
Mixed-criticality scheduling: improved resource-augmentation results

Sanjoy Baruah∗ Haohan Li
The University of North Carolina

Leen Stougie†

Vrije Universiteit and CWI

Abstract

Many safety-critical embedded systems are sub-
ject to certification requirements; some systems may
be required to meet multiple sets of certification re-
quirements, from different certification authorities.
Certification requirements in such “mixed-criticality”
systems give rise to some interesting scheduling prob-
lems, that cannot be satisfactorily addressed using
techniques from conventional scheduling theory. It had
previously been shown that determining whether a sys-
tem specified in this model can be scheduled to meet
all its certification requirements is highly intractable.
Prior work [4] had also introduced a simple, priority-
based scheduling algorithm called OCBP for mixed
criticality systems, and had quantified, via the metric
of processor speedup factor, the effectiveness of OCBP
in scheduling dual-criticality systems – systems sub-
ject to two sets of certification requirements.

In this paper, we extend this result to systems
with arbitrarily many distinct criticality levels, by de-
riving a quantitative processor speedup factor (that
depends on n) for OCBP when scheduling systems
with n criticality levels for arbitrary n.

1 Introduction

There is an increasing trend in embedded systems
towards implementing multiple functionalities upon a
single shared computing platform. The concept of
mixed criticalities is fast coming to be regarded as an
important concept in such systems, and has in fact
been identified as one of the core foundational concepts
in the emerging discipline of Cyber Physical Systems.
In such systems, mixed criticalities can mean two dif-
ferent things. The first meaning is the obvious one:
upon platforms that offer support for multiple func-
tionalities, it is some of these functionalities are prob-
ably more important (more “critical”) to the overall
welfare of the platform than others. However, there
is another aspect [2] to mixed criticalities that arises

∗Supported in part by AT&T, IBM, and Sun Corps.; NSF
grants CNS 0834270 and CNS 0834132; ARO grant W911NF-
09-1-0535; and AFOSR grant FA9550-09-1-0549.

†Supported by the Dutch BSIK-BRICKS project.

in application domains (such as civilian and defense
avionics) that are subject to mandatory certification
requirements by statutory organizations. It is the as-
pect of mixed criticalities arising as a consequence of
such certification requirements, that is the focus of this
paper .

Mixed-criticality and certification. We illus-
trate the certification aspect of mixed criticality via
an example taken from the domain of unmanned aerial
vehicles (UAV’s) that are used for reconnaissance and
surveillance. The functionalities on board such UAV’s
can be classified into two categories:

• The flight-critical functionalities, that must be per-
formed by the aircraft in order to ensure its safe op-
eration.

• The mission-critical functionalities, which are con-

cerned with the reconnaissance and surveillance ob-

jectives.

In order that such UAV’s be permitted to operate
over civilian airspace (e.g., for border surveillance), it
is mandatory that its flight-critical functionalities be
certified by civilian Certification Authorities (CA’s),
such as the Federal Aviation Authority in the US. Such
CA’s tend to be very conservative: they require that
the correctness of the UAV be demonstrated under ex-
tremely rigorous and pessimistic assumptions, which
are very unlikely to occur in reality. However, the
CA’s are not concerned with the correctness (or other-
wise) of the mission-critical functionalities — their sole
concern is with the safety of the aircraft. The mission-
critical functionalities must instead be validated by the
clients and the vendor-manufacturer, typically to stan-
dards that are less rigorous than the ones used by the
CA’s.

We illustrate this difference in rigor by consider-
ing a particular characterizing parameter of real-time
code: the Worst-Case Execution Time (WCET). The
WCET of a piece of code represents an upper bound
on the amount of time required to execute this code.
Each CA specifies its own rules, tools, etc., for deter-
mining the value of the WCET:

• For flight-critical certification purposes, the CA’s re-
quire that we have a great deal of confidence that the



value we assign to this parameter be an actual up-
per bound on the execution time of the code. Such
confidence could be obtained by, e.g., severely restrict-
ing the kinds of programming constructs that may be
used, analyzing the programs very carefully to iden-
tify the worst-case execution path, and subjecting this
path to careful cycle-counting analysis under extreme
pessimistic assumptions regarding cache state etc.

