A Simple Computer

" move flour,bowl)

— < \-\ add milk,bowl
~ ~ A add egqg,bowl
g_ Nerd Chef at work. !
. ~ 7 move bowl ,mixer

rotate mixer

Computing Models

* A simple computer model with a unified
notion of "data” and "instructions”

- "Von Neumann" architecture model
* The first key idea is a model of "memory”

* Others

— Computing with a table, state-machines,
Turing machines with many procedures, etc.

Memory

* Memory stores bits

* Bits are grouped into larger clusters called
words

* Each word has an address and contents

- Address is a memory location’'s "Name"

- Contents are a memory location’s "Value"

* Memory stores "Data” and "Instructions”

* We often refer to addresses symbolically like
variables in algebra

Address: | |

An Array of Words

- Addresses are 5

organized sequentially

1t

In an array
- Numerical 5:

+ Addresses are 2:

- Symbolic (Label)

4

- The numerical address

5:

is fixed (governed by
the hardware)

» Labels are user defined ”’I

Words = {Instructions, Data}

» Each word of memory can be interpreted as
either binary data (number, character, a bit
pattern, etc.) or as an instructions

* Not all bit patterns are valid instructions,
however.

* Instructions cause the computer to perform a
operation

* A program is a collection of instructions

* In general, instructions are executed
sequentially

Execution Loop

/ Y
Fetch an Fetch
Execute
Inetruction operande for .
lnetruction
from memo Inetruotlon

A J

* The execution of a program is governed by a simple
repetitive loop

- Typically, instructions are fetched from sequential
addresses

* A special register, call the program counter (PC), is used to
point to the current instruction in memory

The Stored-Program Computer

* Instructions and Data are stored together

in @ common memory Main Memory
- Sequential semantics: To the programmer
all instructions appear to be executed .
sequentially instruction
Key idea: Memory holde not only Central instruction
data, but coded instructions that Processing)
make up a program. Unit
data
CPU fetches and executes instructions from memory ... data
* The CPU is a H/W interpreter data

* Program IS simply data for this interpreter

* Main memory: Single expandable resource pool
- constrains both data and program size

- don't need to make separate decisions of
how large of a program or data memory to buy

Anatomy of an Instruction

* Instruction sets have a simple structure

- Broken into fie

ds

- Operation (Opcode) - Verb
- Operands - Noun
* Recipes provide a near perfect analogy

Operatiion Operands
movel |flour,bowﬂ‘/
add milk, bowl
add egqg,bowl

mix

bowl

Instruction Operands

* Operands come from three sources

- Memory

- As an immediate constant

(part of the instruction)

- From one of several a special "scratch-pad”
locations called "registers”

* Registers hold temporary results

* Most operations are performed using the
contents of registers

* Registers can be the "source” or "destination” or
instructions

UNC-101

»+ The UNC-101 is a simple 16-bit computer
* It has
- 65536 or 2! memory locations
- Each location has 16-bits
- 15 registers, that are referred to as ($1-$15)

- A special operand, $0, that can be used
anywhere that a register is allowed. It
provides a value of O, and cannot write to it

- A simple instruction set

Instructions: Concrete Examples

addi $4, $5, 1
Register[4] < Register[D] + 1

» All instructions are broken to parts
- Operation codes (Opcodes), usually mnemonic
- Operands usually stylized (e.g. "$" implies the

contents of the register, whose number
follows)

Arithmetic Instructions

add $D, $A, $B Reg[D] < Reg[A] + Reg[B]

sub $D, $A, $B Reg[D] < Reg[A] - Reg[B]

sgt $D, $A, $B Reg[D] < 1 if (Reg[A] > Reg[B])
0, otherwise

* Where D, A, B are one of {1,2, ... 15}
» All operands come from registers

Immediate Arithmetic Instructions

addi $D, $A, imm Reg[D] < Reg[A] + imm

subi $D, $A, imm Reg[D] < Reg[A] - imm

sgti $D, $A, imm Reg[D] < 1 if (Reg[A]> imm)
O, otherwise

- Where D, A are one of {1,2, ... 15}
+ 2 operands come from registers

» Third, "Immediate” operand is a constant, which
is encoded as part of the instructions

Multiply? Divide?

