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Abstract—Systems in many safety-critical application do-
mains are subject to certification requirements. For any given
system, however, it may be the case that only a subset of its
functionality is safety-critical and hence subject to certification;
the rest of the functionality is non safety critical and does
not need to be certified, or is certified to a lower level of
assurance. An algorithm called EDF-VD (for Earliest Deadline
First with Virtual Deadlines) is described for the scheduling
of such mixed-criticality task systems. Analyses of EDF-VD
significantly superior to previously-known ones are presented,
based on metrics such as processor speedup factor (EDF-VD is
proved to be optimal with respect to this metric) and utilization
bounds.

I. INTRODUCTION

In implementing safety-critical embedded systems, there
is an increasing trend towards integrated computing envi-
ronments, in which multiple functionalities are implemented
on a shared computing platform; this trend is evident in
industry-driven initiatives such as Integrated Modular Avion-
ics (IMA) [19] in aerospace and AUTOSAR (AUTomotive
Open System ARchitecture — see www.autosar.org)
in the automotive industry. This trend towards integration
means that even in highly safety-critical systems, typically
only a relatively small fraction of the overall system is
actually of critical functionality and subject to mandatory
certification by statutory certification authorities (CAs). Such
systems are called mixed-criticality (MC) systems.

In order to certify a system as being correct, the CA must
make certain assumptions about the worst-case behavior of
the system during run-time. CAs tend to be very conservative
and require that the safety-critical functionalities be shown
to be correct at a very high level of assurance; the remain-
ing (non safety-critical) functionalities are usually validated
correct by the system designer/ integrator, at lower levels of
assurance.

To show that real-time systems meet timing properties,
worst-case execution times (WCETs) must be estimated for
certain pieces of code, denoting an upper bound on the
amount of time the piece of code would take to execute.
One consequence of the different levels of assurance of
correctness sought by the CA and the system designer is
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that the same piece of code may be characterized by different
WCET parameters for the purposes of certification, and for
design validation.
Multiple WCET parameters. Why would we wish to
specify multiple WCET parameters for a single piece of
code? It is well known that determining exact worst-case
execution times of pieces of code is a very difficult problem;
instead, system engineers work with upper bounds on the
exact value. However, for many non-trivial kinds of code
strict upper bounds are extremely pessimistic, and represent
scenarios that are highly unlikely, or indeed impossible,
to occur in practice [10]. For such code, less pessimistic
upper bounds on their WCET’s may be obtained at lower
degrees of confidence than absolute certainty. Based on the
observation that “the more confidence one needs in a task
execution time bound, the larger and more conservative
that bound tends to be in practice,” Vestal [20] proposed
that multiple different WCET values be specified, with
the different values being determined at different levels of
assurance. These different values may be obtained by using
different execution-time analysis tools; we expect that the
tool used by the CA is more conservative than the one used
by the system engineer, and hence the CA’s WCET estimates
are larger than the estimates used during the design process.
Dual-criticality systems. We have considered two criticality
levels – needing certification, and not needing certification
– in the discussion above. However, in many safety-critical
application domains more than two criticality levels are
specified; for instance, the DO-178B standard that is widely
used in the avionics domain specifies five different criticality
levels (A:-catastrophic/ B:-hazardous/ C:-major/ D:-minor/
E:-no effect — the adjectives denote the potential conse-
quences of failure at the corresponding level) and mandates
that each functionality be assigned one of these levels.
Functionalities at higher criticality levels (A is the highest
level, and E the lowest) are then subject to more rigorous
validation requirements. We are eventually interested in
systems with arbitrarily many criticality levels; however
in this document we will, for ease of presentation, focus
primarily on systems with just two criticality levels that we
will call LO and HI; we call such systems dual-criticality
systems. We postpone a discussion regarding how our results
generalize to more than two criticality levels to an extended
paper combining these results with those in [8], currently
under preparation.



Context and Related work. In traditional (i.e., not mixed-
criticality) real-time systems, a sporadic task [17], [14]
τi is characterized by a WCET Ci, a relative deadline
Di, and a period Ti; such a task generates an unbounded
sequence of jobs with successive jobs arriving at least Ti
time units apart, and each job needing up to Ci units of
execution by a deadline that occurs Di time units after the
job’s arrival. Vestal [20] proposed generalizing the model
to mixed-criticality systems by allowing for several WCETs
to be specified for each task, and studied the fixed-priority
scheduling of such mixed-criticality sporadic task systems
on a preemptive uniprocessor. Further results on this problem
appear in [3], [9].

The preemptive uniprocessor scheduling of collections of
mixed-criticality independent jobs was studied in [5], [4],
[7], [6]. An efficient scheduling algorithm and associated
polynomial-time schedulability test was proposed that makes
the following guarantee: any dual-criticality system that can
be scheduled by an optimal clairvoyant algorithm on a given
processor can be scheduled by this algorithm on a processor
that is (1+

√
5)/2 ≈ 1.62 times as fast. In [15], [12], this re-

sult was extended to mixed-criticality sporadic task systems:
a scheduling algorithm and associated pseudopolynomial-
time schedulability test was proposed that makes the same
guarantee. These scheduling algorithms, however, have too
large a run-time complexity to be implementable in practice:
the run-time complexity per scheduling decision of the
algorithm in [15] is pseudo-polynomial in the representation
of the task system, while the one in [12] is quadratic in the
number of tasks.

