
 

Thursday, September 20, 2007   (Ming C. Lin) 
Review on Computational Geometry  & 
Collision Detection for Convex Polytopes    
  
COMPUTATIONAL GEOMETRY 
 

(Refer to O'Rourke's and “Dutch” textbook ) 
 
1. Extreme Points & Convex Hulls 

 Providing a bounding volume 
 
2. Voronoi Diagram&Delaunay Triangle 

 For tracking closest points 
 
3. Tetrahedralization  

 Use in CD method & convex decomp 
 
4. Convex Decomposition 

 For CD btw non-convex polyhedra 
 
5. Linear Programming 

 Check if a pt lies w/in a convex polytope 
 



 
Extreme Points and Convex Hull 

 
 
 

Suppose we have a database of people with 
their heights and weights. 
 

 person   weights (lbs) heights (feet) 
 

  A            150   7.0 
B            100   5.0 
C            160   5.5 
D                 200   6.6 
E                    250   4.8 

 

Which person(s) is(are) "extreme" in their 
measurements?   
 
1. Certainly A, who is the tallest 
2. B, who is the lightest  
3. E, who is the heaviest & shortest. 
4. D "extreme"?  Both heavy and tall. 
     D maximizes sum of height & weight? 
     No.  But, D maximizes the following: 
     (weight in lbs) + 100 *(height in feet) 



CONCLUSION:  A data point of (weight, 
height) "extreme", iff there are some magic 
numbers a  and b  so that within the group of 
data points, it maximizes the function: 
 

   a * (weight) + b * (height) 
 

According to this definition, C is the only 
person in our example that is not "extreme".  
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Since the set of all points (x,y)  that satisfy  
ax + by = c  forms a straight line, which 
translates when c changes. A point in a finite 
point set S in the plane is an extreme point 
of S if one can draw a straight line through 
the point and have all the other points of S 
lie strictly on one side of the line.  



 
Definition:  Let S be a set of n points in R2.  
A point p = (px, py) in S is an extreme point  
for S iff there exists a, b  in R  such that for 
all q = (qx, qy) in S with q != p we have 
 
        a px+ b py > a qx+ b qy 
 
Geometric interpretation: There is a line 
with the normal vector (a,b) through p so 
that all other points of S lies strictly on one 
side of this line.  Intuitively, p  is the most 
extreme point of S in the direction of the 
vector v = (a,b). 
 
Definition:  The convex hull of a set S is the 
intersection of all convex sets that contains 
S.  It should be easy to see that the convex 
hull of S is the smallest convex polygon that 
contains S and that the extreme points of S 
are just the corners of that polygon.  Solving 
the convex hull problem implicitly solves 
the extreme point problem.   



 
Constructing Convex Hulls 

 
 
• Graham’s Scan 
 
• Marriage before Conquest 

(similar to Divide-and-Conquer) 
 

• Gift-Wrapping 
 
• Incremental 
 
And, many others …… 
 
 
 
Lower bound: O(n log H), where n is the 
input size (No. of points in the given set) 
and H is the No. of the extreme points. 
 



 

Voronoi   Diagrams 
 
 
 
Proximity Problem:  Given a set S of  n  
points in R2 ,  for each point pi in S  what is 
the set of points (x, y)  in the plane that are 
closer to pi  than any other point in S ? 
 
Answer: Voronoi diagram of the set S  
 
Intuition:  To partition the plane into 
regions, each of these is the set of points that 
are closer to a point pi in S than any other.  
The partition is based on the set of closest 
points, e.g. bisectors that have 2 or 3 closest 
points.   



 
Given two points pi and pj, the set of points 
closest to pi than pj is just the half-plane 
Hi(pi ,pj)  containing pi .  Hi(pi ,pj) is defined 
by the perpendicular bisector to the line 
segment of pipj .  The set of points closer to 
pi than any other point is formed by the 
intersection of at most n-1half-planes, where 
n  is the number of points in the set S . This 
set of points, Vi(S) is called the "Voronoi 
polygon" associated with pi. Formally, Vi(S)   
can be defined as the following: 
 
 Vi(S)={x in R2| d(x, pi) ≤ d(x, q); all q in S} 
 
The collection of n Voronoi polygons given 
the n points in the set S is the "Voronoi 
diagram", Vor(S), of the point set S.  Every 
point (x, y) in the plane lies within a 
Voronoi polygon.  If a point (x,y)  in Vi(S),  
then pi is the point nearest to the point (x,y).  
The similar idea applies to the same problem 
in 3D or higher dimensional space.   