* You may have noticed that some math function
are missing, such as multiply and divide
» Often, more complicated operations are

implemented using a series of instructions
called a routine

» Simple operations lead to faster computers,
because it is often the case the speed of a
computer is limited by the most complex task it

has to perform. Thus, simple instructions
permit fast computer (KISS principle)

KISS == RISC?

* In the later 20 years of the 1900's computer
architectures focused on developing simple
computers that were able to execute as fast as
possible

* Led to minimalist, and simple, instruction sets

- Do a few things fast

- Compose more complicated operations from a
series of simple ones

* Collectively, these computers were called
Reduced Instruction Set Computers (RISC)

Load/Store

» Certain instructions are reserved for accessing
the contents of memory

* The *only™ instructions that access memory
* Move data to registers, operate on it, save it

st $D,$A memory[Reg[A]] < Reg[D]
ld $D,$A Reg[D] < memory[Reg[A]]
stx $D,$A.imm memory[Reg[A]+imm] < Reg[D]
ldx $D,$A,imm Reg[D] < memory[Reg[A]+imm]

Bitwise Logic Instructions

and $D, $A, $B Reg[D] < Reg[A] & Reg[B]
or $D, $A, $B Reg[D] < Reg[A] | Reg[B]
xor $D, $A, $B Reg[D] < Reg[A] "~ Reg[B]

Where D, A, B are one of {1,2, ... 15}
» All operands come from registers

* Performs a bitwise 2-input Boolean operation on the bits
of the A and B operands and saves the result in D

» Assuming Reg[1] = 12 (0x000c) and Reg[2] = 10 (Ox000aq)
and $3,$1,$2 # gives Reg[3] = 8 (0x0008)
or $3,$1,$2 # gives Reg[3] = 14 (0x000e)
xor $3,$1,$2 # gives Reg[3] = 6 (0x0006)

Closing the Gap

* A computer language closer to one we'd speak
- High-Level construct:
total = iteml + item?2
- Assembly language:
ldx $1,$0,iteml
ldx $2,$0,item?2
add $1,$1,$2
stx $1,$0 total
- Binary (machine language):

Oxf10f, 0x0008, Oxf20f, 0x0009,
0x0112, Oxf10e, 0x0007

An Assembler

» A symbolic machine language
* One-to-one correspondence between
computer instruction = line of assembly

. Trccljnsla’res symbolic code to binary machine
code

* Manages tedious details

- Locating the program in memory
- Figures out addresses

(e.g. iteml rather than 0x0008)

» Generates a list of numbers

labels

o/

{ main:

loop:

done:

end:

total:
item:

add
add
1dx
add
sgel
bne
addi
beq
stx
beq

.data
.data

Assembly Code

$1,$0,50
$2,50,50
$3,$82,1item
$1,81,83
$4,82,10
$0:$4,$0,done
$2,%2,1
OIO,$0,lOOp
$1,$0,total
$0,$0,$0,end

0

e Fe Fe He e I I H H

/\ —Comments

$1 = total
$2 = index
$3 = item[index]
total = total + $3
if (index >= 10)
we're done
next index instructions
loop back _. /
save total
the end

/‘ —Data

1,3,5,7,9,11,13,15,17,19

Assembly Errors

* Generally, the assembler will generate a

useful error message to help correcting
your program

~

add $1,$1,1 -'
beq $0,$0,loop
mul $1,$2,$3

ldx array,$0,$1

Labels

+ Declaration

- At the beginning of a line
- Ends with a colon

- Reference

- Anywhere that an immediate operand is
allowed

Declaration

‘\
f loop: addi $1,%1,1 refm)ce
beq $0,$0,$0,loop —.

X

Closing the Gap...