An important special case of sporadic task systems are
task systems in which each task τi satisfies the property that
Di = Ti — such systems are called implicit-deadline or
Liu & Layland task systems. The preemptive uniprocessor
scheduling of mixed-criticality implicit-deadline sporadic
task systems was studied in [8]. An algorithm called EDF-
VD was proposed that has the same speedup guarantee
as above — any task system that can scheduled by an
optimal clairvoyant algorithm on a given processor can be
scheduled by EDF-VD on a processor that is (1 +

√
5)/2

times as fast. Moreover, the schedulability test of EDF-
VD has polynomial run-time complexity, and the run-time
complexity per scheduling decision was logarithmic in the
number of tasks. Based on these run-time properties it is
evident that EDF-VD, in contrast to the algorithms in [15],
[12], can be considered suitable for implementation in actual
systems.
This research. Our main contribution in this paper is a
more refined analysis of EDF-VD showing that EDF-VD
can actually make a better performance guarantee: any task
system that can be scheduled by an optimal clairvoyant
algorithm on a given processor can be scheduled by EDF-
VD on a processor that is 4/3 times as fast. This new
analysis is based upon some sophisticated new techniques

and deep insights that we have recently developed, and
represents a substantial improvement over the bound proved
in [8]. It was previously shown [6, Prop. 2] that (1+

√
5)/2

is a lower bound on the speedup of any non-clairvoyant
algorithm for scheduling collections of independent jobs; it
is somewhat surprising that this bound does not hold for the
more expressive implicit-deadline task model. We also show
that no non-clairvoyant algorithm can guarantee to always
meet all deadlines on a processor that is less than 4/3 times
as fast as the processor available to the optimal clairvoyant
algorithm, thereby proving that EDF-VD is an optimal non-
clairvoyant algorithm from the perspective of this metric.
In addition, we spell out the details as to how EDF-VD
can actually be implemented to have the logarithmic run-
time complexity claimed in [8]. We also perform further
analysis on the behavior of EDF-VD, deriving a utilization-
based schedulability test and exploring its behavior under
certain extremal conditions.
Organization. The remainder of this paper is organized
as follows. In Section II we formally describe the mixed-
criticality model that we will be using in the remainder of
this paper. In Section III we provide a high-level overview of
EDF-VD. We provide a detailed description of the schedu-
lability test in Section IV, and of the run-time algorithm in
Section V. We provide a formal analysis of the properties
and behavior of EDF-VD in Sections VI-VIII, and describe
the outcome of some simulation experiments in Section IX.

II. MODEL AND DEFINITIONS

A mixed-criticality (MC) implicit-deadline sporadic task
system τ consists of a finite specified collection of MC
implicit-deadline sporadic tasks, each of which may generate
an unbounded number of MC jobs.
MC jobs. As stated in Section I above, we will, for the most
part, restrict our attention here to dual-criticality systems:
systems with two distinct criticality levels, which we denote
as LO and HI.

Each such dual-criticality job is characterized by a 5-tuple
of parameters: Ji = (ai, di, χi, ci(LO), ci(HI)), where
• ai ∈ R+ is the release time, and di ∈ R+ the deadline. We

require that di ≥ ai.
• χi ∈ {LO, HI} denotes the criticality of the job. A HI-

criticality job (a Ji with χi = HI) is one that is subject to
certification, whereas a LO-criticality job (a Ji with χi = LO)
is one that does not need to be certified.

• ci(LO) specifies the worst case execution time (WCET)
estimate of Ji that is used by the system designer (i.e., the
WCET estimate at the LO criticality level).

• ci(HI) specifies the WCET estimate of Ji that is used by the
certification authorities (i.e., the WCET estimate at the HI
criticality level).

System behavior. The MC job model has the following
semantics. Job Ji is released at time ai, has a deadline
at di, and needs to execute for some amount of time γi.
The value of γi is not known beforehand, but only becomes
revealed by actually executing the job until it signals that



it has completed execution. These values of γi for a given
run of the system defines the kind of behavior exhibited by
the system during that run. If each Ji signals completion
without exceeding ci(LO) units of execution, we say that
the system has exhibited LO-criticality behavior; if even
one job Ji signals completion after executing for more than
ci(LO) but no more than ci(HI) units of execution, we say
that the system has exhibited HI-criticality behavior. If any
job Ji does not signal completion despite having executed
for ci(HI) units, we say that the system has exhibited
erroneous behavior. Informally, the system-designer expects
LO-criticality behavior, while the CA is allowing for the
possibility of HI-criticality behavior.
MC implicit-deadline sporadic tasks. Analogously to
traditional (non-MC) implicit-deadline sporadic tasks, an
MC implicit-deadline sporadic task τk is characterized by
a four-tuple (χk, Ck(LO), Ck(HI), Tk), with the following
interpretation. Task τk generates an unbounded sequence of
jobs, with successive jobs being released at least Tk time
units apart. Each such job has a deadline that is Tk time units
after its release. The criticality of each such job is χk, and it
has LO-criticality and HI-criticality WCET’s of Ck(LO) and
Ck(HI) respectively; we assume that Ck(LO) ≤ Ck(HI) for
all tasks τk.

An MC implicit-deadline sporadic task system is specified
by specifying a finite number of such sporadic tasks. As
with traditional (non-MC) systems, such a MC sporadic task
system can potentially generate infinitely many different MC
instances (collections of jobs), each instance being obtained
by taking the union of one sequence of jobs generated by
each task.
Correctness criteria. We define an algorithm for scheduling
MC task systems to be correct if it is able to schedule any
system such that
• During all LO-criticality behaviors of the system, all jobs

receive enough execution between their release time and
deadline to be able to signal completion; and

• During all HI-criticality behaviors of the system, all HI-
criticality jobs receive enough execution between their release
time and deadline to be able to signal completion.