• For mission-critical validation, it may suffice to es-

timate the WCET by performing simulation experi-

ments on the code, covering what we believe are all

extremal behaviors of the system, measuring the run-

times to determine the largest value, and perhaps in-

flating the largest observed value by an additional

“fudge” factor to give us greater confidence. The re-

sulting estimate will still be very conservative, but

presumably not as large as the value determined above

for use in the flight-critical certification process.

Thus, the same piece of code will be characterized by
different WCET’s in safety-critical certification and
for mission-critical certification, and it is incumbent
that the platform pass both certification processes.
This would not be an issue if all the functionality
on board the platform needed to be certified by both
CA’s: in that case, we would simply take the more
conservative bound (the larger WCET estimate) and
use this in both certification processes. However (as
stated above), it is typically the case that only some
of the functionality must be certified according to the
more rigorous flight-critical certification process, while
the entire system (comprising the flight-critical plus
the mission-critical functionalities) must pass the less
rigorous mission-critical certification. We illustrate by
an example.

Example 1 Consider a system comprised of two jobs:
J1 is flight-critical while J2 is only mission-critical. Both
jobs arrive at time-instant 0, and have their deadlines at
time-instant 10. The WCET of J1, estimated according to
the techniques associated with flight-critical certification,
is determined to equal 6, while the WCET of J2, estimated
using the techniques associated with mission-critical certi-
fication is 5. Using the WCET estimates of 6 and 5 respec-
tively, there is no way that both jobs can be scheduled to
guarantee completion by their deadlines. Recall, however,
that

• For the purposes of flight-critical certification, it is
irrelevant whether J2 completes on time or not; and

• the value of 6 that is assigned to J1’s WCET param-
eter may be deemed too pessimistic for the purposes
of mission-critical certification.

Let us suppose that the WCET of J1, estimated using
mission-critical certification techniques, is determined to
be equal to 3 (rather than 6), and step through the certifi-
cation processes if we were to schedule the jobs by assigning
J1 greater priority than J2.

• The CA responsible for safety-critical certification
would determine that J1 completes by time-instant
6 and meets its deadline; hence the system passes cer-
tification.

• The CA responsible for mission-critical certification
determines that J1 completes by time-instant 3, and
J2 by time-instant 8. Thus they both complete by
their deadlines, and the system passes certification.

We thus see that the system is certified as being correct

by both the flight-critical and the mission-critical CA’s,

despite our initial observation that the sum of the relevant

WCET’s (6 and 5) exceeds the length of the scheduling

window over which they are to execute.

This research. Example 1 above illustrates the cen-
tral thesis of our ongoing research: the efficient utiliza-
tion of computing resources in mixed-criticality sys-
tems that are subject to multiple certification require-
ments requires the development of fundamental new
scheduling theory. Some progress has recently been
made [2, 6, 7, 3, 4] towards such a theory, by (1) con-
structing formal models for accurately representing
mixed-criticality systems; (ii) identifying the computa-
tional complexity of some basic and fundamental prob-
lems in mixed-criticality scheduling; (iii) proposing
efficient (polynomial-time) approximation algorithms
for solving some of the problems that are shown to be
intractable; and (iv) making some initial steps towards
quantifying the effectiveness of these polynomial-time
approximation algorithms. In this paper, we continue
to work towards this objective of obtaining approxima-
tion algorithms with quantifiable deviation from opti-
mality for some of the scheduling problems that were
shown to be intractable. We quantify the effective-
ness of an inexact scheduling algorithm by its proces-
sor speedup metric: the minimum multiplicative factor
by which processors must be made faster in order to
compensate for the inexactness of the test. We ex-
tend prior results that quantified the performance of a
particular polynomial-time mixed-criticality schedul-
ing algorithm – Own Criticality-Based Priority , or
OCBP – when it is charged with scheduling dual-
criticality systems, by computing OCBP’s processor
speedup factor when it is scheduling systems with ar-
bitrarily many criticality levels.

2 Model and definitions

In this section we formally define the mixed-
criticality job model. These definitions are illustrated
by means of examples in Section 2.1; while reading the
following definitions, it may occasionally be useful to
refer forward to Section 2.1.



