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Motivation

I ”The volume of vehicular traffic in the past several years has
rapidly outstripped the capacities of the nation’s highways. It
has become increasingly necessary to understand the
dynamics of traffic flow and obtain a mathematical description
of the process.” –Greensberg, 1959

I ...and the situation hasn’t improved.
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Can science help?

Some fairly wild claims.
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Research Timeline

I 1935 – Early research on vehicular traffic by Greenshields.
I 1950s – Research activity on traffic in operations research

and engineering.
I 1992 – Physicists take notice, starting with Biham, Nagel and

Schreckenberg, and Kerner and Konhauser.
I And an avalanche of research followed, including in computer

science.
I These papers view traffic as a self-driven nonequilibrium

system.
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Nonequilibrium Systems

I Some systems are not closed. They exchange
I Energy,
I Particles, or
I Information

with the surrounding environment.
I These systems are called Nonequilibrium systems.
I They often show complex behavior, and no general results

exist as they do for gasses, liquids and solids in equilibrium.
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Particle Pair Interactions

I Consider the equations of motion from classical mechanics for
a particle α subject to pair interactions with objects �.

mαẍα(t) =
∑
�(,α)

Fα�(t) (1)

I These interaction forces usually depend on the distance
dα� = (x� − xα), but can also depend on other properties, like
the velocities.

I How would a celestial system be characterized?
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Driven Many-Particle Systems

I A many-body system subject to additional interactions with
the environment is said to be driven.

I Examples include fluids subject to boundary forces or sand
subject to vibration.

I Additional forces need to be added, including
I F0(x, t) – forces due to boundary interactions and force fields,
I Ffr(t) – frictional forces, and
I ζa(t) – individual fluctuations due to thermal interactions or

variation in particle surface structure.
I Combining this with Eq. (1), we have

mαẍα(t) = F0(x, t) − Ffr(t) +
∑
�(,α)

Fα�(t) + ζa(t). (2)

8/58



Outline
Introduction

Modeling Approaches
Conclusion

Background
Mathematical Framework
Empirical Results
Traffic Phenomena

Self-Driven Many-Particle Systems

I To model living systems of cells, animals or even humans, we
can use the simple abstraction of the self-driven particle.

I These systems are driven systems, but the driving forces are
self-produced.

I We can modify Eq. (2) by changing F0(x, t), the external
driving force to, F0(x, t), a self-produced driving force.

I Additionally, Newton’s third law, (action=reaction) does not
necessarily apply.
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Self-Driven Many-Particle Systems, 2

I Let us express a particle’s acceleration in terms of scaled
quantities.

I Then our driving force is F0
α(t) = γαv0

α(t)e0
α(t), where

γα = mα/τα.

I In these systems, the idea of mass is not always well defined.
So we’ll define Fα�(t) = mαfα� and ζα(t) = γαξα(t).
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Self-Driven Many-Particle Systems, 3

I Using these, we can define our particle’s acceleration as

dvα(t)
dt

=
v0
α(t)e0

α(t) + ξα(t) − vα(t)
τα

+
∑
�(,α)

fα�(t). (3)

I We see that, with a relaxation time τα, the particle will adopt
the desired speed v0

α(t) and direction e0
α(t).

I This desired velocity is perturbed by the fluctuations and
interaction forces.
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Self-Driven Many-Particle Systems, 4

I We can further simplify this equation by assuming instaneous
relaxation, τα ≈ 0.

I This yields an equation for the velocity of particle α of

vα(t) = v0
α(t)e0

α(t) +
∑
�(,α)

vα�(t) + ξα(t), (4)

where v = ταfα�(t).

12/58



Outline
Introduction

Modeling Approaches
Conclusion

Background
Mathematical Framework
Empirical Results
Traffic Phenomena

Can we really simulate humans as particles?

I Human behavior appears chaotic, irregular, and
unpredictable, so when can we use the above equations?

I We can use them in situations in which
I There is movement in a continuous space (possibly an

abstract space), and
I Most of the movement is due to deterministic processes we

can model.

