
Tailoring Continuous Word Representations  
for  

Dependency Parsing 

Mohit Bansal, Kevin Gimpel, and Karen Livescu 
 

TTI-Chicago 



Questions We Want to Answer 

!   What kind of embeddings will help dependency parsing 
(in-domain and out-of-domain)? 

 
!   How can we convert embeddings to parsing features? 

!   Are there good intrinsic measures of embedding quality? 



Representation Models 

!   BROWN (Brown et al., 1992) 

!   SENNA (Collobert et al., 2011, 2008) 

!   TURIAN (Turian et al., 2010) 
 
!   HUANG (Huang et al., 2012) 

!   SKIP (Mikolov et al., 2013) 

continuous 

discrete 



SKIP 
Mikolov et al., 2013 

Few mins. vs. days/weeks/months!! 

w(t) 

w(t-2) 

w(t-1) 

w(t+1) 

w(t+2) 

INPUT PROJECTION OUTPUT 

context  
window 

w 



Syntactically Tailored Embeddings 

!   Context window size (SKIP) 

!   Smaller window  à   syntactic/functional similarity 
 
!   Larger window   à   topical similarity 

!   Similar effect in distributional representations 

The   morning   flight   at   the   JFK   airport   was delayed 

context window 

(Lin and Wu, 2009) 



Syntactically Tailored Embeddings 

!   Syntactic context (SKIPDEP) 

!   Condition on dependency context instead of linear 

!   First parse a large corpus with baseline parser: 

…   said     that    the   regulation     of       safety    is    … 

NMOD	   PMOD	  

(child)	  (parent)	  (grandparent)	  

(dep label)	  



Syntactically Tailored Embeddings 

dep label	   dep label	  grandparent	   parent	   child	  

[PMOD<L>       regulation<G>     of       safety   PMOD<L>] 

context windows 

!   Syntactic context (SKIPDEP) 

!   Condition on dependency context instead of linear 

!   Then convert each dependency to a tuple: 

!   Syntactic information in clustering, topic, semantic space models 
    (Sagae and Gordon, 2009; Haffari et al., 2011; Grave et al., 2013; Boyd-Graber and Blei, 2008;      
       Pado and Lapata, 2007) 



Cluster Examples 

!   SKIP, w = 10: 

[attendant, takeoff, airport, carry-on, airplane, flown, landings, flew, fly, cabins, …] 

[maternity, childbirth, clinic, physician, doctor, medical, health-care, day-care, …] 

[transactions, equity, investors, capital, financing, stock, fund, purchases, …] 



Cluster Examples 

!   SKIP, w = 1 

[Mr., Mrs., Ms., Prof., III, Jr., Dr.] 

[Jeffrey, William, Dan, Robert, Stephen, Peter, John, Richard, ...] 

[Portugal, Iran, Cuba, Ecuador, Greece, Thailand, Indonesia, …] 

[truly, wildly, politically, financially, completely, potentially, ...] 

[his, your, her, its, their, my, our] 

[Your, Our, Its, My, His, Their, Her] 



Intrinsic Evaluation 

Topical	   Syntactic/ 
Functional	  

(Finkelstein et al., 2002) 

Representation SIM TAG

BROWN – 89.3
SENNA 49.8 85.2
HUANG 62.6 78.1
SKIP, w = 10 44.6 71.5
SKIP, w = 5 44.4 81.1
SKIP, w = 1 37.8 86.6
SKIPDEP 34.6 88.3

System Test
Baseline 92.0
SENNA (Buckets) 92.0
SENNA (Hier. Clustering) 92.3
HUANG (Buckets) 91.9
HUANG (Hier. Clustering) 92.4

System Test
Baseline 91.9
BROWN 92.7
SENNA 92.3
TURIAN 92.3
HUANG 92.4
SKIP 92.3
SKIPDEP 92.7

Ensemble Results
ALL – BROWN 92.9
ALL 93.0

System Test Avg (5 domains)
Baseline 83.5
BROWN 84.2
SENNA 84.3
TURIAN 83.9
HUANG 84.1
SKIP 83.7
SKIPDEP 84.1

Ensemble Results
ALL–BROWN 84.7
ALL 84.9

1



Dependency Parsing Features 

!   Brown Cluster Features (Koo et al., 2008): 

prefix4	  

prefix6	  

Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The

tree contains a special token “*” which is always the root

of the tree. Each arc is directed from head to modifier and

has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based

features, Section 4 presents our experimental results,

Section 5 discusses related work, and Section 6 con-

cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre

et al., 2007) has focused on dependency parsing.