Although our eventual interest is in the schedul-
ing of collections of recurrent (periodic or sporadic)
mixed-criticality tasks each of which can generate an
infinite number of jobs1, many fundamental questions
remain unanswered regarding even the simpler case of
finite collections of jobs. Hence we focus in this paper
on the simpler case where a system is comprised of a
finite number of (non-recurring) jobs. Our results may
be considered as a first step towards a more compre-
hensive analysis of systems of mixed-criticality recur-
rent tasks. In addition, these results have immediate
applicability for the scheduling of frame-based recur-
rent real-time systems, in which the recurrent nature
of the behavior is expressed as the infinite repetition of
a finite collection of jobs of the kind considered here.

A mixed-criticality (MC) job is characterized by
a 4-tuple of parameters: Ji = (Ai, Di, χi, Ci), where

• Ai ∈ R+ is the release time.

• Di ∈ R+ is the deadline. We assume that Di ≥ Ai.

• χi ∈ N+ denotes the criticality of the job, with a
larger value denoting higher criticality.

• Ci : N+ → R+ specifies the worst case execution time
(WCET) estimate of Ji for each criticality level. (It
is reasonable to assume that Ci(`) is monotonically
non-decreasing with increasing `.)

We will sometimes refer to the time interval
[Ai, Di) as the scheduling window of job Ji.

MC instance. An MC instance is specified as a fi-
nite collection of such MC jobs: I = {J1, J2, . . . , Jn}.
Given such an instance, we are concerned here with
determining how to schedule it to obtain correct be-
havior; in this document, we restrict our attention to
scheduling on preemptive uniprocessor platforms.

Behaviors. The MC job model has the following se-
mantics. Each job Ji is released at time-instant Ai,
needs to execute for some amount of time γi, and has
a deadline at time-instant Di. The value of γi is not
known from the specifications of Ji, but only becomes
revealed by actually executing the job until it signals
that it has completed execution. γi may take on very
different values during different execution runs: we will
refer to each collection of values (γ1, γ2, . . . , γn) as a
possible behavior of instance I.

The criticality level of
the behavior (γ1, γ2, . . . , γn) of I is the smallest in-
teger ` such that γi ≤ Ci(`) for all i, 1 ≤ i ≤ n. (If
there is no such `, then we define that behavior to be
erroneous.)

1Some partial results concerning the scheduling of such task
systems may be found in [8, 5].

Scheduling strategies. A scheduling strategy for
an instance I specifies, in a completely deterministic
manner for all possible behaviors of I, which job (if
any) to execute at each instant in time. An on line
scheduling strategy does not have a priori knowledge
of the behavior of I: for each Ji ∈ I, the value of γi

only becomes known by executing Ji until it signals
that it has completed execution. Since these actual
execution times – the γi’s – only become revealed dur-
ing run-time, an on-line scheduling strategy does not a
priori know what the criticality level of any particular
behavior is going to be; at each instant, scheduling de-
cisions are made based only on the partial information
revealed thus far.

Correctness. A scheduling strategy is correct if it
satisfies the following criterion for each ` ≥ 1: when
scheduling any behavior of criticality level `, it ensures
that every job Ji with χi ≥ ` receives sufficient execu-
tion during the interval [Ai, Di) to signal that it has
completed execution.

MC schedulability. Let us define an instance I to
be MC schedulable if there exists a correct on-line
scheduling strategy for it. The MC schedulability prob-
lem then is to determine whether a given MC instance
is MC schedulable or not

2.1 An example

Consider an MC instance I comprised of 4 jobs
at 2 criticality levels. We specify the WCET function
of each task for the two criticality levels by explicit
enumeration: [Ci(1), Ci(2)].

• J1 = (0, 3, 2, [1, 2])

• J2 = (0, 3, 1, [2, 2])

• J3 = (0, 5, 2, [1, 1])

• J4 = (3, 5, 2, [1, 2])

For this instance, any behavior in which γ1, γ2, γ3, and
γ4 are no larger than 1, 2, 1, and 1 respectively has
criticality 1; while any behavior not of criticality 1 in
which γ1, γ2, γ3, and γ4 are no larger than 2, 2, 1, and 2
respectively has criticality 2. All remaining behaviors
are erroneous.

S0 below denotes a possible on-line scheduling
strategy for this instance I:

S0: Execute J1 over [0,1). If J1 has remaining execution
(i.e., γ1 is greater than 1), then execute scheduling
strategy S1 below; else,execute scheduling strategy S2
below.