Note that if any job executes for more than its LO-
criticality WCET, we do not require any LO-criticality jobs
(including those that may have arrived before this happened)
to complete by their deadlines. This is an implication of
the requirements of certification: informally speaking, the
system designer fully expects that all jobs will exhibit LO-
criticality behavior, and hence is only concerned that they
behave as desired under these circumstances. The CA, on
the other hand, allows for the possibility that some jobs
may exhibit HI-criticality behavior and requires that all HI-
criticality jobs nevertheless meet their deadlines; however,
the CA is not concerned with the fate of the LO-criticality
jobs.
Utilization parameters. The utilization of a (regular, i.e.,
non-MC) implicit-deadline sporadic task denotes the ratio

of its WCET to its period; the utilization of a task system
denotes the sum of the utilizations of all the tasks in
the system. We now define analogous concepts for mixed-
criticality sporadic task systems.

Let τ denote a MC implicit-deadline sporadic task system.
For each of x and y in {LO, HI}, we define a utilization
parameter as follows:

Uyx (τ) =
∑

τi∈τ∧χi=x

Ci(y)

Ti
(1)

Thus for example, U LO
HI (τ) denotes the sum of the utiliza-

tions of the HI-criticality tasks in τ , under the assumption
that each job of each task executes for no more than its
LO-criticality WCET.

III. AN OVERVIEW OF ALGORITHM EDF-VD

Let τ denote the MC implicit-deadline sporadic task
system that is to be scheduled on a unit-speed preemptive
processor. Prior to run-time, EDF-VD performs a schedu-
lability test to determine whether τ can be successfully
scheduled by it or not. If τ is deemed schedulable, then
an additional parameter, which we call a modified period
denoted T̂i, is computed for each HI-criticality task τi ∈ τ .
The algorithm for computing these parameters is described
in pseudo-code form in Figure 1; this pseudo-code is proved
correct in Section IV. Observe that it is always the case that
T̂i ≤ Ti.

Run-time scheduling is done according to the Algo-
rithm EDF, with virtual deadlines: deadlines that EDF-VD
computes (in a manner to be described below) and assigns
to jobs before handing them off to the EDF scheduler. The
EDF scheduler will then use these virtual deadlines for the
purpose of determining scheduling priority.

These virtual deadlines are assigned as follows. Suppose
that a job of task τi arrives at time-instant ta:
• If χi = LO, then this job is assigned a virtual deadline equal

to ta + Ti.
• If χi = HI, then this job is assigned a virtual deadline equal

to ta + T̂i.
If some job does execute beyond its LO-criticality WCET

without signaling that it has completed execution, the fol-
lowing changes occur:

1) All currently-active LO-criticality jobs are immediately dis-
carded; henceforth, no LO-criticality job will receive any
execution.

2) Subsequent run-time scheduling of the HI-criticality tasks
(including their jobs that are currently active) continue to be
done according to EDF. But the actual job deadlines (arrival
time plus period) are used.

IV. PRE-RUNTIME PROCESSING

We now provide a detailed description of the pre-runtime
processing conducted by EDF-VD. We describe, and prove
correct, the strategy used to determine whether a system is
schedulable, and for computing the modified period parame-
ters (the T̂k’s) for systems deemed schedulable. This is also
represented in pseudo-code form in Figure 1.



Task system τ = {τ1, τ2, . . . τn} to be scheduled on a unit-speed
preemptive processor.

1) Compute x as follows:

x← U LO
HI (τ)

1− U LO
LO (τ)

2) If
(
xU LO

LO (τ) + UHI
HI (τ) ≤ 1

)
then

T̂i ← xTi for each HI-criticality task τi
declare success and return

else declare failure and return

Figure 1. EDF-VD: The preprocessing phase.

As shown in Figure 1, EDF-VD first computes a param-
eter x (the reason why x is assigned this value is derived
below – see Expression 4) and then assigns values to the T̂i
parameters for all HI-criticality tasks as follows:

T̂i ← x× Ti (2)

Theorem 1: The following condition is sufficient for en-
suring that EDF-VD successfully schedules all LO-criticality
behaviors of τ :

x ≥ U LO
HI (τ)

1− U LO
LO (τ)

(3)

Proof: If EDF is able to schedule all LO-criticality behaviors
of the task system obtained from τ by replacing each HI-
criticality task τi by one with a reduced period, then it
follows from the sustainability property [2] of preemptive
uniprocessor EDF that EDF is able to schedule all LO-
criticality behaviors of τ as well. Note that scaling down the
period of each HI-criticality task by a factor x is equivalent to
inflating its utilization by a factor 1/x. From the utilization-
bound result of EDF [16], we therefore conclude that

U LO
LO (τ) +

U LO
HI (τ)

x
≤ 1

⇔ U LO
HI (τ)

x
≤ 1− U LO

LO (τ)

⇔ x ≥ U LO
HI (τ)

1− U LO
LO (τ)

is sufficient for ensuring that EDF-VD successfully sched-
ules all LO-criticality behaviors of τ .

Algorithm EDF-VD thus chooses for x the smallest value
such that Theorem 1 is satisfied:

x← U LO
HI (τ)

1− U LO
LO (τ)

(4)

With this value of x, we now determine a sufficient
condition for ensuring that EDF-VD successfully meets all
HI-criticality deadlines during all HI-criticality behaviors of
τ :

Theorem 2: The following condition1 is sufficient for en-
suring that EDF-VD successfully schedules all HI-criticality

1We note here that this theorem is one of the reasons that the results
presented in this paper dominate the ones in [8]; the corresponding
condition derived in [8] is

x+ UHI
HI (τ) ≤ 1 (5)

behaviors of τ :

xU LO
LO (τ) + UHI

HI (τ) ≤ 1 (6)

Proof: Suppose that τ satisfies Condition 3 but EDF-VD
cannot meet all deadlines in all HI-criticality behaviors of τ .
Let I denote a minimal instance of jobs released by τ , on
which a deadline is missed. (By minimal, we mean that EDF-
VD will meet all deadlines if scheduling any proper subset
of I .) Without loss of generality, assume that the earliest job-
release in I occurs at time zero, and let tf denote the instant
of the (first) deadline miss — since τ is assumed to satisfy
Condition 3, this must be the deadline of a HI-criticality job,
in a HI-criticality behavior. Let t∗ denote the time-instant at
which HI-criticality behavior is first flagged (i.e., the first
instant at which some job executes for more than its LO-
criticality worst-case execution time without signaling that
it has completed execution).

