level: verify for each criticality level £ = 1,..., L if the jobs of that critical-
ity level or higher can be scheduled to complete before their deadlines if each
such job j has execution time P;(¢). In particular this means that clairvoyant-
schedulability of any instance on a fully preemptive processor platform can be
verified in polynomial time. This also holds if P;(¢) is not monotonic in .

We show that it is strongly NP-hard to determine whether a given clairvoyantly-
schedulable system is also MC-schedulable upon a fully preemptive single-processor
platform.

Theorem 1. MC-SCHEDULABILITY is NP-hard in the strong sense, even when
all release times are identical and there are only two criticality levels.

Proof. The proof is by reduction from the strongly NP-complete problem 3-
PARTITION [6]. In an instance Isp of 3-PARTITION, we are given a set S of 3m
positive integers sg, s1,...,83m—1 and a positive integer B such that B/4 <
s; < B/2 for each i and Z?ﬂ;l s; = mB. The problem is to decide whether S
can be partitioned into m disjoint sets Sy, S1,. .., Sm—1 such that, for 0 < k <
m, Y, cs, Si = B.

We give here just the polynomial transformation and defer the rest of the
proof to a full version of the paper. From a given instance I3p we construct an
MC-SCHEDU-LABILITY instance Iy;¢ consisting of 4m jobs with release time 0,
which in the 4-tuple notation are:

— 3P-jobs: For each i, 0 < i < 3m, job J; = (0,2mB, 2, (s;,2s;));
— Blocking jobs: For each k, 0 < k < m, job Jsm+x = (0,2(k+1)B, 1, (B, B)).
O

The question remains if MC-SCHEDULABILITY actually belongs to the com-
plexity class NP. In case the number of criticality levels L is a constant, we answer
this question affirmatively. The proof is based on a polynomial-time checkable
characterization of an online scheduling policy.

Theorem 2. MC-SCHEDULABILITY for L criticality levels is in NP for any
fized L, and in PSPACE when L is part of the input.

Equal deadlines. Theorem 1 above shows that the problem is in general NP-
hard even if release times are identical. On the other hand, we show here that
the special case in which all jobs have equal deadlines (d; = D, j = 1,...,n)
can be solved in polynomial time. We first derive a necessary condition for such
an instance I to be MC-schedulable. Consider the criticality level ¢ scenario of I
in which each job J; needs exactly p; = P;(¢) execution time.

Necessary condition: If I is MC-schedulable then for each ¢, a scheduling
policy exists that allocates to each job J; with x; > ¢ at least P;(¢) execution
time within time window [r;, D], i.e., the makespan of the scenario is at most D.

This condition is easily checked: Let I, = {J; € I | x; > ¢} and |I;| = ny.

Let (after renumbering) Ji, Ja,...,J,, denote the jobs in I, in order of non-
decreasing release times: r; < rp < ... < rp,. Clearly, the makespan of I, is
given by

Ct o :: _max - 7; + ZP (1)

N7

The necessary condition is then verified by checking if

 nax Cct.. <D. (2)

Consider the criticality-monotonic (CM) on-line scheduling policy, which
schedules at each time instant an available job of highest criticality.

Theorem 3. CM is correct for all for MC-schedulable instances in which all
jobs have the same deadline.

Proof. We prove this by showing that the necessary condition is also sufficient.
Consider any scenario of I that has criticality level . In a CM-schedule, the
scheduling of jobs of criticality £ or higher is not effected by the presence of
lower-criticality jobs, since their execution is postponed as soon as jobs in I
become available. Hence, a CM-schedule can be thought of as a schedule that
minimizes the makespan of the jobs in I,. By the necessary condition, this does
not exceed the common deadline D. O

Notice that this theorem also holds when P;(¢) is not monotonic in £. Some other
well-solved sub-problems will be presented in the full version of the paper.

4 MC-schedulability testing using resource augmentation

Since MC-SCHEDULABILITY is intractable even for dual-criticality instances, we
concentrate here on sufficient MC-schedulability conditions that can be verified
in polynomial time. We study two such scheduling policies that yield such suffi-
cient conditions and compare their strength under augmenting the speed of the
machine or server. Taking the required speed to give a necessary condition for
MC-schedulability as a measure of performance quality, the second policy we
present outperforms the former one.