S1: Execute J1 over [1,2), J3 over [2,3), and J4 over [3,5).



S2: Execute J2 over [1,3), J3 over [3,4), and J4 over [4,5).

Scheduling strategy S0 is not correct for I, as can be
seen by considering the schedule that is generated on
the behavior (1, 2, 1, 2). This behavior has criticality
2 (since γ4, at 2, is greater than C4(1) = 1, it is not
criticality 1); hence, a correct schedule would need to
complete jobs J1, J3 and J4 by their deadlines. How-
ever, the schedule generated by this scheduling strat-
egy would have executed J4 for only one unit by its
deadline. In fact, it turns out that instance I is not
MC schedulable.

3 OCBP scheduling

It has been shown that determining whether a
given MC instance is MC schedulable or not is higly
intractable:

Theorem 1 (From [3])
The MC schedulability problem — given an MC in-
stance, determine whether it is MC-schedulable — is
NP-hard in the strong sense. This is true even in the
highly restricted case where all jobs have the same ar-
rival times, and each job’s criticality level is either 1
or 2.

This intractability implies that under the assumption
that P 6= NP, there can be no polynomial or pseudo-
polynomial time algorithm for solving the MC schedu-
lability problem (even in the restricted case of equal
arrival times and only two criticality levels). There-
fore, a sufficient schedulability test that can be imple-
mented in polynomial time were proposed in [4]; we
review this test here.

We assume that for each job Ji, Ci(`) = Ci(χi)
for all ` ≥ χi. That is, no job is allowed to execute
for more than its WCET at its own specified critical-
ity. The high-level description of our algorithm is as
follows. Given an MC instance I, we aim to derive
offline (i.e., prior to run-time) a total priority ordering
of the jobs of I such that scheduling the jobs according
to this priority ordering guarantees a correct schedule,
where scheduling according to priority means that at
each moment in time the highest-priority available job
is executed.

The priority list is constructed recursively using
the so-called “Audsley approach” [1]. We first deter-
mine the lowest priority job: Job Ji has lowest priority
if there is at least Ci(χi) time between its release time
and its deadline available if every other job Jj has
higher priority and is executed for Cj(χi) time units
(the WCET of job Jj according to the criticality level
of job i). Then the procedure is repeated to the set
of jobs excluding the lowest priority job, until all jobs

are ordered, or at some iteration a lowest priority job
does not exist.

Because of the priority of a job being based only
on its own criticality level, we say the instance I
is Own Criticality Based Priority (or OCBP)-
schedulable if we find a complete ordering of the
jobs. If at some recursion in the algorithm no lowest
priority job exists, we say the instance is not OCBP-
schedulable.

We now show that
testing for OCBP-schedulability comprises a sufficient
MC-schedulability test.

Lemma 1 If MC instance I is OCBP-schedulable on
a given processor, then I is MC schedulable on the
same processor.

Proof: Suppose that I is OCBP-schedulable, and let,
after renaming of the jobs, J1, J2, . . . , Jn denote a
priority ordering that bears witness to this.

Let Jk denote any job in this priority ordering.
In order to show MC schedulability, it is incumbent to
demonstrate that Jk can receive Ck(χk) units of execu-
tion in any behavior of I of criticality-level χk or lower.
But in any behavior of criticality level χk or lower, each
job Ji executes for no more than Ci(χk) units. And
the OCBP-schedulability of I with priority-ordering
J1 ¤ J2 ¤ · · ·¤ Jn implies that Jk will receive Ck(χk)
units of execution if each Ji ∈ {J1, . . . , Jk−1} executes
for no more than Ci(χk) units; hence, Jk will indeed
meet its deadline in all behaviors of criticality-level χk

or lower.
We will now determine a processor speedup factor

for OCBP when it is charged with scheduling systems
with k-distinct criticality levels, for arbitrary k ≥ 1.

First, a definition. Let us define the maximum
criticality of MC instance I as the largest criticality of
any job in I: maximum criticality of I = maxJi∈I{χi}.

Let k denote any positive integer. Below, we will
prove that any MC instance I that is MC schedulable
on a unit-speed processor and has maximum critical-
ity ≤ k is OCBP-schedulable on a speed-sk processor ,
where sk is defined according to the following recur-
rence:

s1 = 1

sk = (1 +
√

4 s2
k−1 + 1)/2, k > 1 (1)

Note that as per this definition, sk is monotonically
increasing with increasing k: sk+1 > sk for all k ≥ 1.
It can be shown that as k →∞, sk approaches k/2.