We observe that all jobs in I , except perhaps the one that
misses a deadline at tf , experiences some execution; else,
the job could be removed from I; this would contradict the
assumed minimality of I .

We now introduce some notation for the remainder of
this section:

1) For each i, 1 ≤ i ≤ n, let ηi denote the amount of execution
over the interval [0, tf ] that is needed by jobs in I that are
generated by task τi.

2) For each i, 1 ≤ i ≤ n, let ui(χ) denote the quantity Ci(χ)
Ti

.
(That is, ui(LO) denotes τi’s LO-criticality utilization, and
ui(HI) denotes its HI-criticality utilization).

3) Let J1 denote the job with the earliest release time amongst
all those that execute in [t∗, tf ). Let a1 denote its release
time, and d1 its deadline.

Fact 1: All jobs that execute in [t∗, tf ) have deadline ≤
tf .
Proof: Suppose not. Consider the latest instant t′ in [t∗, tf )
when a job with deadline > tf executes. Only those jobs
in I that have release time ≥ t′ and deadline ≤ tf are
sufficient to cause a deadline miss; this contradicts the
assumed minimality of I .

Fact 2: Any LO-criticality task τi has

ηi ≤ ui(LO)
(
a1 + x(tf − a1)

)
(7)

Proof: No LO-criticality job will execute after t∗. For it to
execute after a1, it must have a deadline no larger than J1’s
virtual deadline, which is (a1 + x(d1 − a1)). Therefore, no
LO-criticality job with deadline > (a1 + x(tf − a1)) will
execute after a1.

Suppose that some LO-criticality job with deadline >
(a1+x(tf −a1)) were to execute, at some time < a1. Let t′

denote the latest instant at which any such job executes. This
means that at this instant, there were no jobs with effective

Note that U LO
LO (τ) ≤ 1 is a necessary condition for τ to be schedulable. It

is evident that any schedulable system satisfying Condition 5 also satisfies
Condition 6 while the converse is not true: there are task systems satisfying
Condition 6 that violate Condition 5.



deadline ≤ (a1 + x(tf − a1)) awaiting execution. Hence
the instance obtained by considering only those jobs in I
that have release times ≥ t′ also misses a deadline; this
contradicts the assumed minimality of I .

Fact 3: Any HI-criticality task τi has

ηi ≤
ui(LO)

x
a1 + (tf − a1)ui(HI) (8)

Proof: We consider separately the cases when τi does not
have a job with release time ≥ a1, and when it does.
Case: If τi does not release a job at or after a1. We claim
that each job of τi has a modified deadline ≤ (a1 + x(tf −
a1)). To see why this is so, consider some job with a
modified deadline > (a1 +x(tf −a1)), and let t′ denote the
latest instant at which this job executes. All jobs in I that
have release times ≥ t′ also miss a deadline; this contradicts
the assumed minimality of I .

Since each job has a modified deadline ≤ (a1 + x(tf −
a1)), their actual deadlines are all ≤ a1

x + (tf − a1).
Therefore, their cumulative execution requirement is at most

a1
x
ui(LO) + (tf − a1)ui(LO)

≤ a1
x
ui(LO) + (tf − a1)ui(HI)

Case: If τi releases a job at or after a1. Let ai denote the
first release ≥ a1. The cumulative execution requirement of
all jobs of τi is at most

aiui(LO) + (tf − ai)ui(HI)

≤ (Since a1 ≤ ai and ui(LO) ≤ ui(HI))
a1ui(LO) + (tf − a1)ui(HI)

≤ (Since x ≤ 1)
a1
x
ui(LO) + (tf − a1)ui(HI)

Let us sum the cumulative demand of all the tasks over
[0, tf ): ∑

χi=LO

ηi +
∑
χi=HI

ηi

≤
∑
χi=LO

ui(LO)
(
a1 + x(tf − a1)

)
+
∑
χi=HI

a1
x
ui(LO) + (tf − a1)ui(HI)

= a1
(
U LO

LO (τ) +
U LO

HI (τ)

x

)
+(tf − a1)(xU LO

LO (τ) + UHI
HI (τ))

≤ (By choice of x [Eqn. 3], (U LO
LO (τ) +

ULO
HI (τ)

x
) ≤ 1)

a1 + (tf − a1)(xU LO
LO (τ) + UHI

HI (τ))

It follows from the infeasibility of this instance that

a1 + (tf − a1)(xU LO
LO (τ) + UHI

HI (τ)) > tf

⇔ (tf − a1)(xU LO
LO (τ) + UHI

HI (τ)) > tf − a1
⇔ xU LO

LO (τ) + UHI
HI (τ) > 1

Taking the contrapositive, it follows that (xU LO
LO (τ) +

U HI
HI (τ) ≤ 1) is sufficient to ensure HI-criticality schedu-

lability by EDF-VD, as is claimed in this theorem.
We have thus established the correctness of Algo-

rithm EDF-VD: by Theorem 1 the value assigned to x en-
sures the correctness of all LO-criticality behaviors whereas
Theorem 2 guarantees the correct scheduling of all HI-
criticality behaviors.
Observation. Note that Theorem 1 requires that x ≥
ULO

HI (τ)

1−ULO
LO (τ)

, while Theorem 2 requires that x ≤ 1−UHI
HI (τ)

ULO
LO (τ)

.
When these upper and lower bounds on x are not equal to
each other, a pragmatic choice would be to choose a value
for x that lies somewhere within the interval (e.g., at the mid-
point), rather than at either of the boundaries – this would
increase the robustness of the algorithm and its tolerance to,
e.g., any arrival jitter.

