
Structured Learning for
Taxonomy Induction with

Belief Propagation

Mohit Bansal
TTI-Chicago

David Burkett
Twitter Inc.

Gerard de Melo
Tsinghua U.

Dan Klein
UC Berkeley

A Lexical Taxonomy

!   Captures types and categories via hypernymy

!   Current resources incomplete, unavailable, time-intensive

!   Automatically build taxonomy trees
 Widdows (2003), Snow et al. (2006), Yang and Callan (2009), Poon and Domnigos
 (2010), Fountain and Lapata (2012), Kozareva and Hovy (2010), Navigli et al. (2011)

Structured Learning for Taxonomy Induction with Belief Propagation

Mohit Bansal
TTI Chicago

mbansal@ttic.edu

David Burkett
Twitter Inc.

dburkett@twitter.com

Gerard de Melo
Tsinghua University
gdm@demelo.org

Dan Klein
UC Berkeley

klein@cs.berkeley.edu

Abstract

We present a structured learning approach
to inducing hypernym taxonomies using a
probabilistic graphical model formulation.
Our model incorporates heterogeneous re-
lational evidence about both hypernymy
and siblinghood, captured by semantic
features based on patterns and statistics
from Web n-grams and Wikipedia ab-
stracts. For efficient inference over tax-
onomy structures, we use loopy belief
propagation along with a directed span-
ning tree algorithm for the core hyper-
nymy factor. To train the system, we ex-
tract sub-structures of WordNet and dis-
criminatively learn to reproduce them, us-
ing adaptive subgradient stochastic opti-
mization. On the task of reproducing
sub-hierarchies of WordNet, our approach
achieves a 51% error reduction over a
chance baseline, including a 15% error re-
duction due to the non-hypernym-factored
sibling features. On a comparison setup,
we find up to 29% relative error reduction
over previous work on ancestor F1.

1 Introduction

Many tasks in natural language understanding,
such as question answering, information extrac-
tion, and textual entailment, benefit from lexical
semantic information in the form of types and hy-
pernyms. A recent example is IBM’s Jeopardy!
system Watson (Ferrucci et al., 2010), which used
type information to restrict the set of answer can-
didates. Information of this sort is present in term
taxonomies (e.g., Figure 1), ontologies, and the-
sauri. However, currently available taxonomies
such as WordNet are incomplete in coverage (Pen-
nacchiotti and Pantel, 2006; Hovy et al., 2009),
unavailable in many domains and languages, and

vertebrate

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

reptile

diapsid

snake crocodilian

anapsid

chelonian

turtle

1

Figure 1: An excerpt of WordNet’s vertebrates taxonomy.

time-intensive to create or extend manually. There
has thus been considerable interest in building lex-
ical taxonomies automatically.

In this work, we focus on the task of taking col-
lections of terms as input and predicting a com-
plete taxonomy structure over them as output. Our
model takes a loglinear form and is represented
using a factor graph that includes both 1st-order
scoring factors on directed hypernymy edges (a
parent and child in the taxonomy) and 2nd-order
scoring factors on sibling edge pairs (pairs of hy-
pernym edges with a shared parent), as well as in-
corporating a global (directed spanning tree) struc-
tural constraint. Inference for both learning and
decoding uses structured loopy belief propagation
(BP), incorporating standard spanning tree algo-
rithms (Chu and Liu, 1965; Edmonds, 1967; Tutte,
1984). The belief propagation approach allows us
to efficiently and effectively incorporate hetero-
geneous relational evidence via hypernymy and
siblinghood (e.g., coordination) cues, which we
capture by semantic features based on simple sur-
face patterns and statistics from Web n-grams and
Wikipedia abstracts. We train our model to max-
imize the likelihood of existing example ontolo-
gies using stochastic optimization, automatically
learning the most useful relational patterns for full
taxonomy induction.

