
A Simple Computer

Computing Models
• A simple computer model with a unified

notion of “data” and “instructions”
• “Von Neumann” architecture model
• The first key idea is a model of “memory”

•  Others
– Computing with a table, state-machines,

Turing machines with many procedures, etc.

Memory
• Memory stores bits
• Bits are grouped into larger clusters called

words
• Each word has an address and contents

 – Address is a memory location’s “Name”
 – Contents are a memory location’s “Value”

• Memory stores “Data” and “Instructions”
• We often refer to addresses symbolically like

 variables in algebra

 Address:

An Array of Words
• Addresses are

 organized sequentially
 in an array

• Addresses are
 – Numerical
 – Symbolic (Label)

• The numerical address
 is fixed (governed by
 the hardware)

• Labels are user defined

Words = {Instructions, Data}
• Each word of memory can be interpreted as

either binary data (number, character, a bit
pattern, etc.) or as an instructions

• Not all bit patterns are valid instructions,
 however.

• Instructions cause the computer to perform a
 operation

• A program is a collection of instructions
• In general, instructions are executed

sequentially

Execution Loop

• The execution of a program is governed by a simple
repetitive loop

• Typically, instructions are fetched from sequential
addresses

• A special register, call the program counter (PC), is used to
point to the current instruction in memory

The Stored-Program Computer
• Instructions and Data are stored together

in a common memory
• Sequential semantics: To the programmer

all instructions appear to be executed
sequentially

CPU fetches and executes instructions from memory ...
• The CPU is a H/W interpreter
• Program IS simply data for this interpreter
• Main memory: Single expandable resource pool
- constrains both data and program size
- don’t need to make separate decisions of
how large of a program or data memory to buy

Anatomy of an Instruction
• Instruction sets have a simple structure
• Broken into fields
 – Operation (Opcode) - Verb
 – Operands - Noun

• Recipes provide a near perfect analogy

Instruction Operands
• Operands come from three sources

 – Memory
 – As an immediate constant
 (part of the instruction)
 – From one of several a special “scratch-pad”
 locations called “registers”

• Registers hold temporary results
• Most operations are performed using the

 contents of registers
• Registers can be the “source” or “destination” or

 instructions

UNC-101
• The UNC-101 is a simple 16-bit computer
• It has

 – 65536 or 216 memory locations
 – Each location has 16-bits
 – 15 registers, that are referred to as ($1-$15)
 – A special operand, $0, that can be used
anywhere that a register is allowed. It
provides a value of 0, and cannot write to it
 – A simple instruction set

Instructions: Concrete Examples

addi $4, $5, 1

Register[4] ← Register[5] + 1

• All instructions are broken to parts
 – Operation codes (Opcodes), usually mnemonic
 – Operands usually stylized (e.g. “$” implies the
 contents of the register, whose number

 follows)

Arithmetic Instructions
add $D, $A, $B Reg[D] ← Reg[A] + Reg[B]
sub $D, $A, $B Reg[D] ← Reg[A] - Reg[B]
sgt $D, $A, $B Reg[D] ← 1 if (Reg[A] > Reg[B])

 0, otherwise

• Where D, A, B are one of {1,2, … 15}
• All operands come from registers

Immediate Arithmetic Instructions
addi $D, $A, imm Reg[D] ← Reg[A] + imm
subi $D, $A, imm Reg[D] ← Reg[A] - imm
sgti $D, $A, imm Reg[D] ← 1 if (Reg[A] > imm)

 0, otherwise

• Where D, A are one of {1,2, … 15}
• 2 operands come from registers
• Third, “Immediate” operand is a constant, which

is encoded as part of the instructions

Multiply? Divide?
• You may have noticed that some math function

 are missing, such as multiply and divide
• Often, more complicated operations are

 implemented using a series of instructions
called a routine

• Simple operations lead to faster computers,
 because it is often the case the speed of a
 computer is limited by the most complex task it
 has to perform. Thus, simple instructions
permit fast computer (KISS principle)

KISS == RISC?
• In the later 20 years of the 1900’s computer

 architectures focused on developing simple
 computers that were able to execute as fast as
 possible

• Led to minimalist, and simple, instruction sets
 – Do a few things fast
 – Compose more complicated operations from a
 series of simple ones