V. RUN-TIME DISPATCHING

During the execution of the system, jobs are selected for
execution according to the following rules:

1) There is a criticality level indicator Γ, initialized to LO.
2) While (Γ ≡ LO),

a) Suppose a job of some task τi ∈ τ arrives at time t
• if χi ≡ LO, the job is assigned a scheduling deadline

equal to t+ Ti.
• if χi ≡ HI, the job is assigned a scheduling deadline

equal to t+ T̂i.
b) At each instant the waiting job with earliest scheduling

deadline is selected for execution (ties broken arbitrarily).
c) If the currently-executing job executes for more than its

LO-criticality WCET without signaling completion, then
the behavior of the system is no longer a LO-criticality
behavior, and Γ← HI.

3) Once (Γ ≡ HI),
a) The scheduling deadline of each HI-criticality job that is

currently active is changed to its release time plus the
unmodified period parameter (the Ti, not the T̂i) of the task
that generated it. That is, if a job of τi that was released at
some time t is active, its deadline, for scheduling purposes,
is henceforth t+ Ti.

b) When a future job of τi arrives at some time t, it is assigned
a scheduling deadline equal to t+ Ti.

c) LO-criticality jobs will not receive any further execution.
Therefore at each instant the earliest-deadline waiting job
generated by a HI-criticality task is selected for execu-
tion(ties broken arbitrarily).

4) An additional rule could specify the circumstances when Γ
gets reset to LO. This could happen, for instance, if no HI-
criticality jobs are active at some instant in time. (We will
not discuss the process of resetting Γ ← LO any further in
this document, since this is not relevant to the certification
process — LO-criticality certification assumes that the system
never exhibits any HI-criticality behavior, while HI-criticality
certification is not interested in the behavior of the LO-
criticality tasks.)

A. An efficient implementation of run-time dispatching

For traditional (non-MC) sporadic task systems consisting
of n tasks, uniprocessor EDF can be implemented efficiently



to have a run-time complexity of O(log n) per event, where
an event is either the arrival of a job, or the completion of
the execution of a job (see, e.g., [18]). A direct application
of such implementations can be used to obtain an imple-
mentation of the run-time dispatching of EDF-VD that has
a run-time of O(log n) per job-arrival and job-completion
event. However, EDF-VD potentially needs to deal with an
additional run-time event: the change in the criticality level
of the behavior from LO to HI (this is the event that is
triggered at the instant that Γ gets assigned the value HI).
Since this event requires that each subsequent scheduling be
done according to each HI-criticality task’s original deadline,
explicitly recomputing priorities according to these original
deadlines would take time linear in the number of HI-
criticality tasks — in the worst case, O(n) time. We now
describe an implementation of EDF-VD’s run-time system
that has a worst-case run-time of O(log n) per event for all
three kinds of events: job arrival, job completion, and change
in the criticality level of the behavior from LO to HI.

Recall that a priority queue supports the operations
of inserting (“insert”) and deleting the smallest item
(“deleteMin”) in logarithmic time, and the operation of find-
ing the smallest item (“min”) in constant time. In addition,
the standard priority queue data structure can be enhanced
to support the deletion of a specified item (the “delete”
operation), also in logarithmic time (see, e.g, [11, Sec. 6.5]).
We maintain two such enhance priority queues, QLO and
QHI. We also use a timer that is used to indicate whether
the currently-executing job has executed for more than
its LO-criticality WCET (thereby triggering the assignment
Γ← HI).

Initially, Γ ≡ LO and there are three kinds of events to be
dealt with: (1) the arrival of a job; (2) the completion of a
job; and (3) Γ being assigned the value HI. We consider each
separately, below. Suppose that the event occurs at time-
instant tc, and let Jc denote the currently-executing job.

1) A job of task τi arrives at time tc.
a) Insert the newly-arrived job into QLO, prioritized according

to its modified scheduling deadline.
b) If χi = HI (i.e., if it is a HI-criticality job), then also

insert it into QHI, prioritized according to its unmodified
(i.e., actual) scheduling deadline.

c) If Jc is no longer the minimum job in QLO, it must be
the case that the newly-arrived job has an earlier modified
deadline than Jc’s modified deadline. In that case, the
newly-inserted job becomes Jc, and the timer is set to
go off at tc + Ci(LO) (when this newly-inserted job
would exceed its LO-criticality WCET if allowed to execute
without interruption).

2) The currently-executing job Jc completes execution at time
tc.
a) Delete this job from QLO, using the deleteMin operation

supported by priority queue implementations.
b) If it was a HI-criticality job, also delete it from QHI — this

would be accomplished by a delete operation.
c) Set the current-job indicator Jc to denote the new minimum

(modified) deadline job — the “minimum” job in QLO;
and set the timer to go off at tc+ this job’s remaining

LO-criticality WCET (when the job would exceed its LO-
criticality WCET if allowed to execute without interrup-
tion).

3) The timer goes off, indicating that the currently-executing
job has executed beyond its LO-criticality WCET without
signaling completion. The system is therefore now in HI-
criticality mode, and we switch to scheduling according to
QHI. Henceforth, all run-time dispatch decisions are taken as
indicated by this priority queue.