We also note that for k = 2, sk equals the golden
ratio Φ; hence, the result derived here is indeed a true
generalization of the previous result from [4].

Lemma 2 Any MC-schedulable instance I of maxi-
mum criticality k is OCBP-schedulable on a speed-sk



processor, where sk is as defined by the recurrence (1)
above.

Proof: The proof is by induction on k. The base
case, k = 1, is easily seen to hold: an MC instance
with maximum criticality 1 is the same as a “regular”
(non-MC) job instance, and the OCBP-schedulability
test is merely Audsley’s test [1].
As an inductive hypothesis, assume that all MC in-
stances with maximum criticality ≤ (k − 1) that are
MC-schedulable on speed-one processors are OCBP-
schedulable on speed-sk−1 processors. We will now
demonstrate that any MC-instance with maximum
criticality k that is MC-schedulable on a speed-one
processor is OCBP-schedulable on a speed-sk proces-
sors.

Let I denote a minimal instance of maximum crit-
icality k that is MC-schedulable on a speed-1 proces-
sor, but not OCBP-schedulable on a speed-s processor
for some s ≥ sk−1. Without loss of generality, let us as-
sume that minJi∈I Ai = 0 (i.e., the earliest release time
is zero). Observe that it must be the case that there is
no time-instant t ∈ [0, maxJi∈I Di) such that no job’s
scheduling window contains t. If there were such a t,
it would follow that either the smaller instance com-
prised of only those jobs with scheduling windows be-
fore t, or the instance comprised of only those jobs with
scheduling windows after t, is not OCBP-schedulable
on a speed-s processor; this contradicts the assumed
minimality of I.

From instance I, let us define another mixed-
criticality instance I ′ in the following manner:

I ′ =
⋃

Ji=(Ai,Di,χi,Ci)∈I

{
J ′i = (Ai, Di, max(χi, k − 1), C′i)

}

where the WCET function C ′i is defined as follows:

C′i(`) =

{
Ci(`), if ` ≤ k − 1
Ci(k − 1), otherwise

That is, I ′ is obtained from I by capping the criticality
of each job in I at the smaller of its original criticality,
and k − 1. Observe that I ′ has maximum criticality
≤ (k − 1), and hence, according to the inductive hy-
pothesis, I ′ is guaranteed to be OCBP-schedulable on
a speed-sk−1 processor .

Observation 2.1 All jobs in I with the latest dead-
line must be of criticality k.

Proof: If a job of criticality (k−1) or lower has the lat-
est deadline but nevertheless cannot be assigned low-
est priority, it follows from the optimality of EDF for
scheduling “regular” (non-MC) real-time workloads
that the criticality-level (k− 1) behavior of I in which
each job Ji executes for Ci(k − 1) time units is not

OCBP-schedulable on a speed-s processor. Since we’re
assuming that s ≥ sk−1, this contradicts the inductive
hypothesis, which mandates the OCBP-schedulability
of I ′ on a speed-sk−1 processor.

Let jk denote such a latest-deadline job of criti-
cality k with deadline dk, and let jk−1 denote the job
of criticality < k with the latest deadline, this deadline
being at dk−1.

Let ck−1, ck(k − 1), and ck(k) denote certain cu-
mulative execution requirements, defined as follows:

ck−1 =
∑

j |χj<k

Cj(k − 1)

ck(k − 1) =
∑

j |χj=k

Cj(k − 1)

ck(k) =
∑

j |χj=k

Cj(k)

In words,

• ck−1 denotes the cumulative WCET at criticality level
(k − 1) of all jobs of criticality < k;

• ck(k− 1) denotes the cumulative WCET at criticality
level (k − 1) of all jobs of criticality k; and

• ck(k) denotes the cumulative WCET at criticality

level k of all jobs of criticality k.

Consider now any work-conserving schedule of I upon
a speed-s processor, when each job Ji requests exactly
Ci(k− 1) units of execution Let Λ1, Λ2, . . . denote the
intervals, of cumulative length λ, during which the pro-
cessor is idle in this schedule.

