

Thursday, September 20, 2007 (Ming C. Lin)
Review on Computational Geometry &
Collision Detection for Convex Polytopes

COMPUTATIONAL GEOMETRY

(Refer to O'Rourke's and “Dutch” textbook)

1. Extreme Points & Convex Hulls

 Providing a bounding volume

2. Voronoi Diagram&Delaunay Triangle

 For tracking closest points

3. Tetrahedralization

 Use in CD method & convex decomp

4. Convex Decomposition

 For CD btw non-convex polyhedra

5. Linear Programming

 Check if a pt lies w/in a convex polytope

Extreme Points and Convex Hull

Suppose we have a database of people with
their heights and weights.

 person weights (lbs) heights (feet)

 A 150 7.0
B 100 5.0
C 160 5.5
D 200 6.6
E 250 4.8

Which person(s) is(are) "extreme" in their
measurements?

1. Certainly A, who is the tallest
2. B, who is the lightest
3. E, who is the heaviest & shortest.
4. D "extreme"? Both heavy and tall.
 D maximizes sum of height & weight?
 No. But, D maximizes the following:
 (weight in lbs) + 100 *(height in feet)

CONCLUSION: A data point of (weight,
height) "extreme", iff there are some magic
numbers a and b so that within the group of
data points, it maximizes the function:

 a * (weight) + b * (height)

According to this definition, C is the only
person in our example that is not "extreme".

height

weight
4

5

6

7

50 100 150 200 250

B E

DA

C

Since the set of all points (x,y) that satisfy
ax + by = c forms a straight line, which
translates when c changes. A point in a finite
point set S in the plane is an extreme point
of S if one can draw a straight line through
the point and have all the other points of S
lie strictly on one side of the line.

Definition: Let S be a set of n points in R2.
A point p = (px, py) in S is an extreme point
for S iff there exists a, b in R such that for
all q = (qx, qy) in S with q != p we have

 a px+ b py > a qx+ b qy

Geometric interpretation: There is a line
with the normal vector (a,b) through p so
that all other points of S lies strictly on one
side of this line. Intuitively, p is the most
extreme point of S in the direction of the
vector v = (a,b).

Definition: The convex hull of a set S is the
intersection of all convex sets that contains
S. It should be easy to see that the convex
hull of S is the smallest convex polygon that
contains S and that the extreme points of S
are just the corners of that polygon. Solving
the convex hull problem implicitly solves
the extreme point problem.

Constructing Convex Hulls

• Graham’s Scan

• Marriage before Conquest

(similar to Divide-and-Conquer)

• Gift-Wrapping

• Incremental

And, many others ……

Lower bound: O(n log H), where n is the
input size (No. of points in the given set)
and H is the No. of the extreme points.

Voronoi Diagrams

Proximity Problem: Given a set S of n
points in R2 , for each point pi in S what is
the set of points (x, y) in the plane that are
closer to pi than any other point in S ?

Answer: Voronoi diagram of the set S

Intuition: To partition the plane into
regions, each of these is the set of points that
are closer to a point pi in S than any other.
The partition is based on the set of closest
points, e.g. bisectors that have 2 or 3 closest
points.

Given two points pi and pj, the set of points
closest to pi than pj is just the half-plane
Hi(pi ,pj) containing pi . Hi(pi ,pj) is defined
by the perpendicular bisector to the line
segment of pipj . The set of points closer to
pi than any other point is formed by the
intersection of at most n-1half-planes, where
n is the number of points in the set S . This
set of points, Vi(S) is called the "Voronoi
polygon" associated with pi. Formally, Vi(S)
can be defined as the following:

 Vi(S)={x in R2| d(x, pi) ≤ d(x, q); all q in S}

The collection of n Voronoi polygons given
the n points in the set S is the "Voronoi
diagram", Vor(S), of the point set S. Every
point (x, y) in the plane lies within a
Voronoi polygon. If a point (x,y) in Vi(S),
then pi is the point nearest to the point (x,y).
The similar idea applies to the same problem
in 3D or higher dimensional space.