I Traffic seems to meet these requirements: we drive in a
continuous space and most actions can be considered
automatic, such as turning, accelerating, and changing lanes.
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Methods of Measurement

I Previous empirical data gathering techniques include
I aerial photography,
I equipment in cars, and
I detectors at road cross sections x, the most widely used

technique.
I An example is the single-loop induction detector, below.

Figure: A buried single-induction loop detector.
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Detector Measurements

I As detectors are the most widely used form of data gathering,
let’s investigate what they measure.

I Over a time interval ∆T, a detector can measure
I ∆N – the number of vehicles α that cross the detector,
I t0

α and t1
α – the times at which a vehicle reaches the detector

and leaves the detector,
I vα – a vehicle’s velocity, and
I lα – a vehicle’s length.

I From these, we can calculate

Q(x, t) =
∆N
∆T

, (5)

the vehicle flow, as well as the mean velocity,

V(x, t) = 〈v〉 =
1

∆N

∑
α

vα. (6)
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Density and Measurement Issues

I Using Eqs. 5 and 6, we can define density using the
fluid-dynamic equation,

ρ(x, t) = Q(x, t)/V(x, t). (7)

I However, there is a problem: the velocity distribution depends
on how it’s measured.

I If the velocity distribution is measured over a length ∆X, the
result will count fast moving cars more often than slow moving
cars.

I This is not true if the distribution is measured over a time
interval, ∆T.

I Our density equation mixes a temporal measurement, Q, with
a spatial, V, which causes a slight bias.
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The Fundamental Diagram

I The relations between flow, average velocity, and density have
long held academic interest.

I We can develop an empirical flow-density relation, shown
below, called the fundamental diagram,

Qe(ρ) = ρVe(ρ), (8)

where Ve and Qe are empirically gathered.

Figure: The fundamental diagram.
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Fundamental Diagram Without Jams

I By removing data of cars in wide moving jams, we get a
different flow-density relation, which calls into question the
fundamental diagram.

I Here, the congested traffic is termed synchronized flow as the
velocities of the cars tend to be the same.
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Observations of the Fundamental Diagram

I At low densities, ∃ an almost 1D relation between flow and
density. (Red)

I We can approximately divide free traffic from congested traffic
at ρVsep. (Blue)

I There is a critical density region ρcr where we have either free
or congested traffic. (Green)

I The flow for synchronized traffic is scattered in a wide region.
(Orange)

Figure: The fundamental diagram.
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Further Empirical Observations

I Driver behavior appears to be influenced by the clearance to
the next car and by relative velocity.

I Different lanes have different average velocities, but the
difference decreases almost linearly with density.

I Even in congested traffic, when velocities are nearly
synchronized, the average speed for cars is faster than that of
trucks.
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Correlations

I At low densities, there is a strong positive correlation between
flow and density.

I At high density, there is a strong negative correlation between
velocity and density.

I The velocity average and variance are correlated.
I In congested traffic, the average velocity of neighboring lanes

are synchronized, and
I density changes in neighboring lanes are correlated.
I In free traffic, velocities of successive cars are seemingly

independent, but
I successive cars have long range velocity correlation in

synchronized flow traffic, which is interpreted as platoons of
cars.
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Stop-and-go Waves

I A phenomenon of congested traffic is stop-and-go waves.
I The velocity of the fluent stage does not depend on the flow,

but the oscillation frequency does.
I The duration of a wave is between 4 and 20 minutes, and the

average wavelength is between 2.5 and 5 km.
I The probability of a fluent stage breaking down into

congestion is dependent on the waiting time.
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Phantom Traffic Jams

I Many traffic jams seem to have no cause - no accident or
bottleneck.

I However, aerial photography has traced these jams to a
vehicle changing lanes in front of a chain of closely following
cars.

I A small disturbance like this can cause a large jam formation.

I Phantom traffic jam→ some jerk’s traffic jam

23/58
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Wide Moving Jams

I Traffic jams can propagate upstream, against the flow of
traffic.

I The speed at which they propagate C is roughly constant at
15 ± 5km/h.

I Additional ”universal” characteristics include
I the density ρjam inside jams,
I the average velocity and flow within jams (∼ 0),
I the outflow of jams (approximately 2/3 of free flow Qmax), and
I the density ρout downstream of jams.
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Extended Congested Traffic – or Synchronized Flow

I The most common form of jam is the type that forms every
rush hour.

