
Scheduling of mixed-criticality sporadic task systems with

multiple levels

Sanjoy K. Baruah ∗ Vincenzo Bonifaci †

Gianlorenzo D’Angelo (Speaker) ‡ Haohan Li §

Alberto Marchetti-Spaccamela ¶ Suzanne van der Ster ‖ Leen Stougie ‖

There is an increasing trend in embedded systems towards implementing multiple
functionalities upon a single shared computing platform. This can force tasks of dif-
ferent criticality to share a processor and interfere with each other. We focus on the
scheduling of sporadic task systems [3] in these mixed-criticality (MC) systems. The
mixed-criticality model that we follow has first been proposed and analyzed, for inde-
pendent collection of jobs, by Baruah et al. [1]. The model has been extended to task
systems by Li and Baruah [5]. The results presented here appear in Baruah et al. [2].

We first describe the model and give some notation. Then, we describe an algorithm
(called EDF-VD) to preemptively schedule MC task systems on a single machine. We
give a sufficient condition for schedulability by EDF-VD and derive a speed-up guarantee.

The model. Given an integer K ≥ 1, A K-level MC sporadic task system τ consists
of a finite collection (τ1, . . . , τn) of MC sporadic tasks. An MC sporadic task τi of
a K-level system is characterized by a criticality level χi ∈ {1, 2, . . . ,K} and a pair
(ci, di) ∈ Qχi

+×Q+, where: ci = (ci(1), ci(2), . . . , ci(K)) is a vector of worst-case execution
times (WCET), we assume that ci(1) ≤ ci(2) ≤ . . . ≤ ci(χi) and ci(χi) = ci(χi + 1) =
. . . = ci(K); di is the relative deadline of the jobs of τi. We consider impicit-deadline
tasks in which di is equal to the minimum interarrival time between two jobs of task
τi. The utilization of task τi at level k is defined as ui(k) := ci(k)

di
, i = 1, . . . , n, k =

1, . . . ,K. The total utilization at level k of tasks that are of criticality level l is Ul(k) :=∑
1≤i≤n,χi=l

ui(k), l = 1, . . . ,K, k = 1, . . . , l. Task τi generates a sequence of jobs
(Ji1, Ji2, . . .). An MC job Jij of task τi is characterized by two parameters: Jij =
(aij , γij), where: aij ∈ R+ is the arrival time of the job; γij ∈ (0, ci(χi)] is the execution
requirement of the job; the (absolute) deadline of job Jij is dij := aij+di. It is important
to notice that neither the arrival times nor the execution requirements are known in
advance. In particular, the value γij is discovered by executing the job until it signals
that it has completed execution. A collection of arrival times and execution requirements
is called a scenario for the task system. The criticality level of a scenario is defined as
the smallest integer ` ≤ K such that γij ≤ ci(`), for each job Jij of each task τi. An

∗baruah@cs.unc.edu. University of North Carolina, USA.
†vincenzo.bonifaci@iasi.cnr.it. IASI – Consiglio Nazionale delle Ricerche, Italy.
‡gianlorenzo.dangelo@gssi.infn.it Gran Sasso Science Institute (GSSI), Italy.
§lihaohan@cs.unc.edu Google, USA.
¶alberto@dis.uniroma1.it Sapienza Università di Roma, Italy.
‖suzanne.vander.ster@vu.nl, leen.stougie@cwi.nl Vrije U. Amsterdam, the Netherlands.

1



(online) algorithm correctly schedules a sporadic task system τ if it is able to schedule
every job sequence generated by τ such that, if the criticality level of the corresponding
scenario is `, then all jobs of level at least ` are completed between their release time
and deadline.

Algorithm EDF-VD. We consider a variant of the Earliest Deadline First algorithm,
EDF-VD (EDF with virtual deadlines). Algorithm EDF-VD consists of an offline pre-
processing phase and a run-time scheduling phase. The first phase is performed prior to
run time and executes a schedulability test to determine whether τ can be successfully
scheduled by EDF-VD or not. If τ is deemed schedulable, this phase also provides two
output values that will serve as input for the run-time scheduling algorithm: an inte-
ger parameter k (with 1 ≤ k ≤ K); and, for each task τi of τ , a parameter d̂i ≤ di,
called virtual deadline. The second phase performs the actual run-time scheduling and
consists of K variants, called EDF-VD(1), . . ., EDF-VD(K). Each of these is related
to a different value of the parameter k that was provided by the first phase; that is, at
run time, the variant EDF-VD(k) is applied. If the scenario is exhibiting a level smaller
than or equal to k, then jobs are scheduled according to EDF with respect to the virtual
deadlines (d̂i)

n
i=1. As soon as the scenario exhibits a level greater than k, jobs are sched-

uled according to EDF with respect to the original deadlines (di)
n
i=1. The preprocessing

phase is based on the following sufficient condition for schedulability by EDF-VD.