We make here the assumption that for each job J;, P;(¢) = P;(x;) for
all £ > x;. That is, no job executes longer than the WCET at its own specified
criticality. This is without loss of generality for any correct scheduling policy:
any such policy will immediately interrupt (and no longer schedule) a job J;
if its execution time p; exceeds P;(x;), since this makes the scenario of higher

criticality level than x;, and therefore the completion of J; becomes irrelevant
for the scenario.

As stated in Section 1, one straightforward approach is to map each MC
job J; into a “traditional” (i.e., non-MC) job with the same arrival time r; and
deadline d; and processing time p; = P;(x;) = max, P;(¢) (by monotonicity),
and determine whether the resulting collection of traditional jobs is schedulable
using some preemptive single machine scheduling algorithm such as the Farliest
Deadline First (EDF) rule. This test can clearly be done in polynomial time. We
will refer to mixed-criticality instances that are MC-schedulable by this test as
worst-case reservations schedulable (WCR-schedulable) instances. The speed-up
factor in the following theorem has been proved in [4]. We complement it by
proving tightness.

Theorem 4. If an instance is WCR-schedulable on a processor, then it is MC-
schedulable on the same processor. Conversely, if an instance I with L criticality
levels is M C-schedulable on a given processor, then I is WCR-schedulable on a
processor that is L times as fast, and this factor is tight.

We now present another schedulability condition that can also be tested
in polynomial time, but offers a performance guarantee (as measured by the
processor speedup factor) that is superior to the performance guarantee offered
by the WCR-approach.

In this algorithm we determine off-line, before knowing the actual execution
times, a total ordering of the jobs in a priority list and for each scenario execute
at each moment in time the available job with the highest priority.

The priority list is constructed recursively using the approach commonly
referred to in the real-time scheduling literature as the “Audsley approach” [1,2];
it is also related to a technique introduced by Lawler [8]. First determine the
lowest priority job: Job J; has lowest priority if there is at least P;(x;) time
between its release time and its deadline available when every other job J; is
executed before J; for P;(x;) time units (the WCET of job J; according to the
criticality level of job 7). The procedure is repeatedly applied to the set of jobs
excluding the lowest priority job, until all jobs are ordered, or at some iteration
a lowest priority job does not exist. If job J; has higher priority than job J; we
write J; > Jj.

Because the priority of a job is based only on its own criticality level, the
instance I is called Own Criticality Based Priority (OCBP)-schedulable if we
find a complete ordering of the jobs.

If at some recursion in the algorithm no lowest priority job exists, we say the
instance is not OCBP-schedulable. We can simply argue that this does not mean
that the instance is not MC-schedulable: Suppose that scheduling according to
the fixed priority list Ji, Jo, J3 with xo = 1 and x; = x3 = 2, proves the instance
to be schedulable. It may not be OCBP-schedulable since this does not take into
account that Js does not need to be executed at all if J; receives execution
time p; > Pi(1).

Clearly, if a priority list exists, it can be determined in polynomial time.

It turns out that the OCBP-test is more powerful than the WCR-test ac-
cording to the speedup criterion.

Theorem 5. If an instance is OCBP-schedulable on a given processor, then it
is MC-schedulable on the same processor. Conversely, if instance I with L criti-
cality levels is MC-schedulable on a given processor, then I is OCBP-schedulable
on a processor that is sy, times as fast, with sy, equal to the root of the equa-
tion ¥ = (1 + x)Y~Y, and this factor is tight. It holds s = O(L/InL).

Proof. We prove here the critical part of the claim: that a speedup of sy, is
sufficient. The proof that OCBP-schedulability implies MC-schedulability has
been given in [4].