Generalized Voronoi Diagram

Generalized Voronoi Diagram: the
extension of the Voronoi diagram to higher
dimensional features (such as edges and
facets, instead of points); i.e. the set of
points closest to a feature, e.g. that of a
polyhedron.

FACTS:

• In general, the generalized Voronoi

diagram has quadratic surface boundaries
in it.

• If the polyhedron is convex, then its

generalized Voronoi diagram has planar
boundaries.

Voronoi Regions

Definition: A "Voronoi region"
associated with a feature is a set of
points that are closer to that feature
than any other.

FACTS:

• The Voronoi regions form a partition of

space outside of the polyhedron
according to the closest feature.

• The collection of Voronoi regions of

each polyhedron is the generalized
Voronoi diagram of the polyhedron.

• The generalized Voronoi diagram of a

convex polyhedron has linear size and
consists of polyhedral regions. And, all
Voronoi regions are convex.

Delaunay Triangulations

The Delaunay triangulation is the
topological dual (graph theoretical dual or
combinatorial theoretic dual) of the Voronoi
diagram.

Duality: A point in the plane has two
parameters: (x,y). A (non-vertical) line in
the plane also has two parameters: its slope
and y-intercept. The mapping between a set
of point in “primal plane” to its “dual plane”
(and vise versa) has a one-to-one
correspondence.

Let p := (px,py). The dual of p is the line
defined as p* := (y = pxx – py). The dual of a
line l := (y = mx + b) is the point p such
that p* = l. That is, l* := (m, -b).

The same idea extends to 3D……

FACTS:

• The vertices of the Delaunay triangulation are

the sites or Voronoi vertices (corresponding to
the regions of the Voronoi diagram).

• We connect two sites with an edge in the

Delaunay triangulation if and only if their
Voronoi regions share an edge (thus, the two
diagrams have the same number of edges,
though the Delaunay triangulation has no
unbounded edges).

• A point/vertex in the Voronoi diagram

corresponds to a Delaunay triangle, a Voronoi
edge to a Delaunay edge, and a Voronoi
polygon to a Delaunay vertex (site). Note,
however, that dual edges of the two graphs do
not necessarily intersect.

• We may recover the Voronoi diagram by

reversing the process of constructing the
Delaunay triangulation.

Tetrahedralization

Tetrahedralization: Triangulation of n
points in 3D. The union of resulting
tetrahedra is the original solid formed by the
n points in 3D. Tetrahedralization is an
important process of convex decomposition.

NOTE: Held, Klosowski and Mitechell
(1995) uses a tetrahedral mesh for checking
interference between fly-by objects in VR
environments.

Convex Decomposition

Convex decomposition: the process to
divide up a non-convex polyhedron into
pieces of convex polyhedra.

FACTS:

• Optimal convex decomposition of general

non-convex polyhedra can be NP-hard.

• To partition a non-degenerate simple

polyhedron takes O((n + r2) logr) time,
where n is the number of vertices and r is
the number of reflex edges of the original
non-convex object.

• In general, a non-convex polyhedron of n

vertices can always be partitioned into
O(n2) convex pieces.

Linear Programming

In general, a d-dimensional linear program-
ming (or linear optimization) problem may
be posed as follows:

Given a finite set A in Rd
For each a in A, a constant Ka in R, c in Rd
Find x in Rd which minimize <x, c>
Subject to <a, x> ≥ Ka, for all a in A .

where <*, *>: standard inner product in Rd.

Lower Bound: This problem can be solved
in linear time, as proposed by Seidel.

The function to be minimized is the
objective function and the set of constraints
together with the objective function is a
linear program.

 The number of variable, d, is the
dimension of linear program.

 Linear constraints can be viewed as half-

spaces in Rd. The intersection of these
half-spaces, which is the set of points
satisfying all constraints, is called the
feasible region of the linear program.
Points (solutions) in this region are
called feasible, points outside are
infeasible.

 The objective function can be viewed as

a direction in Rd, minimizing <c,x>.
Therefore, the solution to a linear
program is a point in the feasible region
that is extreme in the direction of the
vector c.