As an example of the relational patterns that our

Outline

!   Structured inference (during both learning and decoding)
and learned semantic features on links and siblings

!   Supervised learning: train on one part of WordNet (e.g.,
food) and test on a new part (e.g., animals)

!   No repeated words!!! à Cannot use lexicalized features;
need surface and external Web features

Train ∩ Test = ∅

Taxonomy Induction

x = {x1, x2, . . . , xn}

y = {(i, j)}

s(i, j) = w · f(i, j)

s(x,y) =
�

(i,j)∈y

s(i, j) =
�

(i,j)∈y

w · f(i, j)

1

!   For a particular set of terms

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

Taxonomy Induction

rats and other rodents à x	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

!   Need features for terms that we have never seen before!
Hearst, 1992	

Web Ngrams

Taxonomy Induction

 C and other P à x	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

!   Need features for terms that we have never seen before!
Hearst, 1992	

Web Ngrams

Taxonomy Induction

rodents such as rats à x	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

!   Need features for terms that we have never seen before!
Hearst, 1992	

Web Ngrams

Taxonomy Induction

 P such as C à x	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

!   Need features for terms that we have never seen before!
Hearst, 1992	

Web Ngrams

Taxonomy Induction

rodent * * * rat à x	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

!   Need features for terms that we have never seen before!

Web Ngrams

Taxonomy Induction

 P * * * C à x	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

!   Need features for terms that we have never seen before!

Web Ngrams

Surface Features

(i, j)

(xi, xj)

(ISCAPS(xj), ISCAPS(xi))

ENDSWITH(xj , xi)

CONTAINS(xj , xi)

|LCS(xi, xj)|
((|xi|+ |xj |)/2)

c =
count(pattern)

count(P) · count(C)

4

(i, j)

(xi, xj)

(ISCAPS(xj), ISCAPS(xi))

ENDSWITH(xj , xi)

CONTAINS(xj , xi)

|LCS(xi, xj)|
((|xi|+ |xj |)/2)

c =
count(pattern)

count(P) · count(C)

4

 E.g., , ,

 E.g., , ,
tiger	

Bengal tiger	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

actor	

Tom Hanks	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

singer	

Madonna	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

salad	

potato salad	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

bee	

honeybee	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

nut	

chestnut	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

!   Capitalization:

!   Ends-with:

!   Contains, LCS, Suffix-match, Length-difference

Web Ngrams

Semantic Features

…	

P w1 w2 w3 C x
…

w1 P w2 w3 C x
…

P w1 w2 C w3 x	

…

P w1 w2 C	
 x
…
…

P = rodent	

C = rat	

Top 100 strings

!   Web n-gram Patterns and Counts

Web Ngrams

Semantic Features

…	

C and other P 1329	

P (C and 539
P such as C 388
…

P > C 222
C is a P 164
P , especially C 388	

…

P = rodent	

C = rat	

Top 100 strings

!   Web n-gram Patterns and Counts

!   Individual count, Unary patterns, Pattern order

Semantic Features

!   Wikipedia abstracts (for longer terms)

!   Features on Presence, Min-distance, and Patterns

The Rhode Island Red is a breed of chicken (Gallus gallus domesticus). They are …

… Department of Justice (DOJ), … is the U.S. federal executive department …

The Gulf Stream, together with its northern … swift Atlantic ocean current that …

Structured Taxonomy Induction

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

!   Each edge fires features with score s(yij) = w · f(xi, xj)
Hearst, 1992	

s(yij) = w · f(xi, xj)

Edge-factorization

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

ŷ = argmax
y ∈ Y(x)

� �

yij∈y

s(yij)
�

!   Chu-Liu-Edmonds: MST

!   Weights learned using standard gradient descent

Results: 1st Order

6.9

24.6

42.2
46.8

0

20

40

60

A
nc

es
to

r
F1

Baseline	 Surface	 Semantic	 Surf+Sem	

!   Setup: Train on a WordNet portion and reproduce the rest

Comparison Results

52.9

66.6

45

50

55

60

65

70

Kozareva & Hovy, 2010 Us

A
nc

es
to

r
F1

!   Setup: Train on a WordNet portion and reproduce the rest

Analysis: Learned Edge Features

C and other P	

C , P of
C , a P	

C or other P	

C : a P	

C - like P	

> P > C	

C is a P	

P , including C	

P (C	

C , american P	

C , the P	

!   High-weight edge pattern examples
Hearst, 1992	

rats and other rodents	

Analysis: Learned Edge Features

C and other P	

C , P of
C , a P	

C or other P	

C : a P	

C - like P	

> P > C	

C is a P	

P , including C	

P (C	

C , american P	

C , the P	

!   High-weight edge pattern examples
Hearst, 1992	

electronics > office electronics > shredders	

Analysis: Learned Edge Features

C and other P	

C , P of
C , a P	

C or other P	

C : a P	

C - like P	

> P > C	

C is a P	

P , including C	

P (C	

C , american P	

C , the P	

!   High-weight edge pattern examples
Hearst, 1992	

Michael Jackson, American singer	

Higher Order (Siblinghood)

rodents such 	

as squirrels	

rats and 	

other rodents	

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

NP-hard!!
Use factor graphs and
loopy belief propagation…	

Tree	

Sibling	
 Link	
Link	
 yij yik

squirrels are
similar to rats	

Factor Graph Formulation

V1 V2

V3 V4

F12

F24

F34

F13

F3

F1 F2

F4

P (V) ∝
�

F

F (VF)