Dependency syntax represents syntactic informa-

tion as a network of head-modifier dependency arcs,

typically restricted to be a directed tree (see Fig-

ure 1 for an example). Dependency parsing depends

critically on predicting head-modifier relationships,

which can be difficult due to the statistical sparsity

of these word-to-word interactions. Bilexical depen-

dencies are thus ideal candidates for the application

of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured

classification approach to dependency parsing. For a

given sentence x, let Y(x) denote the set of possible

dependency structures spanning x, where each y ∈
Y(x) decomposes into a set of “parts” r ∈ y. In the

simplest case, these parts are the dependency arcs

themselves, yielding a first-order or “edge-factored”

dependency parsing model. In higher-order parsing

models, the parts can consist of interactions between

more than two words. For example, the parser of

McDonald and Pereira (2006) defines parts for sib-

ling interactions, such as the trio “plays”, “Elianti”,

and “.” in Figure 1. The Carreras (2007) parser

has parts for both sibling interactions and grandpar-

ent interactions, such as the trio “*”, “plays”, and

“Haag” in Figure 1. These kinds of higher-order

factorizations allow dependency parsers to obtain a

limited form of context-sensitivity.

Given a factorization of dependency structures

into parts, we restate dependency parsing as the fol-

apple pear Apple IBM bought run of in

01

100 101 110 111000 001 010 011

00

0

10

1

11

Figure 2: An example of a Brown word-cluster hierarchy.

Each node in the tree is labeled with a bit-string indicat-

ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y∈Y(x)

�

r∈y

w · f(x, r)

Above, we have assumed that each part is scored

by a linear model with parameters w and feature-

mapping f(·). For many different part factoriza-

tions and structure domains Y(·), it is possible to

solve the above maximization efficiently, and several

recent efforts have concentrated on designing new

maximization algorithms with increased context-

sensitivity (Eisner, 2000; McDonald et al., 2005b;

McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-

iments, we used the Brown clustering algorithm

(Brown et al., 1992). We chose to work with the

Brown algorithm due to its simplicity and prior suc-

cess in other NLP applications (Miller et al., 2004;

Liang, 2005). However, we expect that our approach

can function with other clustering algorithms (as in,

e.g., Li and McCallum (2005)). We briefly describe

the Brown algorithm below.

The input to the algorithm is a vocabulary of

words to be clustered and a corpus of text containing

these words. Initially, each word in the vocabulary

is considered to be in its own distinct cluster. The al-

gorithm then repeatedly merges the pair of clusters

which causes the smallest decrease in the likelihood

of the text corpus, according to a class-based bigram

language model defined on the word clusters. By

tracing the pairwise merge operations, one obtains

a hierarchical clustering of the words, which can be

represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified

by its path from the root, and this path can be com-

pactly represented with a bit string, as in Figure 2.

In order to obtain a clustering of the words, we se-

lect all nodes at a certain depth from the root of the

apple à 00010100010	


ate          apple 
VBD      NN 
1100      0001 
110010     000101 

tag	
 	
 	
à 
prefix4	
 	
à 
prefix6 	
à 

(parent)               (child) 



Dependency Parsing Features 

!   Continuous Representation Features: 
!   Per-dimension bucket features: 
 

!   Hierarchical clustering (bit string) features: 
  

prefix4	  

prefix6	  

Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The

tree contains a special token “*” which is always the root

of the tree. Each arc is directed from head to modifier and

has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based

features, Section 4 presents our experimental results,

Section 5 discusses related work, and Section 6 con-

cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre

et al., 2007) has focused on dependency parsing.

Dependency syntax represents syntactic informa-

tion as a network of head-modifier dependency arcs,

typically restricted to be a directed tree (see Fig-

ure 1 for an example). Dependency parsing depends

critically on predicting head-modifier relationships,

which can be difficult due to the statistical sparsity

of these word-to-word interactions. Bilexical depen-

dencies are thus ideal candidates for the application

of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured

classification approach to dependency parsing. For a

given sentence x, let Y(x) denote the set of possible

dependency structures spanning x, where each y ∈
Y(x) decomposes into a set of “parts” r ∈ y. In the

simplest case, these parts are the dependency arcs

themselves, yielding a first-order or “edge-factored”

dependency parsing model. In higher-order parsing

models, the parts can consist of interactions between

more than two words. For example, the parser of

McDonald and Pereira (2006) defines parts for sib-

ling interactions, such as the trio “plays”, “Elianti”,

and “.” in Figure 1. The Carreras (2007) parser

has parts for both sibling interactions and grandpar-

ent interactions, such as the trio “*”, “plays”, and

“Haag” in Figure 1. These kinds of higher-order

factorizations allow dependency parsers to obtain a

limited form of context-sensitivity.

Given a factorization of dependency structures

into parts, we restate dependency parsing as the fol-

apple pear Apple IBM bought run of in

01

100 101 110 111000 001 010 011

00

0

10

1

11

Figure 2: An example of a Brown word-cluster hierarchy.