Linear programming can be used to solve
the problem of collision detection between
two convex polytopes. Each convex
polygon (polyhedron) can be viewed as a set
of constraints in 2D (3D). We want to find a
feasible solution (point) to the following:

Given two finite sets A, B in Rd
For each a in A and b in B,
Find x in Rd which minimize whatever
Subject to <a, x> > 0, for all a in A
 And <b, x> < 0, for all b in B

Where d = 2 (or 3).

Without loss of generality, we can assume
that x = (x1, ... , xd) in Rd with minimum
xd, which would be the case if c = (0, ... , 0,
1) in Rd. This can be easily achieved with a
coordinate transformation to change the
basis. Still retaining the full generality, we
can modify the form of constraints by
isolating xd in the expansion of <x,a> .

We obtain three possible types of
constraints:

 xd ≥ a1x1 + ... + ad-1 xd-1 + ad

 xd ≤ a1x1 + ... + ad-1 xd-1 + ad

 0 ≤ a1x1 + ... + ad-1 xd-1 + ad

The three types of constraints depending on
if a0 is positive, negative or zero,
respectively. We partition the set A
accordingly, that is A+={a in A : ad >
0}, A-={a in A : ad < 0}, A0={a in A :
ad=0}.

Renaming the variables, we arrive at out
canonical form for the 2-dimensional linear
programming:

Given a finite set A in R2

Find (x , y) in R2 which minimize y
Subject To y ≥ a1x + a0 , for all a in A+
 y ≤ a1x + a0 , for all a in A-
 0 ≤ a1x + a0 , for all a in A0

Note that the three types of constraints
correspond to upper half-plane, lower-half plane
and "side-way" half-plane constraints on (x, y)
respectively.

For 3-dimensional linear programming, instead
of looking for a feasible planar point (x, y) with
smallest y-coordinate, we search for a feasible
point (x, y, z) in R3 with the smallest z-
coordinate. Our constraints are now half-spaces
bounded by planes in R3; we require the solution
point to lie in the intersection of a set of such
half-spaces.

Two-Dimensional Collision Detection

• Simple Clipping:
Cohen-Sutherland Line-Clipping Algorithm

 Clipping -- check if a given image/object lies within the
boundaries of the window screen coordinates

 Xmin ≤ X ≤ Xmax and Ymin ≤ Y ≤ Ymax

 Trivial Reject or Accept

• Cyrus-Beck Techniques (1978):
A Parametric Line-Clipping Algorithm

 Calculate the value of the parameter t , where lines intersect

Edge Ei Inside of clip rectangleOutside of
clip region

Ni * [P(t) - Pi] = 0

Ni * [P(t) - Pi] < 0

Ni * [P(t) - Pi] > 0

Ni

Pi

P1

P0

Dot product for 3 points outside, inside, and on the boundary

of the clip region. The line: P(t) = P0 + t (P1 - P0)

%% Pseudo Code for Cyrus Beck Parametric Line-Clipping Algorithm
{
 precalculate Ni and select a Pi for each edge Ei

 for (each line segment to be clipped) {
 if (P1 = P0)
 line is degenerate so clip as a point;
 else {
 D = P1 - P0;
 te = 0;
 tl = 1;
 for (each candidate intersection with a clip edge) {
 if (Ni * D # 0) {
 t = - { Ni * [P0 - Pi] } / (Ni * D)
 if (Ni * D > 0)
 tl = min (tl, t);
 else
 te = max (te, t);
 }
 }
 if (te > tl)
 return nil;
 else
 return P(te) and P(tl) as true clip intersection points;
 }
 }
}

	3. Tetrahedralization
	Extreme Points and Convex Hull
	Voronoi Diagrams
	Generalized Voronoi Diagram
	Generalized Voronoi Diagram: the extension of the Voronoi diagram to higher dimensional features (such as edges and facets, instead of points); i.e. the set of points closest to a feature, e.g. that of a polyhedron.
	FACTS:
	 In general, the generalized Voronoi diagram has quadratic surface boundaries in it.
	 If the polyhedron is convex, then its generalized Voronoi diagram has planar boundaries.

	Convex Decomposition
	Linear Programming
	 Simple Clipping:
	Cohen-Sutherland Line-Clipping Algorithm

	 Cyrus-Beck Techniques (1978):
	A Parametric Line-Clipping Algorithm