Factor Graph Formulation

!   Given the input term set , we want

!   Each potential taxonomy edge is a variable

x = {x1, x2, . . . , xn}

y = {(i, j)}

s(i, j) = w · f(i, j)

s(x,y) =
�

(i,j)∈y

s(i, j) =
�

(i,j)∈y

w · f(i, j)

1

xi → xj

xi =

xj =

yij

yij

system learns, suppose we are interested in build-
ing a taxonomy for types of mammals (see Fig-
ure 1). Frequent attestation of hypernymy patterns
like rat is a rodent in large corpora is a strong sig-
nal of the link rodent → rat. Moreover, sibling
or coordination cues like either rats or squirrels
suggest that rat is a sibling of squirrel and adds
evidence for the links rodent → rat and rodent
→ squirrel. Our supervised model captures ex-
actly these types of intuitions by automatically dis-
covering such heterogeneous relational patterns as
features (and learning their weights) on edges and
on sibling edge pairs, respectively.

There have been several previous studies on
taxonomy induction. e.g., the incremental tax-
onomy induction system of Snow et al. (2006),
the longest path approach of Kozareva and Hovy
(2010), and the maximum spanning tree (MST)
approach of Navigli et al. (2011) (see Section 4 for
a more detailed overview). The main contribution
of this work is that we present the first discrimina-
tively trained, structured probabilistic model over
the full space of taxonomy trees, using a struc-
tured inference procedure through both the learn-
ing and decoding phases. Our model is also the
first to directly learn relational patterns as part of
the process of training an end-to-end taxonomic
induction system, rather than using patterns that
were hand-selected or learned via pairwise clas-
sifiers on manually annotated co-occurrence pat-
terns. Finally, it is the first end-to-end (i.e., non-
incremental) system to include sibling (e.g., coor-
dination) patterns at all.

We test our approach in two ways. First, on
the task of recreating fragments of WordNet, we
achieve a 51% error reduction on ancestor-based
F1 over a chance baseline, including a 15% error
reduction due to the non-hypernym-factored sib-
ling features. Second, we also compare to the re-
sults of Kozareva and Hovy (2010) by predicting
the large animal subtree of WordNet. Here, we
get up to 29% relative error reduction on ancestor-
based F1. We note that our approach falls at a
different point in the space of performance trade-
offs from past work – by producing complete,
highly articulated trees, we naturally see a more
even balance between precision and recall, while
past work generally focused on precision.1 To

1While different applications will value precision and
recall differently, and past work was often intentionally
precision-focused, it is certainly the case that an ideal solu-
tion would maximize both.

avoid presumption of a single optimal tradeoff, we
also present results for precision-based decoding,
where we trade off recall for precision.

2 Structured Taxonomy Induction
Given an input term set x = {x1, x2, . . . , xn},
we wish to compute the conditional distribution
over taxonomy trees y. This distribution P (y|x)
is represented using the graphical model formu-
lation shown in Figure 2. A taxonomy tree y is
composed of a set of indicator random variables
yij (circles in Figure 2), where yij = ON means
that xi is the parent of xj in the taxonomy tree
(i.e. there exists a directed edge from xi to xj).
One such variable exists for each pair (i, j) with
0 ≤ i ≤ n, 1 ≤ j ≤ n, and i �= j.2

In a factor graph formulation, a set of factors
(squares and rectangles in Figure 2) determines the
probability of each possible variable assignment.
Each factor F has an associated scoring function
φF , with the probability of a total assignment de-
termined by the product of all these scores:

P (y|x) ∝
�

F

φF (y) (1)

2.1 Factor Types
In the models we present here, there are three
types of factors: EDGE factors that score individ-
ual edges in the taxonomy tree, SIBLING factors
that score pairs of edges with a shared parent, and
a global TREE factor that imposes the structural
constraint that y form a legal taxonomy tree.

