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There is an increasing trend in embedded systems towards implementing multiple
functionalities upon a single shared computing platform. This can force tasks of dif-
ferent criticality to share a processor and interfere with each other. We focus on the
scheduling of sporadic task systems [3] in these mixed-criticality (MC) systems. The
mixed-criticality model that we follow has first been proposed and analyzed, for inde-
pendent collection of jobs, by Baruah et al. [1]. The model has been extended to task
systems by Li and Baruah [5]. The results presented here appear in Baruah et al. [2].

We first describe the model and give some notation. Then, we describe an algorithm
(called EDF-VD) to preemptively schedule MC task systems on a single machine. We
give a sufficient condition for schedulability by EDF-VD and derive a speed-up guarantee.

The model. Given an integer K > 1, A K-level MC sporadic task system 7 consists
of a finite collection (7,...,7,) of MC sporadic tasks. An MC sporadic task 7; of
a K-level system is characterized by a criticality level x; € {1,2,..., K} and a pair
(ciydi) € Q¥ xQy, where: ¢; = (¢i(1),¢i(2), ..., ¢(K)) is a vector of worst-case execution
times (WCET), we assume that ¢;(1) < ¢;(2) < ... < ¢i(xi) and ¢i(x;) = ci(xi +1) =

. = ¢(K); d; is the relative deadline of the jobs of 7;. We consider impicit-deadline
tasks in which d; is equal to the minimum interarrival time between two jobs of task
7;. The wutilization of task 7; at level k is defined as u;(k) := ciéik), i=1,....n, k=
1,..., K. The total utilization at level k of tasks that are of criticality level [ is U;(k) :=
Zlgignm:l ui(k), 1 = 1,...,K, k = 1,...,l. Task 7; generates a sequence of jobs
(Ji1, Jiz,...). An MC job J;; of task 7 is characterized by two parameters: J;; =
(@ij,7vij), where: a;; € Ry is the arrival time of the job; vi; € (0, ¢;(xs)] is the ezecution
requirement of the job; the (absolute) deadline of job J;; is d;; := a;j+d;. It is important
to notice that neither the arrival times nor the execution requirements are known in
advance. In particular, the value v;; is discovered by executing the job until it signals
that it has completed execution. A collection of arrival times and execution requirements
is called a scenario for the task system. The criticality level of a scenario is defined as

the smallest integer ¢ < K such that v;; < ¢;(¢), for each job J;; of each task 7;. An
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(online) algorithm correctly schedules a sporadic task system 7 if it is able to schedule
every job sequence generated by 7 such that, if the criticality level of the corresponding
scenario is £, then all jobs of level at least ¢ are completed between their release time
and deadline.

Algorithm EDF-VD. We consider a variant of the Earliest Deadline First algorithm,
EDF-VD (EDF with virtual deadlines). Algorithm EDF-VD consists of an offline pre-
processing phase and a run-time scheduling phase. The first phase is performed prior to
run time and executes a schedulability test to determine whether 7 can be successfully
scheduled by EDF-VD or not. If 7 is deemed schedulable, this phase also provides two
output values that will serve as input for the run-time scheduling algorithm: an inte-
ger parameter k (with 1 < k < K); and, for each task 7; of 7, a parameter d; < d;,
called virtual deadline. The second phase performs the actual run-time scheduling and
consists of K variants, called EDF-VD(1), ..., EDF-VD(K). Each of these is related
to a different value of the parameter k that was provided by the first phase; that is, at
run time, the variant EDF-VD(k) is applied. If the scenario is exhibiting a level smaller
than or equal to k, then jobs are scheduled according to EDF with respect to the virtual
deadlines (Jl)le As soon as the scenario exhibits a level greater than k, jobs are sched-
uled according to EDF with respect to the original deadlines (d;)_;. The preprocessing
phase is based on the following sufficient condition for schedulability by EDF-VD.

Theorem 1 Given an implicit-deadline task system 1, if either Z{il Ul(l) <1 or, for
some k (1 <k < K), the following condition holds:
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then T can be correctly scheduled by EDF-VD.

Speedup guarantee. The speedup factor of a scheduling algorithm A is the smallest
real number f such that any task system 7 that is feasible on a unit-speed processor
is correctly scheduled by A on a speed-f processor. In the following we determine the
minimum speedup factor fx such that any K-level task system that is feasible on an
unit-speed processor is correctly scheduled by EDF-VD on a fx-speed processor. Such
problem can be formulated as follows: Find the largest ¢ (¢ < 1) such that the following
implication holds for all U;(k), k=1,2,..., K, l=kk+1,...,K:
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Number of levels K | Speedup factor fx Number of levels K | Speedup factor fx
2 1.3333 8 4.7913
3 2.0000 9 5.3723
4 2.6180 10 5.8551
5 3.0811 11 6.4641
6 3.7321 12 6.9487
7 4.2361 13 7.5311

Table 1: Minimum speedup factor for K < 13 levels

If the largest such value of ¢ is ¢*, the speedup factor is then fx = 1/¢*. Equivalently,
we want to find the smallest ¢ such that the above implication does not hold, that is, the
premise is true but the conclusion is false; in other words, the largest value of the speedup
for which one can still construct a counterexample. This leads to a non-linear formulation
that involves disjunctions, which are typically disallowed by numerical solvers. We prove
that solving such formulation is equivalent to finding ¢* := min;—;2 . x—1 q;f, where
each ¢; is the solution to the non-linear program whose constraints are multivariate
polynomial inequalities in the variables Uj(k) and gj. As such, it can be solved by
a (numerical) global non-linear continuous optimization solver. In this case we used
COUENNE [4]. COUENNE was able to find the optimum for any K < 13. The resulting
speedup factors are reported in Table 1.

Theorem 2 Let 7 be a K-level task system with 2 < K < 13. If 7 is feasible on a
unit-speed processor, then it is correctly scheduled by EDF-VD on a processor of speed
fx, where fr (£107%) is as in Table 1.
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