After Γ becomes HI, no LO-criticality jobs need execute,
and HI-criticality jobs are executed according to EDF with
their original (unmodified) deadlines. Hence subsequent run-
time dispatching is done as for traditional EDF scheduling
(as described in, e.g., [18]), with QHI being the priority queue
used for this purpose.

VI. SOME PROPERTIES OF EDF-VD

A. Comparison with worst-case reservations
Under the worst-case reservations strategy that is widely

used in the design of mixed-criticality systems, computing
capacity is provisioned to each task at its own criticality
level. That is, the MC task system τ is mapped on to the
traditional (non-MC) task system⋃

τi∈τ

{(
Ci(χi), Ti

)}
and scheduled using regular EDF. It directly follows from

the utilization-bound result of EDF [16] that the condition

U LO
LO (τ) + UHI

HI (τ) ≤ 1 (9)

is necessary and sufficient for ensuring that EDF can
schedule τ to meet all deadlines, provided each LO-criticality
job executes for up to its LO-criticality WCET and each HI-
criticality job executes for up to its HI-criticality WCET.
This covers all LO-criticality and all HI-criticality behaviors
of τ .

We now show that Algorithm EDF-VD strictly dominates
the worst-case reservations approach: any task system that
can be scheduled using worst-case reservations can be
scheduled by EDF-VD.

Theorem 3: Any task system τ that is correctly scheduled
using worst-case reservations is also correctly scheduled by
EDF-VD.
Proof: Any task system that can be scheduled using worst-
case reservations satisfies Condition 9 above.

U LO
LO (τ) + UHI

HI (τ) ≤ 1

⇒ (Since U LO
HI (τ) ≤ UHI

HI (τ))
U LO

LO (τ) + U LO
HI (τ) ≤ 1

⇒ U LO
HI (τ)

1− U LO
LO (τ)

≤ 1

From this and Equation 4, we conclude that x is assigned
a value ≤ 1 by Algorithm EDF-VD.

Now, Theorem 2 contains the following sufficient condi-
tion for EDF-VD schedulability:

xU LO
LO (τ) + UHI

HI (τ) ≤ 1 ,



which always holds since Condition 9 holds and x ≤ 1.

B. Task systems τ with U LO
HI (τ) = 0

It is interesting to analyze the manner in which EDF-VD
deals with task systems in which the LO-criticality WCET of
each HI-criticality task is equal to zero. (This would be the
case for systems in which a “mode change” can be thought
to occur when the high-criticality behavior is triggered.)

For such a system τ , observe that U LO
HI (τ) = 0. Therefore,

the value assigned to the scaling parameter x in Step 1 of
Figure 1 is equal to zero, and the test in Step 2 of Figure 1
evaluates to true to all τ with U HI

HI (τ) ≤ 1. Thus EDF-VD
can schedule any task system for which U LO

HI (τ) = 0 that
satisfies the condition

U LO
LO (τ) ≤ 1 and UHI

HI (τ) ≤ 1 .

I.e., EDF-VD can schedule any such system provided the
LO-criticality and the HI-criticality behaviors are separately
schedulable.

Continuing to analyze the pseudo-code in Figure 1 for
this special case, we observe that EDF-VD assigns each HI-
criticality task τi a modified period T̂i equal to zero. Thus
during run-time each job of a HI-criticality task immediately
becomes an earliest-deadline (and hence highest-priority)
one upon arrival. If it is discovered to have a non-zero
execution time, the criticality-level indicator is immediately
assigned the value HI (i.e., Γ ← HI), and all LO-criticality
jobs are immediately discarded.

VII. SPEEDUP BOUNDS

The speedup factor of an algorithm A for scheduling
mixed-criticality systems is defined to be the smallest real
number f such that any task system τ that is schedulable
on a unit-speed processor by a hypothetical optimal clair-
voyant2 algorithm is successfully scheduled on a speed-f
processor by algorithm A. The speedup factor is a convenient
metric for comparing the worst-case behavior of different
algorithms for solving the same problem: the smaller the
speedup factor, the closer the behavior of the algorithm to
that of a clairvoyant optimal algorithm.

Theorem 4: The speedup factor of EDF-VD is ≤ 4
3 .

Proof: To prove this theorem, we will show that any MC
implicit-deadline sporadic task system that is clairvoyantly
schedulable on a speed- 34 processor is schedulable by EDF-
VD on a unit-speed processor.

Let b denote an upper bound on both the LO-criticality
utilization and the HI-criticality utilization of task system τ :

b ≥ max
(
U LO

LO (τ) + U LO
HI (τ), UHI

HI (τ)
)

(10)

2Informally, a clairvoyant algorithm for scheduling MC systems is one
that knows prior to run-time whether the system is going to exhibit LO-
criticality or HI-criticality behavior.

By Theorems 1 and 2, we know that if an x satisfying
both theorems exists, there will be no deadline miss. Since
Theorem 1 requires that

U LO
HI (τ)

1− U LO
LO (τ)

≤ x

while Theorem 2 requires that

x ≤ 1− UHI
HI (τ)

U LO
LO (τ)

,

we can derive Expression 11 below as a sufficient condition
for τ to be successfully scheduled using EDF-VD:

U LO
HI (τ)

1− U LO
LO (τ)

≤ 1− UHI
HI (τ)

U LO
LO (τ)

⇐ (Since U LO
LO (τ) + U LO

HI (τ) ≤ b⇒ U LO
HI (τ) ≤ b− U LO

LO (τ))
b− U LO

LO (τ)

1− U LO
LO (τ)

≤ 1− UHI
HI (τ)

U LO
LO (τ)

⇐ (Since UHI
HI (τ) ≤ b)

b− U LO
LO (τ)

1− U LO
LO (τ)

≤ 1− b
U LO

LO (τ)
⇔ (

U LO
LO (τ)

)2 − U LO
LO (τ) + (1− b) ≥ 0 (11)

Now if we set b← 3
4 , Expression 11 becomes(
U LO

LO (τ)
)2 − U LO

LO (τ) +
1

4
≥ 0

⇔ (
U LO

LO (τ)− 1

2

)2 ≥ 0

which is true for all values of U LO
LO (τ).