EDGE Factors. For each edge variable yij in
the model, there is a corresponding factor Eij

(small blue squares in Figure 2) that depends only
on yij . We score each edge by extracting a set
of features f(xi, xj) and weighting them by the
(learned) weight vector w. So, the factor scoring
function is:

φEij (yij) =

�
exp(w · f(xi, xj)) yij = ON

exp(0) = 1 yij = OFF

SIBLING Factors. Our second model also in-
cludes factors that permit 2nd-order features look-
ing at terms that are siblings in the taxonomy tree.
For each triple (i, j, k) with i �= j, i �= k, and
j < k,3 we have a factor Sijk (green rectangles in

2We assume a special dummy root symbol x0.
3The ordering of the siblings xj and xk doesn’t mat-

ter here, so having separate factors for (i, j, k) and (i, k, j)
would be redundant.

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

Variables

x0

x1 x2

y01 y02 . . .

. . .
x3 x4

y23 y24
...

...

Edge Factors

system learns, suppose we are interested in build-
ing a taxonomy for types of mammals (see Fig-
ure 1). Frequent attestation of hypernymy patterns
like rat is a rodent in large corpora is a strong sig-
nal of the link rodent → rat. Moreover, sibling
or coordination cues like either rats or squirrels
suggest that rat is a sibling of squirrel and adds
evidence for the links rodent → rat and rodent
→ squirrel. Our supervised model captures ex-
actly these types of intuitions by automatically dis-
covering such heterogeneous relational patterns as
features (and learning their weights) on edges and
on sibling edge pairs, respectively.

There have been several previous studies on
taxonomy induction. e.g., the incremental tax-
onomy induction system of Snow et al. (2006),
the longest path approach of Kozareva and Hovy
(2010), and the maximum spanning tree (MST)
approach of Navigli et al. (2011) (see Section 4 for
a more detailed overview). The main contribution
of this work is that we present the first discrimina-
tively trained, structured probabilistic model over
the full space of taxonomy trees, using a struc-
tured inference procedure through both the learn-
ing and decoding phases. Our model is also the
first to directly learn relational patterns as part of
the process of training an end-to-end taxonomic
induction system, rather than using patterns that
were hand-selected or learned via pairwise clas-
sifiers on manually annotated co-occurrence pat-
terns. Finally, it is the first end-to-end (i.e., non-
incremental) system to include sibling (e.g., coor-
dination) patterns at all.

We test our approach in two ways. First, on
the task of recreating fragments of WordNet, we
achieve a 51% error reduction on ancestor-based
F1 over a chance baseline, including a 15% error
reduction due to the non-hypernym-factored sib-
ling features. Second, we also compare to the re-
sults of Kozareva and Hovy (2010) by predicting
the large animal subtree of WordNet. Here, we
get up to 29% relative error reduction on ancestor-
based F1. We note that our approach falls at a
different point in the space of performance trade-
offs from past work – by producing complete,
highly articulated trees, we naturally see a more
even balance between precision and recall, while
past work generally focused on precision.1 To

1While different applications will value precision and
recall differently, and past work was often intentionally
precision-focused, it is certainly the case that an ideal solu-
tion would maximize both.

avoid presumption of a single optimal tradeoff, we
also present results for precision-based decoding,
where we trade off recall for precision.

2 Structured Taxonomy Induction
Given an input term set x = {x1, x2, . . . , xn},
we wish to compute the conditional distribution
over taxonomy trees y. This distribution P (y|x)
is represented using the graphical model formu-
lation shown in Figure 2. A taxonomy tree y is
composed of a set of indicator random variables
yij (circles in Figure 2), where yij = ON means
that xi is the parent of xj in the taxonomy tree
(i.e. there exists a directed edge from xi to xj).
One such variable exists for each pair (i, j) with
0 ≤ i ≤ n, 1 ≤ j ≤ n, and i �= j.2

In a factor graph formulation, a set of factors
(squares and rectangles in Figure 2) determines the
probability of each possible variable assignment.
Each factor F has an associated scoring function
φF , with the probability of a total assignment de-
termined by the product of all these scores:

P (y|x) ∝
�

F

φF (y) (1)

2.1 Factor Types
In the models we present here, there are three
types of factors: EDGE factors that score individ-
ual edges in the taxonomy tree, SIBLING factors
that score pairs of edges with a shared parent, and
a global TREE factor that imposes the structural
constraint that y form a legal taxonomy tree.