I These jams are caused by some bottleneck ∈ –on-ramps,
lane number reductions, accidents, speed limits, road works,
gradients, curves, road conditions, visibility conditions, etc.˝.

I The congested velocity drops, but is finite.
I The flow drops, but less so than the velocity. It also exhibits a

near linear flow-density relation.
I The front of this type of jam is fixed at the bottleneck.
I The end of the jam will move depending on the incoming flow:

I If the incoming flow is greater than the bottleneck capacity
Qbot, the end moves upstream,

I Otherwise it moves downstream.
25/58
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Theories of Jam Formation

I Kerner and Rehborn pointed out that the transition from free
to congested traffic appears similar to the phase transition
from supersaturated water to vapor.

I It is often triggered by a small overcritical peak in traffic flow.
I This perturbation grows and moves upstream.

I Stop-and-go traffic has been questioned by Kerner and
Daganzo, who suggest a mechanism for jam formation:

I In synchronized flow, upstream of the bottleneck, there is a
pinch region.

I Within this region, there are spontaneous births of small
density clusters.

I Wide moving jams can form from the merging of these
clusters.
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Timeline of Modeling Approach Invention

I 1950s – Microscopic (follow-the-leader) models
I 1950s – Macroscopic (fluid-dynamic) models
I 1960s – Mesoscopic (gas-kinetic) models
I 1990s – Cellular Automata models
I Over 100 models total from engineering, mathematics,

operations research, physics, and computer science.
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Criteria for Good Models

I Models should have only a few, intuitive parameters and
variables.

I Variables should be easy to measure.
I Models should reproduce all known traffic phenomena.
I Models should be theoretically consistent and make new

predictions.
I Models should not lead to collisions (unless that is the

intent..).
I Models should allow for fast numerical simulation.
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Microscopic Framework

I Microscopic models assume the acceleration of car α is
dependent on neighboring vehicles.

I The primary influence is the leading vehicle, α − 1, i.e. the car
ahead.

I The model of behavior is then
dvα(t)

dt
=

v0
α + ξα(t) − vα(t)

τα
+ fα,α−1(t), (9)

I where fα,α−1 describes the effect of α − 1 on α, and is
generally a function of

I relative velocity, ∆vα(t),
I the velocity of α, and
I the headway, dα(t) = xα−1(t) − xα(t), or clearance,

sα(t) = dα(t) − lengthα−1.
29/58
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Microscopic Framework Simplification

I Our interaction function is then f (sα(t), vα(t),∆vα(t)).
I Let us also define a traffic-dependent velocity as

ve(sα, vα,∆vα) = v0 + τf (sα, vα,∆vα).
I Ignoring fluctuations, we can rewrite our model as

dvα
dt

=
ve(sα, vα,∆vα)

τ
(10)

30/58



Outline
Introduction

Modeling Approaches
Conclusion

Overview
Microscopic
Cellular Automata
Macroscopic Models
Mesoscopic Models

Noninteger Car-following Model, 1

I The simplest assumption for a follow the leader model is that
the clearance is equal to the velocity-dependent safe
distance, or

sα(t) = s∗(vα(t)) = s′ + Tvα, (11)

where T is the safe time clearance.
I Differentiation yields

dvα(t)
dt

=
vα−1 − vα

T
. (12)

I However, this model does not have the empirically observed
stop-and-go waves.

I To produce these, the model is modified into a delay
differential equation by adding a time delay,

dvα(t + ∆t)
dt

=
vα−1 − vα

T
. (13)
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Noninteger Car-following Model, 2

I The time delay does yield stop-and-go traffic, but it also
causes cars to collide.

I To remedy this, and other issues, a generalized sensitivity
factor was introduced,

1
T

=
1
T0

(vα(t + ∆t)m1

(xα−1(t) − xα(t))m2
. (14)

I Plugging this equation into Eq. (13) and simplifying yields

fm1(vα(t + ∆t)) = c0 + c1fm2(dα(t)), (15)

I with fk(z) = z1−k if k , 1 and ln(z) otherwise, and c1, c0 are
integration constants.