 
 

Generalized  Voronoi  Diagram 
 
 

Generalized Voronoi Diagram: the 
extension of the Voronoi diagram to higher 
dimensional features (such as edges and 
facets, instead of points); i.e. the set of 
points closest to a feature, e.g. that of a 
polyhedron.   
 
FACTS: 
 
• In general, the generalized Voronoi 

diagram has quadratic surface boundaries 
in it.   

 
• If the polyhedron is convex, then its 

generalized Voronoi diagram has planar 
boundaries.   



Voronoi   Regions 
 
 
Definition:  A "Voronoi region" 
associated with a feature is a set of 
points that are closer to that feature 
than any other.   
 
FACTS: 
 
• The Voronoi regions form a partition of 

space outside of the polyhedron 
according to the closest feature.   

 
• The collection of Voronoi regions of 

each polyhedron is the generalized 
Voronoi diagram of the polyhedron.   

 
• The generalized Voronoi diagram of a 

convex polyhedron has linear size and 
consists of polyhedral regions. And, all 
Voronoi regions are convex. 



Delaunay  Triangulations 
 
 
The Delaunay triangulation is the 
topological dual (graph theoretical dual or 
combinatorial theoretic dual) of the Voronoi 
diagram.  
 
Duality:   A point in the plane has two 
parameters: (x,y).  A (non-vertical) line in 
the plane also has two parameters: its slope 
and y-intercept.  The mapping between a set 
of point in “primal plane” to its “dual plane” 
(and vise versa) has a one-to-one 
correspondence.   
 
Let p := (px,py).  The dual of p is the line 
defined as p* := (y = pxx – py). The dual of a 
line l := (y = mx + b)  is the point p such 
that p* = l.  That is, l* := (m, -b). 
 
The same idea extends to 3D…… 



 
FACTS: 
 
• The vertices of the Delaunay triangulation are 

the sites or Voronoi vertices (corresponding to 
the regions of the Voronoi diagram).   

 
• We connect two sites with an edge in the 

Delaunay triangulation if and only if their 
Voronoi regions share an edge (thus, the two 
diagrams have the same number of edges, 
though the Delaunay triangulation has no 
unbounded edges).  

 
• A point/vertex in the Voronoi diagram 

corresponds to a Delaunay triangle, a Voronoi 
edge to a Delaunay edge, and a Voronoi 
polygon to a Delaunay vertex (site).  Note, 
however, that dual edges of the two graphs do 
not necessarily intersect.   

 
• We may recover the Voronoi diagram by 

reversing the process of constructing the 
Delaunay triangulation.   



 
Tetrahedralization 

 
 
 
Tetrahedralization: Triangulation of n 
points in 3D. The union of resulting 
tetrahedra is the original solid formed by the 
n points in 3D.  Tetrahedralization is an 
important process of convex decomposition. 
 
 
NOTE:  Held, Klosowski and Mitechell 
(1995) uses a tetrahedral mesh for checking 
interference between fly-by objects in VR 
environments.    
 



 
Convex  Decomposition 

 
 
Convex decomposition: the process to 
divide up a non-convex polyhedron into 
pieces of convex polyhedra.    
 
FACTS:   
 
• Optimal convex decomposition of general 

non-convex polyhedra can be NP-hard.   
 
• To partition a non-degenerate simple 

polyhedron takes O((n + r2) logr)  time, 
where n  is the number of vertices and r is 
the number of reflex edges of the original 
non-convex object.   

 
• In general, a non-convex polyhedron of n 

vertices can always be partitioned into 
O(n2)  convex pieces.   



 
 

Linear  Programming 
 
 
 
In general, a d-dimensional linear program-
ming (or linear optimization) problem may 
be posed as follows:  
  
Given a finite set A in Rd  
For each a  in A, a constant Ka  in R, c in Rd  
Find  x in Rd which minimize <x, c> 
Subject to <a, x>  ≥   Ka, for all a  in A .  
 
where <*, *>: standard inner product in  Rd.   
 
 
 
Lower Bound:  This problem can be solved 
in linear time, as proposed by Seidel. 



The function to be minimized is the 
objective function and the set of constraints 
together with the objective function is a  
linear program.   
 

 The number of variable, d, is the 
dimension of linear program.   