Observation 2.2 No Ji with criticality χi < k has a
scheduling window that overlaps with Λ`.

Proof: Suppose that some job Ji with χi < k were
to overlap with Λ`. This means that in a behavior of
criticality level k − 1, all the jobs which arrive prior
to Λ` complete by the beginning of Λ`. Hence, such
a Ji completes by its deadline in any behavior at its
criticality level (which is ≤ k − 1), if it were assigned
lowest priority. But this contradicts the assumed non-
OCBP-schedulability of I on speed-s processors.

Since I ′ is OCBP-schedulable on a speed-sk−1

processor, the behavior in which each job of criti-
cality < k executes for its WCET is guaranteed to
complete by dk−1, the latest deadline of any such job,
when executing on a speed-sk−1 processor. In conjunc-
tion with Observation 2.2, it therefore follows that the
cumulative WCET’s of all these jobs cannot exceed
(dk−1 − λ)× sk−1:

ck−1 ≤ (dk−1 − λ) sk−1 (2)

Since I is assumed to not be OCBP-schedulable on a
speed-s processor, it must be the case that j1 cannot



be the lowest-priority job on such a processor. Hence,
it is necessary that

ck−1 + ck(k − 1) > (dk−1 − λ) s (3)

We now argue from the OCBP-schedulability of
I ′ on a speed-sk−1 processor that the behavior of crit-
icality level (k − 1), in which all jobs execute for their
WCET at criticality (k − 1), is guaranteed to com-
plete by the latest deadline dk of any job. Inequality 4
below, immediately follows.

ck−1 + ck(k − 1) ≤ dk sk−1 (4)

From the MC schedulability of I on a speed-1 pro-
cessor, it follows that the behavior of criticality level k,
in which each criticality-k job executes for its WCET
at criticality k, is guaranteed to complete by the latest
deadline dk of any job. Inequality 5 follows:

ck(k) ≤ dk (5)

Observation 2.3 Consider any work-conserving
schedule of I upon a speed-s processor, when each job
Ji requests exactly Ci(χi) units of execution. There
are no idle intervals in this schedule.

Proof: If there were an idle interval, any job whose
scheduling window spans the idle interval would meet
its deadline upon the speed-s processor if it were as-
signed lowest priority. But this contradicts the as-
sumed non-OCBP-schedulability of I on speed-s pro-
cessors.

Since we are assuming that I is not OCBP-
schedulable on a speed-s processor, it must be the case
that j2 cannot be the lowest-priority job on such a pro-
cessor. Given Observation 2.3 above, it must then be
the case that

ck−1 + ck(k) > dk s (6)

Let x be defined as follows: x = dk−1−λ
dk

. From
Inequalities 3 and 4, we have

dk sk−1 > (dk−1 − λ)s

≡ dk sk−1 > x dk s

≡ sk−1

x
> s

From Inequality 6 and the Inequalities 2 and 5, we
have

ck−1 + ck(k) > dk s

⇒ (d1 − λ) sk−1 + dk > s dk

≡ x dk sk−1 + dk > s dk

≡ x sk−1 + 1 > s

We thus conclude, it must be the case that

s < min
{

sk−1

x
, (x sk−1 + 1)

}

It is evident that (sk−1/x) decreases, and (x sk−1 +1)
increases, with increasing x. Therefore the minimum
value of s occurs at the value of x that solves the equa-
tion (sk−1/x) = (x sk−1 + 1). Solving for x, we get

x = (
√

4s2
k−1 + 1 − 1)/(2 sk−1), and s ← (sk−1/x) =

(1 +
√

4 s2
k−1 + 1)/2. Since this is the definition of sk

in the recurrence (1), Lemma 2 follows.

4 Related work

Other than the work in [3, 4] (which are exten-
sively discussed in this document), most prior work
on mixed-criticality scheduling has considered differ-
ent workload models than the one studied in this pa-
per. As can be seen from the discussion below about
each of these pieces of work, their goals are also very
different from our objective of discovering and quanti-
fying the fundamental limitations (such as intractabil-
ity and impossibility results, and speedup bounds) of
MC scheduling for certification considerations.

Pellizzoni et al. [7], use a reservations-based ap-
proach to ensure strong isolation among sub-systems
of different criticalities. The focus here is not on max-
imizing resource utilization, but on ensuring isolation.