We have thus shown that any task system that is clair-
voyant schedulable on a speed- 34 processor is scheduled by
EDF-VD to meet all deadlines on a unit-speed processor.
It therefore follows that any task system that is clairvoyant
schedulable on a unit-speed processor is scheduled by EDF-
VD to meet all deadlines on a speed- 43 processor, as claimed
by this theorem.

We now show that EDF-VD is optimal with regard to
speedup factor:

Theorem 5: No non-clairvoyant algorithm for scheduling
dual-criticality implicit-deadline sporadic task systems can
have a speedup bound better than 4

3 .
Proof: Consider the example task system τ = {τ1, τ2}, with
the following parameters, where ε is an arbitrarily small
number > 0:

τi χi Ci(LO) Ci(HI) Ti
τ1 LO 1 + ε 1 + ε 2
τ2 HI 1 + ε 3 4

This system is schedulable by a clairvoyant scheduler: EDF
would meet all deadlines in LO-criticality behaviors (since
U LO

LO (τ) + U LO
HI (τ) ≤ 1), while only jobs of τ2 would get to

execute in HI-criticality behaviors.
To see that τ cannot be scheduled correctly by an on-

line scheduler, suppose both tasks were to generate jobs
simultaneously. It need not be revealed prior to one of
the jobs receiving (1 + ε) units of execution, whether



ULO
LO (τ)

ULO
HI (τ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.98 0.97 0.9 0.93 0.90 0.85 0.76 0.60 0.10
0.2 0.97 0.95 0.914 0.86 0.80 0.70 0.53 0.20
0.3 0.96 0.92 0.87 0.80 0.70 0.55 0.30
0.4 0.95 0.90 0.82 0.73 0.60 0.40
0.5 0.94 0.87 0.78 0.66 0.50
0.6 0.93 0.85 0.74 0.60
0.7 0.9 0.82 0.70
0.8 0.911 0.80
0.9 0.90

Table I
UTILIZATION BOUNDS: UPPER BOUND ON UHI

HI (τ), FOR GIVEN VALUES
OF U LO

LO (τ) AND U LO
HI (τ)

the behavior is a LO-criticality or a HI-criticality one. We
consider two cases.

1) τ1’s job receives (1 + ε) units of execution before τ2’s job
does. In this case, the behavior is revealed to be a HI-criticality
one. But now there is not enough time remaining for τ2’s job
to complete by its deadline at time-instant 4.

2) τ2’s job receives (1 + ε) units of execution before τ1’s job
does. In this case, the behavior is revealed to be a LO-
criticality one, in that τ2’s job signals that it has completed
execution. But there is not enough time remaining for τ1’s
job to complete by its deadline at time 2.

We have thus shown that no non-clairvoyant algorithm
can correctly schedule τ . The theorem follows, based on the
observation that max

(
U LO

LO (τ) + U LO
HI (τ), U HI

HI (τ)
)

exceeds
3/4 by an arbitrarily small amount.

VIII. UTILIZATION BOUNDS

It is evident that in order for task system τ to be
schedulable by any algorithm on a unit-speed processor, it
is necessary that both

U LO
LO (τ) + U LO

HI (τ) ≤ 1, and

UHI
HI (τ) ≤ 1.

We now derive sufficient conditions on U LO
LO (τ), U LO

HI (τ) and
U HI

HI (τ) for the system to be successfully scheduled by EDF-
VD.

As we had observed in Section VII above, it follows from
Theorems 1 and 2 that if an x satisfying both theorems
exists, then EDF-VD will schedule the system correctly.
Since Theorem 1 requires that

U LO
HI (τ)

1− U LO
LO (τ)

≤ x

while Theorem 2 requires that

x ≤ 1− UHI
HI (τ)

U LO
LO (τ)

,

we have
U LO

HI (τ)

1− U LO
LO (τ)

≤ 1− UHI
HI (τ)

U LO
LO (τ)

⇔ U LO
LO (τ) + UHI

HI (τ)− U LO
LO (τ)

(
UHI

HI (τ)− U LO
HI (τ)

)
≤ 1

⇔ UHI
HI (τ)

(
1− U LO

LO (τ)
)
≤ 1− U LO

LO (τ)− U LO
LO (τ)U LO

HI (τ)

⇔ UHI
HI (τ) ≤ 1− U LO

LO (τ)− U LO
LO (τ)U LO

HI (τ)

1− U LO
LO (τ)

⇔ UHI
HI (τ) ≤ 1− U LO

HI (τ)
(

U LO
LO (τ)

1− U LO
LO (τ)

)
(12)

as a sufficient condition for τ to be schedulable by EDF-
VD. In Table I we list this upper bound on U HI

HI (τ) for
task systems τ with specified U LO

LO (τ) and U LO
HI (τ). Since

the schedulability of LO-criticality behaviors of τ requires
that U LO

LO (τ)+U LO
HI (τ) ≤ 1, bounds are only computed when

this condition is satisfied.
We note that the model assumption that Ci(LO) ≤ Ci(HI)

for all tasks mandates that U LO
HI (τ) ≤ U HI

HI (τ); thus the range
of values that U HI

HI (τ) may take for given values of U LO
LO (τ)

and U LO
HI (τ) is bounded from below by the value of U LO

HI (τ),
and from above by the table entry (as computed according
to Expression 12). Hence for example if we have a system
τ with U LO

LO (τ) = 0.6 and U LO
HI (τ) = 0.2, then U HI

HI (τ) may
take on any value in [0.2, 0.7] (this entry is highlighted in
bold font in Table I).