32/58



Outline
Introduction

Modeling Approaches
Conclusion

Overview
Microscopic
Cellular Automata
Macroscopic Models
Mesoscopic Models

Newell Model

I A flaw in the separation distance model above is that cannot
describe the behavior of a single vehicle, i.e. for dα → inf.

I In this case, the car α should adapt to a desired velocity v0
α.

I Generally, we want α to adapt to a distance-dependent
”optimal” velocity v′e(dα), so that safety is taken into account.

I One model, by Newell of this assumes a delay,

vα(t + ∆t) = v′e(dα(t)) = ve(sα(t)). (16)
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Optimal Velocity Model

I Alternatively Bando et al. suggest the velocity

v′e(d) = (v0/2)(tanh(d − dc) + tanh dc) (17)

with constants v0, dc in the optimal velocity model,

dvα(t)
dt

=
v′e(dα(t)) − vα(t)

τ
. (18)

I This latter equation can model the amplification of a small
perturbation into a traffic jam if

I the relaxation time τ is large or
I the change in ve(sα) with clearance sα is large.
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Intelligent Driver Model, 1

I A problem with the above model is that it does not consider
relative velocity, ∆v.

I It thus inaccurately models the distance real drivers keep from
each other at high ∆v,

I And cars with high ∆v can collide.
I The intelligent driver model is an example of a model meant to

more accurately capture how drivers behave.
I In this case, the acceleration of α is a continuous function of

sα, ∆v, and vα:

dvα
dt

= aα

[
1 −

(
vα
v0
α

)
−

(
s∗α(vα,∆vα)

sα

)]
. (19)
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Intelligent Driver Model, 2

I This model is a superposition of an acceleration tendency,
aα(1 − (vα/v0

α)δ), and a deceleration tendency
fα,α−1 = −aα(s∗α(vα,∆vα)/sα)2.

I The parameter δ allows the acceleration to be fit:
I δ = 1 corresponds to an exponential-in-time acceleration;
I δ → inf corresponds to constant acceleration of aα.

I Deceleration depends on the ratio of the desired clearance to
the actual clearance, where the desired clearance is given as

s∗α(vα,∆vα) = s′α + s′′α

√
vα
v0
α

+ Tvα +
vα∆vα

2
√

aαbα
. (20)

I The model parameters are then
desired velocity v0

α, safe time clearance T,
max acceleration aα, max deceleration bα,
acceleration exponent δ, and jam lengths s′ and s′′

36/58



Outline
Introduction

Modeling Approaches
Conclusion

Overview
Microscopic
Cellular Automata
Macroscopic Models
Mesoscopic Models

Features of Cellular Automata

I Cellular automata models are interesting for their speed and
their complex dynamic behavior.

I Their speed comes from their
I uniform discretization of space,
I finite number of possible states,
I parallel, uniform time update,
I global update rules, and
I short range of interaction.

I And they’ve been shown exhibiting dynamics such as
I self-organized criticality,
I formation of spirals, and
I oscillatory or chaotic sequences of states.
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Cellular Automata Traffic Modeling

I Cellular automata models are less detailed than the follow the
leader models above.

I A basic approach is to
I divide the road into cells of equal length, ∆x,
I divide the time into intervals of equal duration, ∆t,
I allow each cell to be either occupied or vacant,
I set each car’s speed to vi = v̂i

∆x
∆t , where v̂i is an integer ≤ ˆvmax.

I Each timestep, the state of the cells, occupied or vacant,
changes based on a set of rules.
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Nagel-Schreckenberg Model

I In a model proposed by Nagel and Schreckenberg (92), for
every rule, each car

I Motion: moves forward by v̂i cells;
I Acceleration: accelerates by 1 if v̂i < ˆvmax;
I Deceleration: adopts a new velocity v′′i = (d̂i − 1) if d̂i ≤ v̂′i ;
I Randomization: slows by 1 with probability p.