EDGE Factors. For each edge variable yij in
the model, there is a corresponding factor Eij

(small blue squares in Figure 2) that depends only
on yij . We score each edge by extracting a set
of features f(xi, xj) and weighting them by the
(learned) weight vector w. So, the factor scoring
function is:

φEij (yij) =

�
exp(w · f(xi, xj)) yij = ON

exp(0) = 1 yij = OFF

SIBLING Factors. Our second model also in-
cludes factors that permit 2nd-order features look-
ing at terms that are siblings in the taxonomy tree.
For each triple (i, j, k) with i �= j, i �= k, and
j < k,3 we have a factor Sijk (green rectangles in

2We assume a special dummy root symbol x0.
3The ordering of the siblings xj and xk doesn’t mat-

ter here, so having separate factors for (i, j, k) and (i, k, j)
would be redundant.

y01 y02

y23 y24

E24

E01

E23

E02

. . .

. . .

...

...

Sibling Factors

y01 y02

y23 y24

E24

E01

E23

E02

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

T

(a) Edge Features Only

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

S12n

S21n

Sn12

T

(b) Full Model

Figure 2: Factor graph representation of our model, both without (a) and with (b) SIBLING factors.

Figure 2b) that depends on yij and yik, and thus
can be used to encode features that should be ac-
tive whenever xj and xk share the same parent, xi.
The scoring function is similar to the one above:

φSijk (yij , yik) =

�
exp(w · f(xi, xj , xk)) yij = yik = ON

1 otherwise

TREE Factor. Of course, not all variable as-
signments y form legal taxonomy trees (i.e., di-
rected spanning trees). For example, the assign-
ment ∀i, j, yij = ON might get a high score, but
would not be a valid output of the model. Thus,
we need to impose a structural constraint to ensure
that such illegal variable assignments are assigned
0 probability by the model. We encode this in our
factor graph setting using a single global factor T
(shown as a large red square in Figure 2) with the
following scoring function:

φT (y) =

�
1 y forms a legal taxonomy tree
0 otherwise

Model. For a given global assignment y, let

f(y) =
�

i,j
yij=ON

f(xi, xj) +
�

i,j,k
yij=yik=ON

f(xi, xj , xk)

Note that by substituting our model’s factor scor-
ing functions into Equation 1, we get:

P (y|x) ∝
�
exp(w · f(y)) y is a tree
0 otherwise

Thus, our model has the form of a standard loglin-
ear model with feature function f .

2.2 Inference via Belief Propagation

With the model defined, there are two main in-
ference tasks we wish to accomplish: computing
expected feature counts and selecting a particular
taxonomy tree for a given set of input terms (de-
coding). As an initial step to each of these pro-
cedures, we wish to compute the marginal prob-
abilities of particular edges (and pairs of edges)
being on. In a factor graph, the natural infer-
ence procedure for computing marginals is belief
propagation. Note that finding taxonomy trees is
a structurally identical problem to directed span-
ning trees (and thereby non-projective dependency
parsing), for which belief propagation has previ-
ously been worked out in depth (Smith and Eisner,
2008). Therefore, we will only briefly sketch the
procedure here.

Belief propagation is a general-purpose infer-
ence method that computes marginals via directed
messages passed from variables to adjacent fac-
tors (and vice versa) in the factor graph. These
messages take the form of (possibly unnormal-
ized) distributions over values of the variable. The
two types of messages (variable to factor or fac-
tor to variable) have mutually recursive defini-
tions. The message from a factor F to an adjacent
variable V involves a sum over all possible val-
ues of every other variable that F touches. While
the EDGE and SIBLING factors are simple enough
to compute this sum by brute force, performing
the sum naı̈vely for computing messages from the
TREE factor would take exponential time. How-

S012

S234

. . .

. . .

...

...

Tree Factor

T

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

T

(a) Edge Features Only

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

S12n

S21n

Sn12

T

(b) Full Model

Figure 2: Factor graph representation of our model, both without (a) and with (b) SIBLING factors.