» Understand how to program computers at a
“high-level”, much closer to a spoken
language

- Computers require precise, unambiguous,
instructions

» Computers have no context... like people do

* However, we can imagine “higher-level"
instructions and "systematic” methods for
converting them into “low-level” assembly
instructions ..

o

Accessing Array Variables

- What we want:

- The vector of related variables referenced via
numeric subscripts rather than distinct names

- Examples: “MIPS Assembly”
“High-Level Language”
main: ldx $2,50,1
int a[5]; addi $3,80,2
. stx $3,82,a
main() { halt: beq $0,$0,$0,halt
int 1 = 3;
ali] = 2; Allocates epace for
} a 5 uninitiglized
integere
a: .space 5 _. ~

i: .data 3 V\B

Accessing a "Data Structure”

- What we want:

- Data structures are another aggregate variable
type, where elements have "names” rather than

indices
‘ EXC(H’\P'CSz “Assembly”

. . main: addi $1,$0,p
High-Level Language addi §2,$0,3
stx $2,81,0
struct point { addi $2,80,2
int x, y; stx $2,51,1

} P halt: beq §0,80,50,halt Allocatee space for

2 uninitiglized
main() { _ integere (8-bytes)
p.x = 3; P space 2)
= 2

P-Y ;
}

High-Level

1f (expr)
STUFF
}

High-Level

1f (expr)
STUFF1

} else {
STUFF2

}

{

{

Conditionals

Assembly:
(compute exprin $rx)
beq $0,8rx,S0,Lendif

(compile STUFF)
Lendif:

Assembly:
(compute expr in $rx)
beq $0,8rx,S$0,Lelse
(compile STUFFT)
beq $0,$0,50,Lendif

Lelse:

(compile STUFFZ)
Lendif:

There are little tricke
that come into play
when compiling
conditional code blocks.
For inetance, the
statement:

if (y < 32) {
X =x + 1;

}

becomes:
ldx §2,$0,y
sgei $§1,$2,32
bne §0,51,50,Lendif
ldx §2,$0,x
addi §2,$2,1
stx §2,50,x
Lendif:

Loops

High-Level: Assembly:
while (expr) { Lwhile:

STUFF (compute expr in $rx)
} beq $0,8rX,$0,Lendw

(compile STUFF)
beq $0,80,80,Lwhile

Lendw:

Alternate Assembly:
beq $0,80,80,Ltest

Lwhile:
(compile STUFF)

Ltest:
(compute expr in $rx)
bne $0,SrX,S$0,Lwhile
Lendw:

Computers spend a lot of time executing loops. Generally

loops come in 3 flavors:

- do something "while” a statement is true
- do something "until” a statement becomes true
- repeat something a prescribed number of times

FOR Loops

* Most high-level languages provide loop constructs
that establish and update an iteration variable that
controls the loob's behavior

High-Level code: Assembly:
int sum = 0; add §3,80,80 # i=0
Lfor: ldx §2,S0,sum
int 3[10] = 1dx $1,S3,a
{1,2,3,4,5,6,7,8,9,10}; add 8§2,$2,81
stx $§2,S0,sum
add 83,83,1 # i=i+1
int 1i; sgei $§2,83,10
beq §0,$2,80,Lfor
for (i=0; i<10; i=i+l1l) { Lendfor -
sum = sum + af[i];
} sum: .data 0x0
a data 1,2,3,4,5
data 6,7,8,9,10

Procedures

* Procedures or "subroutines” are
reusable code fragments, that are
"called”, executed, and then return back
from where they were called from.

Before branching to
the inetruction at
“routine” the

/ 3 rcee o c
beqg $15,$80,$80,routine - 7 ddrese oTth

following
. inetruction ie
add $-I-I$]-I$3 ‘X otored in the
deotinagtion

argument, $15

Procedure Body

* The "Callee"” executes its instructions and then “returns”
back to the “Caller"”

» Uses the jump register (jr) instruction

routine: add $2,$0,$0
addi $3,$0,1

loop: sge $4.$1,%$3
begq $0,$4,$0,return
sub $1,$1,%$3
addi $2,$2,1 e
Clddl $31$312 I® returne bPac
beq $O,$O’$O’|oop to the caller, $15
return: jr $0,$15 4

X

Parameters

* Most interesting functions have parameters that are

"passed” to them by the caller
+ Examples Mult(x, y), Sqrt(x)

* Caller and Callee must agree

on a way fo pass parameters
and return results. Usually

this is done by a convention 1dx
* For example, we could pass beq
parameters in sequential 1dx

registers ($1,$2, $3, etc.)
and a single returned value
in the next available register.

addi

Losde s oingle

paramcter into $1

[Y

$1r$01a/&

$15,80,$80,routine

$1,$0,X $2 hao the
__‘ -~ procedure’s

$ 1 ! $ 1 ’ $2\8 returned value