I To summarize, the rules amount to choosing a new velocity
based on

v̂i++ = max(0,min(v̂max, d̂i − 1, v̂i + 1) − ξ (p)
i ), (21)

where di is the clearance, v is velocity, and ξ (p)
i is 1 with

probability p and 0 otherwise.
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Randomization in the Nagel-Schreckenberg Model

I The randomized slowdown effect models delayed acceleration
or other imperfect driving and is needed for the model to
exhibit stop and go waves, shown below.
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Variations on the Basic Model

I One variant of this model features cruise control, meaning
that the randomized slow down does not occur when the
agent is moving at maximum speed.

I Another variant includes randomized acceleration.
I A slow-to-start rule is included in one variant. This variant

replaces acceleration by the rule
I accelerate by 1 with probability q = (1 − p) if the car is not

moving and there is exactly one empty cell ahead,
I otherwise, accelerate by 1 deterministically.
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Macrosopic Model Overview

I Unlike Microscopic models, Macroscopic models only deal
with collections of vehicles.

I The calculations are done in terms of descriptions of these
collectives:

I spatial vehicle density ρ(x, t),
I average velocity V(x.t), and
I traffic flow or flux Q(x, t) = ρ(x, t)V(x, t).

I Macroscopic models are computationally more efficient than
microscopic models, but less so than cellular automata.
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Features of Macroscopic Models

I Though slower than cellular automata models, macroscopic
models are ofter preferred for their

I good agreement with empirical data,
I suitability for analytical investigations,
I simple treatment of inflows from ramps, and
I ability to simulate multi-lane traffic using a collection of

one-lane models.
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Lighthill and Whitham Model

I The oldest and still most popular macroscopic model is by
Lighthill and Whitham.

I This model is based on the observation that, away from ramps
and other roads, the number of cars within a road is
conserved.

I This leads to a continuity equation,

∂ρ(x, t)
∂t

+
∂Q(x.t)

dx
= 0. (22)
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Flow Equation

I A difficulty in using this model is specifying the flow, Q(x, t).
I One approach is to assume the flow is a function of density,

Q(x, t) = Qe(ρ(x, t)) = ρVe(ρ(x, t)) ≥ 0 (23)

where Ve(ρ(x, t)) is a function fit to empirical data.
I We can substitute this into Eq. (22), which gives us

∂ρ

∂t
+ C(ρ)

∂ρ

∂x
= 0, (24)

where C(ρ) is given as

C(ρ) = Ve(ρ) + ρ
dVe

dρ
. (25)
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Velocity Equation

I In the above formula, Eq. (25), Ve is a function fit to the
emipirical velocity data.

I One model if this is from Greenshields (1935), who suggested
a linear relation

Ve(ρ) = V0(1 − ρ/ρjam), (26)

in which V0 is a preferred velocity and ρjam is the density at
which free traffic changes to congested traffic.
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Shock Waves

I The density waves of the Lighthill-Whitham model tend to
form shock fronts over time.

I This feature makes the model difficult to integrate.
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Diffusion Term

I To avoid the development of shock waves, a diffusion term
can be added to smooth the wave fronts.

I One such term is Q = Qe(ρ) − D∂ρ/∂x, or equivalently

V(x, t) = Ve(ρ(x, t)) −
D

ρ(x, t)
∂ρ(x, t)
∂x

, (27)

I where D is the diffusion constant.
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Burger’s Equation

I Eq. (27) above can be integrated into our continuity equation,

∂ρ

∂t
+

(
Ve(ρ) + ρ

dVe

dρ

)
∂ρ

∂x
= 0, (28)

to yield
∂ρ

∂t
+

[
Ve(ρ) + ρ

dVe

dρ

]
∂ρ

∂x
=
∂

∂x

(
D
∂ρ

∂x

)
. (29)

I Letting the wave propagation speed be
C(x, t) = V0[1 − 1ρ(x, t)/ρjam], the above equation can be
transformed into Burger’s Equation,

∂C(x, t)
∂t

+ C(x, t)
∂C(x, t)
∂x

= D
∂2C(x, t)
∂x2 , (30)

which can be solved exactly due to its similarity with the linear
heat equation.
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Payne’s Velocity Equation

I The Lighthill-Whitham model cannot capture the stop-and-go
behavior of traffic.