Each node in the tree is labeled with a bit-string indicat-

ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y∈Y(x)

�

r∈y

w · f(x, r)

Above, we have assumed that each part is scored

by a linear model with parameters w and feature-

mapping f(·). For many different part factoriza-

tions and structure domains Y(·), it is possible to

solve the above maximization efficiently, and several

recent efforts have concentrated on designing new

maximization algorithms with increased context-

sensitivity (Eisner, 2000; McDonald et al., 2005b;

McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-

iments, we used the Brown clustering algorithm

(Brown et al., 1992). We chose to work with the

Brown algorithm due to its simplicity and prior suc-

cess in other NLP applications (Miller et al., 2004;

Liang, 2005). However, we expect that our approach

can function with other clustering algorithms (as in,

e.g., Li and McCallum (2005)). We briefly describe

the Brown algorithm below.

The input to the algorithm is a vocabulary of

words to be clustered and a corpus of text containing

these words. Initially, each word in the vocabulary

is considered to be in its own distinct cluster. The al-

gorithm then repeatedly merges the pair of clusters

which causes the smallest decrease in the likelihood

of the text corpus, according to a class-based bigram

language model defined on the word clusters. By

tracing the pairwise merge operations, one obtains

a hierarchical clustering of the words, which can be

represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified

by its path from the root, and this path can be com-

pactly represented with a bit string, as in Figure 2.

In order to obtain a clustering of the words, we se-

lect all nodes at a certain depth from the root of the

apple à 00010100010	


ate          apple 

dim=3  -0.6     0.7 

ate      à [0.2  0.7  -0.6  0.9]       
apple  à [0.6  -0.1  0.7  0.2]            

dim=3  -0.5     0.5 



Parsing Experiments 

!   Setup: MSTParser (2nd order) w/ standard processing 
 
!   Per-dim bucket << Hierarchical clustering features: 

System Dev
Baseline 92.38
BROWN 93.18
SKIP 92.94
SKIPSYN 93.36

System Test Avg (5 domains)
Baseline 83.5
BROWN 84.2
SENNA 84.3
TURIAN 83.9
HUANG 84.1
CBOW 83.8
SKIP 83.7
SKIPDEP 84.1

Ensemble Results
ALL–BROWN 84.7
ALL 84.9

System Test
Baseline 92.0
SENNA (Buckets) 92.0
SENNA (Hier. Clustering) 92.3
HUANG (Buckets) 91.9
HUANG (Hier. Clustering) 92.4

1



Parsing Experiments 

!   Main WSJ results: 

System Test
Baseline 92.0
SENNA (Buckets) 92.0
SENNA (Hier. Clustering) 92.3
HUANG (Buckets) 91.9
HUANG (Hier. Clustering) 92.4

System Test
Baseline 91.9
BROWN 92.7
SENNA 92.3
TURIAN 92.3
HUANG 92.4
SKIP 92.3
SKIPDEP 92.7

Ensemble Results
ALL – BROWN 92.9
ALL 93.0

System Test Avg (5 domains)
Baseline 83.5
BROWN 84.2
SENNA 84.3
TURIAN 83.9
HUANG 84.1
SKIP 83.7
SKIPDEP 84.1

Ensemble Results
ALL–BROWN 84.7
ALL 84.9

1

(faster) 

(complementary) 



Parsing Experiments 

!   Main Web results: 

System Test
Baseline 92.0
SENNA (Buckets) 92.0
SENNA (Hier. Clustering) 92.3
HUANG (Buckets) 91.9
HUANG (Hier. Clustering) 92.4

System Test
Baseline 91.9
BROWN 92.7
SENNA 92.3
TURIAN 92.3
HUANG 92.4
SKIP 92.3
SKIPDEP 92.7

Ensemble Results
ALL – BROWN 92.9
ALL 93.0

System Test Avg (5 domains)
Baseline 83.5
BROWN 84.2
SENNA 84.3
TURIAN 83.9
HUANG 84.1
SKIP 83.7
SKIPDEP 84.1

Ensemble Results
ALL–BROWN 84.7
ALL 84.9

1

(faster) 

(complementary) 



Correlation w/ Intrinsic Metrics 

!   Correlation only for variations of a single model 

Representation SIM TAG Parsing F1
SKIP, w = 10 44.6 71.5 92.70
SKIP, w = 5 44.4 81.1 92.86
SKIP, w = 1 37.8 86.6 92.94
SKIPDEP 34.6 88.3 93.33

2

Topical	   Syntactic/ 
Functional	  



Conclusion 

!   Improvements ~ Brown but with faster training 
 
!   Hierarchical clustering >> bucket (per-dim) features 

!   Syntactic context helps 
 
!   Intrinsic metrics ~correlate with parsing accuracy 



Thank you! 

Data (dependency embeddings and features) at:  
 

ttic.uchicago.edu/~mbansal 