• Collectively, these computers were called
 Reduced Instruction Set Computers (RISC)

Load/Store
• Certain instructions are reserved for accessing

 the contents of memory
• The *only* instructions that access memory
• Move data to registers, operate on it, save it

st $D,$A memory[Reg[A]] ← Reg[D]
ld $D,$A Reg[D] ← memory[Reg[A]]
stx $D,$A,imm memory[Reg[A]+imm] ← Reg[D]
ldx $D,$A,imm Reg[D] ← memory[Reg[A]+imm]

Bitwise Logic Instructions
and $D, $A, $B Reg[D] ← Reg[A] & Reg[B]
or $D, $A, $B Reg[D] ← Reg[A] | Reg[B]
xor $D, $A, $B Reg[D] ← Reg[A] ^ Reg[B]
• Where D, A, B are one of {1,2, … 15}
• All operands come from registers
• Performs a bitwise 2-input Boolean operation on the bits

of the A and B operands and saves the result in D
• Assuming Reg[1] = 12 (0x000c) and Reg[2] = 10 (0x000a)

 and $3,$1,$2 # gives Reg[3] = 8 (0x0008)
 or $3,$1,$2 # gives Reg[3] = 14 (0x000e)
 xor $3,$1,$2 # gives Reg[3] = 6 (0x0006)

Closing the Gap
• A computer language closer to one we’d speak

 – High-Level construct:
 total = item1 + item2
 – Assembly language:
 ldx $1,$0,item1
 ldx $2,$0,item2
 add $1,$1,$2
 stx $1,$0,total
 – Binary (machine language):
 0xf10f, 0x0008, 0xf20f, 0x0009,

 0x0112, 0xf10e, 0x0007

An Assembler
• A symbolic machine language
• One-to-one correspondence between

 computer instruction = line of assembly
• Translates symbolic code to binary machine

code
• Manages tedious details

 – Locating the program in memory
 – Figures out addresses
 (e.g. item1 rather than 0x0008)

• Generates a list of numbers

Assembly Code

Assembly Errors
• Generally, the assembler will generate a

useful error message to help correcting
your program

 add $1,$1,1
 beq $0,$0,loop
 mul $1,$2,$3
 ldx array,$0,$1

Labels
• Declaration

 – At the beginning of a line
 – Ends with a colon

• Reference
 – Anywhere that an immediate operand is
allowed

Closing the Gap…
• Understand how to program computers at a

 “high-level”, much closer to a spoken
language

• Computers require precise, unambiguous,
 instructions

• Computers have no context… like people do
• However, we can imagine “higher-level”

instructions and “systematic” methods for
converting them into “low-level” assembly
instructions

Accessing Array Variables
• What we want:

 – The vector of related variables referenced via
numeric subscripts rather than distinct names

• Examples:

Accessing a “Data Structure”
• What we want:

 – Data structures are another aggregate variable
 type, where elements have “names” rather than
 indices

• Examples:

Conditionals

Loops

Computers spend a lot of time executing loops. Generally
loops come in 3 flavors:
 - do something “while” a statement is true
 - do something “until” a statement becomes true
 - repeat something a prescribed number of times

FOR Loops
• Most high-level languages provide loop constructs

that establish and update an iteration variable that
controls the loop’s behavior

Procedures
• Procedures or “subroutines” are

reusable code fragments, that are
“called”, executed, and then return back
from where they were called from.

Procedure Body
• The “Callee” executes its instructions and then “returns”

back to the “Caller”
• Uses the jump register (jr) instruction

routine: add $2,$0,$0
 addi $3,$0,1
loop: sge $4,$1,$3
 beq $0,$4,$0,return
 sub $1,$1,$3
 addi $2,$2,1
 addi $3,$3,2
 beq $0,$0,$0,loop
return: jr $0,$15

Parameters
• Most interesting functions have parameters that are

 “passed” to them by the caller
• Examples Mult(x, y), Sqrt(x)
• Caller and Callee must agree

 on a way to pass parameters
 and return results. Usually
 this is done by a convention

• For example, we could pass
 parameters in sequential
 registers ($1,$2, $3, etc.)
 and a single returned value
 in the next available register.