I To achieve this, Payne derived a velocity equation based on
the optimal velocity microscopic model,

∂V
∂t

+ V
∂V
∂x

=
1
∆t

[
Ve(ρ) − V −

D(ρ)
ρ

∂ρ

∂x

]
, (31)

where Ve(ρ) − V is the relaxation term and −[D(ρ)/ρ] is the
anticipation term.

I The relaxation term describes the adaptation of the average
velocity V to the density-dependent equilibrium velocity Ve(ρ).

I The anticipation term describes the reaction of drivers to their
surroundings.

I This model has the instability of stop-and-go waves.
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Phase-Space Density

I The gas-kinetic models of traffic are based on the idea of
phase-space density,

ρ̃(x, v, t) = ρ(x, t)P̃(v; x, t), (32)

where ρ(x, t) is the vehicle density and P̃(v; x, t) is the
distribution of velocities at x, t.
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Continuity Equation for Phase-Space Density

I As vehicles are still conserved, we can write a kind of
continuity equation,

∂ρ̃

∂t
+ v

∂ρ̃

∂x
=

(
dρ̃
dt

)
acc

+

(
dρ̃
dt

)
int
. (33)

I The right hand side is not 0 as vehicles can change their
speed.

I The two terms represent the changes in the phase-space
density due to acceleration and interactions.
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Acceleration Term

I The acceleration term is defined as(
dρ̃
dt

)
acc

= ρ(x, t)
P̃0(v) − P̃(v; x, t)

τ(ρ(x, t))
, (34)

or a relaxation of the current velocity distribution P̃(v; x, t) to
some desired distribution P̃(v).
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Interaction Term

I The interaction term is defined as the Boltzmann-like equation(
dρ̃
dt

)
int

=

∫
w>v

(1 − p̂(ρ))|w − v|ρ̃(x,w, t)ρ̃(x, v, t)dw (35)

−

∫
w<v

(1 − p̂(ρ))|v − w|ρ̃(x,w, t)ρ̃(x, v, t)dw.

I The idea is that vehicles with velocity w are either faster or
slower than vehicles with velocity v.

I Vehicles with velocity w will interact with vehicles with velocity
v at a rate of |w − v|ρ̃(x,w, t)ρ̃(x, v, t), which describes how
often vehicles with velocities w and v meet at place x.

I A faster vehicle w can overtake a slower vehicle with
probability p̃(ρ), so it will have to slow down win probability
(1 − p̃(ρ)), increasing the phase space density.
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The Density and Velocity Equations

I As the density is given by

ρ(x, t) =

∫
ρ̃(x, v, t)dv, (36)

we can integrate the phase-space density continuity equation.
I Doing so produces a density equation and velocity equation

I Density Equation:
dρv

dt
= −ρ

∂V
∂x

(37)

I Velocity Equation:

dVv

dt
= −

1
ρ

dρΘ

dρ
∂ρ

∂x
+

1
τ

(Ve − V), (38)

where Ve = V0 − τ(ρ)[1 − p̂(p)]ρΘ, Θ is the velocity variance,
and p̂(ρ) is the probability of overtaking.
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Computational Efficiency

I Broadly, the computational costs of the models can be divided
up from fastest to slowest as:

I Cellular Automata
I Macroscopic
I Mesoscopic
I Microscopic

I The accuracy of the models is harder to discuss, but it can be
considered roughly the reverse of the above list.
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Considerations in Choosing a Model

I While the cellular automata model is the fastest
computationally, its parameters and mechanisms can bee
seen as unrealistic from a physical point of view.

I Macroscopic models are faster than microscopic and their
parameters are empirically measurable, but it can be difficult
to integrate heterogeneous agents and to generalize to road
topologies other than a straight highway.

I While microscopic offers the finest level of detail, there is still
no guarantee that your result will actually be more accurate
than a macroscopic simulation.
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Qualitative Performance

I Models from all the groups can capture phenomena such as
I Stop-and-Go Traffic,
I ”constants” of traffic including the fundamental diagram,
I synchronized flow, and
I wide moving jams.

I Though different models have different mechanisms and
tuning requirements to achieve these phenomena.
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