Notice that s; = 1, and that (as one can verify using elementary calcu-
lus) spr > sp if L' > L. Let I be an instance with at most L criticality levels
that is MC-schedulable on a speed-1 processor, but not OCBP-schedulable on a
speed-s processor for some s > sy, and amongst such instances let it be minimal
with respect to L and the number of jobs. Suppose I has n jobs. Minimality of I
implies that there is no time-instant ¢ such ¢ ¢ U’'_; [r;, d;], otherwise either the
jobs with deadline before t or the jobs with release time after ¢ would comprise
a smaller instance with the same property.

Claim. Any job in I with the latest deadline must be of criticality L.

Proof. Suppose that a job J; with x; = h < L has latest deadline. Create from I
an instance I, with level h by “truncating” all jobs with criticality level greater
than h to their worst-case level-h scenarios:

Jj - (Tjadj>Xj’ (P](]-)a .- aPJ(L))) el—

JJI = (rj,dj,min(xj, h), (Pj(l), . ,P](h))) e I.
Clearly, I, being a restricted instance of I, is MC-schedulable as well, and, by
minimality of I, I}, is OCBP-schedulable on a speed-sj processor.

That J; has latest deadline in I but cannot be assigned lowest priority on a
speed-s processor implies that the scenario with p; = P;(h) cannot be feasibly
scheduled on a speed-s processor; thus I is not clairvoyantly schedulable on
a speed-s processor. But I, not being clairvoyantly schedulable implies I}, not
being OCBP-schedulable, and because s > s;, > sp, this contradicts the OCBP-
schedulability of I, on a speed-sj; processor. a

For each ¢ € {1,..., L}, let d(¢) denote the latest deadline of any criticality-¢
job in It d(¢) = maxy,|,,—¢d;. A work-conserving schedule on a processor is a
schedule that never leaves the processor idle if there is a job available. Consider
any such a work-conserving schedule on a unit-speed processor of all jobs in
of the scenario in which p; = P;(¢) for all j. We define A, as the set of time
intervals on which the processor is idle before d(£), and A\, as the total length of
this set of intervals.

Claim. For each ¢ and each J; € I with x; < ¢ we have [r;,d;] N Ay = 0.

Proof. Observe that since s > sy > 1, all idle intervals of Ay are also idle intervals
in any work-conserving schedule of I on a speed-s processor. Hence, any job J;
with x; < ¢ with [r;,d;]N A, # 0 would meet its deadline in such a schedule if it
were assigned lowest priority. Since I is assumed to be non-OCBP schedulable
on a speed-s processor, this implies that (I'\ {J;}) is non-OCBP schedulable on
a speed-s processor, contradicting the minimality of I. a

As a corollary, Ay, = 0 and A\, = 0.
Foreach h=1,...,Land £ =1,...,L, let

(€)=Y Pi(t)

Jilxi=h
Notice that by assumption
VeVh < L:cp(l) = cp(h). (3)

Since instance [is clairvoyantly schedulable on a unit-speed processor, clearly
we must have

V0 e(l) < d(6) — A (4)

But also, due to clairvoyant schedulability, the criticality-¢ scenario, in which
each job J; with criticality > ¢ receives exactly P;(¢) units of execution, com-
pletes by the latest deadline d(L):

L
VLY ei(0) < d(L) — A (5)
=L

Instance I is not OCBP-schedulable on a speed-s processor, which translated in
terms of the introduced notation is:

L
VLD ei(f) > s(d(e) — Ao). (6)
=1

Hence, for each ¢,

-1 L
s(d(0) = Ae) <D ei(t) + > cill)

i=1 =0
-1 L

=D al@)+ Y alt) (by (3)
=1 =0
-1

< Z(d(z) = Ai) + (d(L) = Ae) (by (4) and (5))
£—1

IN
]
&
T
&
+

IS
=

10

Therefore, for all / =1,..., L,

d(L) + 3121 (d(i) = \)

o< A0 — N

Using notation 6y = d(¢) — Ay (hence 67, = d(L) since A\j, = 0) this yields

6+ 30016
s < min LT L= T 2’4 !
¢=1,...,L 5@

(7)

The minimum is maximized if all L terms are equal. Let x be this maximum
value. Then for all £ =1,..., L,

op+01+do+ - +d-1 1401 1+a
T = = = Op—1.
O¢ Op

Hence,

5o = (11“)55_1 Ve=1,...,L which implies 6 — (”x)Hal.