 
 Linear constraints can be viewed as half-

spaces in Rd.  The intersection of these 
half-spaces, which is the set of points 
satisfying all constraints, is called the 
feasible region of the linear program.  
Points (solutions) in this region are 
called feasible, points outside are 
infeasible.  

 
 The objective function can be viewed as 

a direction in Rd, minimizing <c,x>.  
Therefore, the solution to a linear 
program is a point in the feasible region 
that is extreme in the direction of the 
vector c.  

 



 
 
 
Linear programming can be used to solve 
the problem of collision detection between 
two convex polytopes.  Each convex 
polygon (polyhedron) can be viewed as a set 
of constraints in 2D (3D).  We want to find a 
feasible solution (point) to the following: 
 
Given two finite sets A, B in Rd  
For each a  in A and b  in B,  
Find x in Rd which minimize whatever 
Subject to <a, x>   >  0, for all a in A 
 And <b, x>   <  0, for all b in B 
 
Where d = 2 (or 3). 
 



Without loss of generality, we can assume 
that x = (x1, ... , xd)  in  Rd  with minimum 
xd, which would be the case if  c = (0, ... , 0, 
1)  in Rd.  This can be easily achieved with a 
coordinate transformation to change the 
basis.   Still retaining the full generality, we 
can modify the form of constraints by 
isolating xd in the expansion of  <x,a> .   
 
We obtain three possible types of 
constraints:   
 
  xd  ≥  a1x1 +  ...  + ad-1 xd-1 + ad

  xd  ≤  a1x1 +  ...  + ad-1 xd-1 + ad

   0  ≤  a1x1 +  ...  + ad-1 xd-1 + ad
 
The three types of constraints depending on 
if a0 is positive, negative or zero, 
respectively.     We  partition  the  set   A  
accordingly,   that  is  A+={a  in  A : ad > 
0},  A-={a  in  A :  ad  <  0}, A0={a in A :  
ad=0}.   



 
Renaming the variables, we arrive at out 
canonical form for the 2-dimensional linear 
programming: 
 

Given  a finite set A in R2

Find  (x , y)   in R2 which minimize y 
Subject To  y  ≥  a1x + a0 , for all a  in A+  
    y  ≤  a1x + a0 , for all a  in A-  
    0  ≤  a1x + a0 ,  for all a  in A0  
 
Note that the three types of constraints 
correspond to upper half-plane, lower-half plane 
and "side-way" half-plane constraints on (x, y)  
respectively.   
 
For 3-dimensional linear programming, instead 
of looking for a feasible planar point (x, y) with 
smallest y-coordinate, we search for a feasible 
point (x, y, z) in R3 with the smallest z-
coordinate.  Our constraints are now half-spaces 
bounded by planes in R3; we require the solution 
point to lie in the intersection of a set of such 
half-spaces.  



Two-Dimensional Collision Detection 
 

 

• Simple Clipping: 
Cohen-Sutherland Line-Clipping Algorithm 
 

 Clipping -- check if a given image/object lies within the 
boundaries of the window screen coordinates  

 

 Xmin ≤ X ≤  Xmax  and  Ymin ≤  Y ≤ Ymax  
 

 Trivial Reject or Accept 
 
 

• Cyrus-Beck Techniques (1978):   
A Parametric Line-Clipping Algorithm 
 

 Calculate the value of the parameter t , where lines intersect 

Edge Ei Inside of clip rectangleOutside of 
clip region

Ni * [P(t) - Pi ] = 0

Ni * [P(t) - Pi ] < 0

Ni * [P(t) - Pi ] > 0

Ni

Pi

P1

P0



 
                        
 
Dot product for 3 points outside, inside, and on the boundary 

of the clip region.   The line: P(t) = P0 + t (P1 - P0) 
 
%%  Pseudo Code for Cyrus Beck Parametric Line-Clipping Algorithm 
{ 
 precalculate Ni and select a Pi for each edge Ei 
 
 for (each line segment to be clipped) { 
  if (P1 = P0) 
            line is degenerate so clip as a point; 
        else { 
   D = P1 - P0; 
    te = 0; 
     tl  = 1; 
     for (each candidate intersection with a clip edge) { 
        if (Ni * D # 0)  { 
    t =  - { Ni * [P0 - Pi] }  /  (Ni * D) 
            if (Ni * D > 0)  
         tl = min (tl, t);  
    else  
         te = max (te, t); 
        }  
   } 
   if (te > tl) 
       return nil; 
   else 
                 return P(te) and P(tl) as true clip intersection points; 
  }  
 } 
} 
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