Theorem 1 Given an implicit-deadline task system τ , if either
∑K

l=1 Ul(l) ≤ 1 or, for
some k (1 ≤ k < K), the following condition holds:

1−
k∑
l=1

Ul(l) > 0 and

K∑
l=k+1

Ul(k)

1−
k∑
l=1

Ul(l)

≤

1−
K∑

l=k+1

Ul(l)

k∑
l=1

Ul(l)

, (1)

then τ can be correctly scheduled by EDF-VD.

Speedup guarantee. The speedup factor of a scheduling algorithm A is the smallest
real number f such that any task system τ that is feasible on a unit-speed processor
is correctly scheduled by A on a speed-f processor. In the following we determine the
minimum speedup factor fK such that any K-level task system that is feasible on an
unit-speed processor is correctly scheduled by EDF-VD on a fK-speed processor. Such
problem can be formulated as follows: Find the largest q (q ≤ 1) such that the following
implication holds for all Ul(k), k = 1, 2, . . . ,K, l = k, k + 1, . . . ,K:

K∑
l=k

Ul(k) ≤ q ∀k = 1, 2, . . . ,K ⇒

either

K∑
l=1

Ul(l) ≤ 1 or ∃k ∈ {1, 2, . . . ,K−1} s.t.



1−
k∑
l=1

Ul(l) > 0 and

K∑
l=k+1

Ul(k)

1−
k∑
l=1

Ul(l)

≤

1−
K∑

l=k+1

Ul(l)

k∑
l=1

Ul(l)

.

2



Number of levels K Speedup factor fK Number of levels K Speedup factor fK
2 1.3333 8 4.7913
3 2.0000 9 5.3723
4 2.6180 10 5.8551
5 3.0811 11 6.4641
6 3.7321 12 6.9487
7 4.2361 13 7.5311

Table 1: Minimum speedup factor for K ≤ 13 levels

If the largest such value of q is q∗, the speedup factor is then fK = 1/q∗. Equivalently,
we want to find the smallest q such that the above implication does not hold, that is, the
premise is true but the conclusion is false; in other words, the largest value of the speedup
for which one can still construct a counterexample. This leads to a non-linear formulation
that involves disjunctions, which are typically disallowed by numerical solvers. We prove
that solving such formulation is equivalent to finding q∗ := minj=1,2,...,K−1 q

∗
j , where

each q∗j is the solution to the non-linear program whose constraints are multivariate
polynomial inequalities in the variables Ul(k) and qj . As such, it can be solved by
a (numerical) global non-linear continuous optimization solver. In this case we used
Couenne [4]. Couenne was able to find the optimum for any K ≤ 13. The resulting
speedup factors are reported in Table 1.

Theorem 2 Let τ be a K-level task system with 2 ≤ K ≤ 13. If τ is feasible on a
unit-speed processor, then it is correctly scheduled by EDF-VD on a processor of speed
fK , where fK (±10−4) is as in Table 1.

References

[1] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie (2012). Scheduling real-time mixed-
criticality jobs. IEEE Transactions on Computers, 61(8):1140–1152.

[2] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, S. van der Ster, and L. Stougie. Preemptive Uniprocessor
Scheduling of Mixed-Criticality Sporadic Task Systems. Journal of the ACM. To
appear.

[3] S. K. Baruah and J. Goossens (2003). Scheduling real-time tasks: Algorithms
and complexity. In J. Y.-T. Leung, editor, Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, chapter 28. CRC Press.

[4] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter (2009).
Branching and bounds tightening techniques for non-convex MINLP. Optimization
Methods & Software 24, 4–5, pages 597–634.

[5] H. Li and S. K. Baruah (2010). An algorithm for scheduling certifiable mixed-
criticality sporadic task systems. In Proc. 16th IEEE Real-Time Systems Sympo-
sium, pages 183–192.

3