Since, in particular, z = %, we have

017
(1+$)L—1
xr = s
X

which concludes the proof. a

We note that for L = 2 in the above theorem, sy = (1 4+ /5)/2, the golden
ratio; thus the result is a true generalization of earlier results in [5]. In gen-
eral, s, = ©(L/1n L); hence, this priority-based scheduling approach asymptot-
ically improves on the reservations-based approach by a factor of ©@(In L) from
the perspective of processor speedup factors.

Notice that the proof of the speedup bound for OCBP-schedulability in Theo-
rem 5 only uses the clairvoyant-schedulability of the instance, which is a weaker
condition than MC-schedulability (recall Proposition 1). The following claim
shows that it is not possible to get an improved test if the proof of its speedup
bound is based on clairvoyant-schedulability alone.

Proposition 2. There are dual-criticality instances that are clairvoyantly schedu-
lable on a given processor, but that are not MC-schedulable on a processor that
is less than (1 ++/5)/2 times as fast.

Proof. Consider the following instance

- JS1= (Oa 15 17 (17 1))5

11

This system is clairvoyantly-schedulable. To analyze its MC-schedulability, con-
sider the possible policies on a higher speed-s processor. The first one starts
with Jy and runs it till P(1) = (0 — 1)/s, and if it signals completion, sched-
ule J; which then finishes latest by (¢ —1)/s+ 1/s = o/s. This is feasible only
if /s < 1, that is, s > o. The other policy is simply to first schedule J; and
then Jo, which may require a total execution time 1/s 4+ o /s, which is feasi-
ble only if (1 + 0)/s < o, that is, s > (0 + 1)/o. Hence, if the processor has
speed s < min{o, (c+1)/0}, neither of the possible scheduling policies is correct.
Taking o = (0 + 1) /0o, that is, o = (1 +/5)/2, implies s > 0. O

Nevertheless, it remains the question if a test other than OCBP can test
MC-schedulability within a smaller speedup bound. We do not give a full an-
swer to this question. However, we can rule out fixed-priority policies, that is,
policies which execute the jobs in some ordering fixed before execution time.
This ordering is not adapted during execution, except that we do not execute
jobs of criticality level ¢« < h after a scenario was revealed to be a level-h sce-
nario. Such a policy admits a simple representation as a sequence of jobs. The
following result shows that OCBP is best possible among fixed-priority policies.

Theorem 6. There exist MC-instances with L criticality levels that are MC-
schedulable, but that are not II-schedulable for any fixed priority policy IT on a
processor that is sy, times as fast, with sy, being the root of the equation x* =

(14 x)L=1L,

References

1. N. C. Audsley. Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times. Technical Report YCS 164, Department of Computer
Science, University of York, England, 1991.

2. N. C. Audsley. Flexible Scheduling in Hard-Real-Time Systems. PhD thesis, De-
partment of Computer Science, University of York, 1993.

3. J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. S. P.
Stanfill, D. Stuart, and R. Urzi. White paper: A research agenda for mixed-
criticality systems, April 2009. Available at http://www.cse.wustl.edu/~cdgill/
CPSWEEKO9_MCAR/.

4. S. Baruah, H. Li, and L. Stougie. Mixed-criticality scheduling: improved resource-
augmentation results. In Proc. of the 25th ISCA International Conference on
Computers and their Applications. To appear, 2010.

5. S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable mixed-criticality
systems. In Proc. of the 16th IEEE Real-Time Technology and Applications Sym-
posium, Stockholm, Sweden, 2010.

6. M. Garey and D. Johnson. Computers and Intractability: a Guide to the Theory
of NP-Completeness. W. H. Freeman and company, NY, 1979.

7. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal
of the ACM, 47(4):617-643, 2000.

8. E. Lawler. Optimal sequencing of a single machine subject to precedence con-
straints. Management Science, 19(5):544-546, 1973.

12