De Niz et al. [6] deal with a different problem from
the one we here focus on here, in the sense that they
do not directly address the certification issue in MC
systems. This work observes that the complete inter-
criticality isolation offered by reservations may have
the undesirable effect of denying a higher-criticality
job from meeting its deadline while allowing lower-
criticality jobs to complete (this is called criticality in-
version in [6]). On the other hand, assigning priorities
according to criticality may result in very poor proces-
sor utilization. An innovative slack-aware approach
is proposed that builds atop priority-based schedul-
ing (with priorities not necessarily assigned according
to criticality), to allow for asymmetric protection of
reservations thereby helping to lessen criticality inver-
sion while retaining reasonable resource utilization.

To our knowledge, the scheduling problem that
arises from multiple certification requirements, at dif-
ferent criticality levels, was first identified and formal-
ized by Vestal in [8], in the context of the fixed-priority
preemptive uniprocessor scheduling of recurrent task
systems. Some results concerning EDF scheduling of
such systems appear in [5].



5 Context and Conclusions

Thanks to the rapid increase in the complexity
and diversity of functionalities performed by safety-
critical embedded systems, the cost and complexity
of obtaining certification for such systems is fast be-
coming a serious concern [2]. We have argued in
this document that in mixed-criticality systems, these
certification considerations give rise to fundamental
new resource allocation and scheduling challenges, and
that these challenges are not adequately addressed
by conventional real-time scheduling theory. In prior
work, we have therefore proposed a novel job model
that is particularly appropriate for representing mixed-
criticality workloads, and have studied basic properties
of this model. We have demonstrated that schedula-
bility analysis for mixed-criticality systems is highly
intractable, even for very simple workloads comprised
of independent jobs, all of which have one of only two
possible criticality levels, and which is being scheduled
on a fully preemptive uniprocessor platform. We have
previously shown how this intractability can be dealt
with by providing faster processors for dual-criticality
systems; in this paper, we have generalized these re-
sults to systems with more than two criticalities.

In addition to the specific results presented here,
we consider the new techniques that we have intro-
duced to be significant contributions of this paper. We
are optimistic that the new techniques will facilitate
further research into the very important problem of
mixed-criticality scheduling and resource allocation.

References

[1] Audsley, N. C. Flexible Scheduling in Hard-Real-
Time Systems. PhD thesis, Department of Com-
puter Science, University of York, 1993.

[2] Barhorst, J., Belote, T., Binns, P., Hoff-
man, J., Paunicka, J., Sarathy, P., Stanfill,
J. S. P., Stuart, D., and Urzi, R. White paper:
A research agenda for mixed-criticality systems,
April 2009. Available at http://www.cse.wustl.edu/˜

cdgill/CPSWEEK09 MCAR.

[3] Baruah, S. Mixed criticality schedulability
analysis is highly intractable. Available at
http://www.cs.unc.edu/~baruah/Pubs.shtml,
2009.

[4] Baruah, S., Li, H., and Stougie, L. Towards
the design of certifiable mixed-criticality systems.
In Proceedings of the IEEE Real-Time Technology
and Applications Symposium (RTAS) (April 2010),
IEEE.

[5] Baruah, S., and Vestal, S. Schedulability anal-
ysis of sporadic tasks with multiple criticality spec-
ifications. In Proceedings of the EuroMicro Con-
ference on Real-Time Systems (Prague, Czech Re-
public, July 2008), IEEE Computer Society Press.

[6] de Niz, D., Lakshmanan, K., and Rajku-
mar, R. R. On the scheduling of mixed-
criticality real-time task sets. In Proceedings of the
Real-Time Systems Symposium (Washington, DC,
2009), IEEE Computer Society Press, pp. 291–300.

[7] Pellizzoni, R., Meredith, P., Nam, M. Y.,
Sun, M., Caccamo, M., and Sha, L. Handling
mixed criticality in SoC-based real-time embedded
systems. In Proceedings of the International Con-
ference on Embedded Software (EMSOFT) (Greno-
ble, France, 2009), IEEE Computer Society Press.

[8] Vestal, S. Preemptive scheduling of multi-
criticality systems with varying degrees of execu-
tion time assurance. In Proceedings of the Real-
Time Systems Symposium (Tucson, AZ, December
2007), IEEE Computer Society Press, pp. 239–243.


