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Example 

They considered running the ad during the Super Bowl. 

running * during à 11K 
running it during à 239 

considered * during à 7K 
considered it during à 112 

[Nakov and Hearst 2005b] 

head    arg 



Canonical Ambiguity Type 1 
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Prepositional phrase (PP) attachment ambiguities (isolated) 

vs. 

spent    with time     with 

[Volk 2001; Nakov & Hearst 2005b] 



Canonical Ambiguity Type 2 

NP coordination ambiguities 

vs. 

[Nakov & Hearst 2005b; Bergsma et al. 2011] 
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Canonical Ambiguity Type 3 

Noun compound bracketing ambiguities 

vs. 

liver    cell 

[Lapata & Keller 2004; Nakov & Hearst 2005a; Pitler et al. 2010] 
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Parsing Errors 

Berkeley parser - errors cast as incorrect dependency attachments 

This work - single system that addresses various kinds of ambiguities 
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newspapers	


WSJ Errors 

… ordered full pages in the Monday editions of half a dozen newspapers . 
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WSJ Errors 

… a familiar message : Keep on investing , the market 's just fine . 
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… a familiar message : Keep on investing , the market 's just fine . 



Using Web-Scale Features 

raising          $     30  million     from   debt 

!(raising     from) !($     from) 

"(head    arg) 
Idea: Edge-factored features that encode web-counts 



(v                        n1                p              n2)
verb / noun attachment ? 

Prepositional Phrase (PP) disambiguation 

Web-Scale Statistics 

(Volk, 2001) 

Only 2 competing attachments ! 



1[h, a] 

Dependency Features 

Discriminative dependency parsing 

(McDonald et al., 2005; inter alia) 

1[cluster(h), cluster(a)] (Koo et al., 2008; Finkel et al., 2008) 

ɸ(h                          a) 



Web-Scale Features 

Affinity based Web features 

c(raising * from) = 20K 

raising * from 

Web-count	  

20	  
Binning	  

ɸ(raising     +3       from) 



Web-Scale Features 

Affinity based Web features 

1[VBG ― +3 ― IN,   20]  

ɸ(raising     +3       from) 

Unlexicalized Lexicalized 



Web-Scale Features 

Affinity based Web features 

1[POS(h) ― d ― POS(a), webcnt]  

ɸ(h     [distance]       a) 



Web-Scale Features 

Paraphrase (context) based Web features 

ɸ(raising               from) 

raising * from 

Top trigrams	  

raising  money  from 
raising  funds  from 
raising  him  from 
raising  it   from 
raising  capital  from 

.... 

[Nakov and Hearst 2005b] 



Web-Scale Features 

Paraphrase (context) based Web features 

ɸ(raising               from) 

1[VBG ― it ― IN]  



Web-Scale Features 

Paraphrase (context) based Web features 

ɸ(h                      a) 

1[POS(h) ― context ― POS(a)]  



Web-Scale Features 

Collecting top context words 

before  : 

ɸ(h                      a) 

middle  : 

after   : 



q1‘  =    w1	  

q2‘  =    wn	  

Web n-grams Query Count Trie 

counts 

q1  q2	  

q1  *q2	  

q1  **q2	  

q1  ***q2	  

w1            …        wn  

w1            …        wn  

w1            …        wn  
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{q2}  hash 
{q1} hash 

Computing Web Statistics Efficiently 

Search engines inefficient – use Google n-grams (n = 1 to 5) 

Query q  =  q1q2

#(w1…wn)	  

4 billion n-grams 

4.5 million queries 

< 2 hours 

Batch – Collect all queries beforehand, then scan all n-grams 



Parsing Results 

92.0 

91.4 

90 91 92 93 

This work 

McDonald & Pereira 2006 

UAS 

Dependency Parsing 
Web-features integrated into underlying dynamic program  

Error reduction (relative) of 7.0% over order-2 features 



Parsing Results 

Constituent Parsing 

91.4 

91.1 

90.2 

89 90 91 92 

Web + Configurational features 

Web features 

Petrov et al. 2006 

Parsing F1 

Get k-best parses and rerank them discriminatively 

Error reduction (relative) of 9.2% and 12.2% 

Collins+Charniak 



Error Analysis 

Errors reduced for a variety of child (argument) types 
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Error Analysis 

Error reduction for each type of parent attachment for a given 
child 

18 
23 

30 

20 

33 

0 

10 

20 

30 

40 

IN NN VB NNP VBN 

%
 E

rr
or

 R
ed

uc
tio

n 

Parent Tag 

11 11 

20 18 
23 

0 

10 

20 

30 

NN VBD NNS VB VBG 

%
 E

rr
or

 R
ed

uc
tio

n 

Parent Tag 

9 

22 
17 

9 

17 

0 

10 

20 

30 

NN NNS VBD JJ CD 

%
 E

rr
or

 R
ed

uc
tio

n 

Parent Tag 

NN Child 
Tag IN JJ 



Affinity features	  

High-Weight Features 

their bridge back into the big-time RB   IN 

an Oct. 19 review of “The, Misanthrope” NN   IN 

The new rate will be payable Feb. 15 DT   NN 



Paraphrase features	  

High-Weight Features 

the guile learned from his years in VBN    this     IN 

sow a row of male-fertile plants The    NN     IN 

about stock purchases and sales by NNS   and    NNS 

The    row     of 

learned    this   from 

purchases  and  sales 



Web-features are powerful disambiguators	  

Conclusion 

Incorporation into end-to-end full-scale parsing	  

Uniform treatment of all attachment error types	  

7-12% relative error reduction in state-of-the-art parsers	  

Intuitive features surface in the learning setup	  



Thank you! 

29	  

Questions? 