IX. EVALUATION VIA SIMULATION

We have conducted a series of simulation experiments to
evaluate the effectiveness of EDF-VD in finding certifiably
correct scheduling strategies. Our experiments were con-
ducted upon randomly-generated task systems that were gen-
erated according to (a slight modification of) the workload-
generation algorithm introduced by Guan et al. [13]. The
input parameters for our workload generation algorithm are
as follows:
• Ubound: The desired value of the larger of LO-criticality and

HI-criticality utilization of the task system:

max
(
U LO

LO (τ) + U LO
HI (τ), UHI

HI (τ)
)

= Ubound (13)

• [UL, UU ]: Utilizations are uniformly drawn from this range;
0 ≤ UL ≤ UU ≤ 1.

• [ZL, ZU ]: The ratio of the HI-criticality utilization of a task
to its LO-criticality utilization is uniformly drawn from this
range; 1 ≤ ZL ≤ ZU .

• P : The probability that a task is a HI-criticality task; 0 ≤
P ≤ 1.

Gives these parameters, the task-generation algorithm
initializes the task system τ to be empty and repeatedly adds
tasks τi, i = 1, 2, . . ., until the utilization bound is met. (For
further detail please see [13].)

In our experiments, we determined the fraction of
randomly-generated task systems that are deemed to be
schedulable by the algorithm under consideration, as a
function of the system utilization Ubound. Some of our
results are depicted graphically in Figures 2-5. In each
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Figure 2. UL = 0.02, UU = 0.2, ZL = 1, ZU = 2, P = 0.5
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Figure 3. UL = 0.02, UU = 0.2, ZL = 1, ZU = 4, P = 0.5

graph, the fraction of systems that were determined to be
schedulable is depicted on the y-axis, and the utilization
on the x-axis. Each data-point was obtained by randomly
generating 1000 task systems, testing each for schedulability
according to the appropriate algorithm, and calculating the
fraction of systems deemed schedulable. The parameters
used in generating these task systems (other than the system
utilization, which is depicted on the x-axis) are provided
in the caption of the graph; e.g., the task systems for
Figure 2 were generated using the parameters UL = 0.02,
UU = 0.2, ZL = 1, ZU = 2, and P = 0.5. For each set of
parameters, two different algorithms were compared: regular
EDF (i.e., EDF on the task system

⋃
i{(Ci(χi), Ti)})– this

is the “worst-case reservations” strategy discussed in VI);
and Algorithm EDF-VD (as depicted in Figure 1).

It is evident from the graphs that EDF-VD consistently
exhibits noticeable improvement over a simple EDF sched-
uler. We do not seek to make quantitative claims about the
degree of such improvement based on simulation data, but
we do notice some trends.

1) When the system utilization is smaller than 0.5, the task
system is always schedulable by worst-case reservations (reg-
ular EDF); when the system utilization is smaller than 0.75,
the task system is always schedulable by EDF-VD. These
observation match the known utilization bounds.

2) The improvement becomes more significant as the ratio of
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Figure 4. UL = 0.02, UU = 0.2, ZL = 1, ZU = 8, P = 0.5
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Figure 5. UL = 0.02, UU = 0.2, ZL = 1, ZU = 8, P = 0.3

the HI-criticality WCET to LO-criticality WCET increases
(compare Figures 2-4). The intuitive explanation for this is
that EDF-VD takes more advantage from processing LO-
criticality and HI-criticality behaviors separately when the LO-
criticality and HI-criticality behaviors overlap less.

3) For a similar reason, the improvement becomes more pro-
nounced as the ratio of the HI-criticality utilization (UHI

HI (τ))
to the LO-criticality utilization (U LO

LO (τ)+U LO
HI (τ)) approaches

1 (compare Figures 4-??, in which the ratios are respectively
1.6, 1.06 and 0.34).

X. SUMMARY AND CONCLUSIONS

Devising more cost-efficient techniques for obtaining
certication for safety-critical embedded systems has been
identified as a prime research challenge [1]. We believe
that in mixed-criticality systems, these certication consider-
ations give rise to fundamental new resource allocation and
scheduling challenges that are not adequately addressed by
conventional real-time scheduling theory. In this paper, we
consider the scheduling, upon preemptive uniprocessors, of
mixed-criticality systems that can be modeled using a mixed-
criticality generalization of the implicit-deadline sporadic
tasks model. An algorithm called EDF-VD was proposed
in [8] for scheduling such systems. We have proved that
EDF-VD is speedup-optimal by showing that (i) it has a
processor speedup factor equal to 4/3 (Theorem 4); and



(ii) no non-clairvoyant algorithm can have a smaller speedup
factor (Theorem 5). The result in Theorem 4 improves on an
earlier result presented in [8], which had shown a speedup
factor of (

√
5 + 1)/2 ≈ 1.62. This improved speedup factor

was obtained by first deriving a superior sufficient schedu-
lability condition (Theorem 2); this sufficient schedulability
condition strictly dominates earlier sufficient schedulability
tests in that any task system deemed schedulable by these
earlier tests is also deemed schedulable by the test of
Theorem 2 while the converse of this statement is not true.

As further contributions, we have shown how EDF-VD
can be implemented to have a run-time complexity per
scheduling decision that is logarithmic in the number of
tasks, and thus demonstrated the practical applicability of
the algorithm. We have explored further properties of EDF-
VD, and have conducted extensive simulation experiments
to reveal its behavior on randomly-generated task systems.
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