Figure 2b) that depends on yij and yik, and thus
can be used to encode features that should be ac-
tive whenever xj and xk share the same parent, xi.
The scoring function is similar to the one above:

φSijk (yij , yik) =

�
exp(w · f(xi, xj , xk)) yij = yik = ON

1 otherwise

TREE Factor. Of course, not all variable as-
signments y form legal taxonomy trees (i.e., di-
rected spanning trees). For example, the assign-
ment ∀i, j, yij = ON might get a high score, but
would not be a valid output of the model. Thus,
we need to impose a structural constraint to ensure
that such illegal variable assignments are assigned
0 probability by the model. We encode this in our
factor graph setting using a single global factor T
(shown as a large red square in Figure 2) with the
following scoring function:

φT (y) =

�
1 y forms a legal taxonomy tree
0 otherwise

Model. For a given global assignment y, let

f(y) =
�

i,j
yij=ON

f(xi, xj) +
�

i,j,k
yij=yik=ON

f(xi, xj , xk)

Note that by substituting our model’s factor scor-
ing functions into Equation 1, we get:

P (y|x) ∝
�
exp(w · f(y)) y is a tree
0 otherwise

Thus, our model has the form of a standard loglin-
ear model with feature function f .

2.2 Inference via Belief Propagation

With the model defined, there are two main in-
ference tasks we wish to accomplish: computing
expected feature counts and selecting a particular
taxonomy tree for a given set of input terms (de-
coding). As an initial step to each of these pro-
cedures, we wish to compute the marginal prob-
abilities of particular edges (and pairs of edges)
being on. In a factor graph, the natural infer-
ence procedure for computing marginals is belief
propagation. Note that finding taxonomy trees is
a structurally identical problem to directed span-
ning trees (and thereby non-projective dependency
parsing), for which belief propagation has previ-
ously been worked out in depth (Smith and Eisner,
2008). Therefore, we will only briefly sketch the
procedure here.

Belief propagation is a general-purpose infer-
ence method that computes marginals via directed
messages passed from variables to adjacent fac-
tors (and vice versa) in the factor graph. These
messages take the form of (possibly unnormal-
ized) distributions over values of the variable. The
two types of messages (variable to factor or fac-
tor to variable) have mutually recursive defini-
tions. The message from a factor F to an adjacent
variable V involves a sum over all possible val-
ues of every other variable that F touches. While
the EDGE and SIBLING factors are simple enough
to compute this sum by brute force, performing
the sum naı̈vely for computing messages from the
TREE factor would take exponential time. How-

y01 y02

y23 y24

E24

E01

E23

E02

S012

S234

. . .

. . .

...

...

Model Score

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

T

(a) Edge Features Only

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

S12n

S21n

Sn12

T

(b) Full Model

Figure 2: Factor graph representation of our model, both without (a) and with (b) SIBLING factors.

Figure 2b) that depends on yij and yik, and thus
can be used to encode features that should be ac-
tive whenever xj and xk share the same parent, xi.
The scoring function is similar to the one above:

φSijk (yij , yik) =

�
exp(w · f(xi, xj , xk)) yij = yik = ON

1 otherwise

TREE Factor. Of course, not all variable as-
signments y form legal taxonomy trees (i.e., di-
rected spanning trees). For example, the assign-
ment ∀i, j, yij = ON might get a high score, but
would not be a valid output of the model. Thus,
we need to impose a structural constraint to ensure
that such illegal variable assignments are assigned
0 probability by the model. We encode this in our
factor graph setting using a single global factor T
(shown as a large red square in Figure 2) with the
following scoring function:

φT (y) =

�
1 y forms a legal taxonomy tree
0 otherwise

Model. For a given global assignment y, let

f(y) =
�

i,j
yij=ON

f(xi, xj) +
�

i,j,k
yij=yik=ON

f(xi, xj , xk)

Note that by substituting our model’s factor scor-
ing functions into Equation 1, we get:

P (y|x) ∝
�
exp(w · f(y)) y is a tree
0 otherwise

Thus, our model has the form of a standard loglin-
ear model with feature function f .

2.2 Inference via Belief Propagation

With the model defined, there are two main in-
ference tasks we wish to accomplish: computing
expected feature counts and selecting a particular
taxonomy tree for a given set of input terms (de-
coding). As an initial step to each of these pro-
cedures, we wish to compute the marginal prob-
abilities of particular edges (and pairs of edges)
being on. In a factor graph, the natural infer-
ence procedure for computing marginals is belief
propagation. Note that finding taxonomy trees is
a structurally identical problem to directed span-
ning trees (and thereby non-projective dependency
parsing), for which belief propagation has previ-
ously been worked out in depth (Smith and Eisner,
2008). Therefore, we will only briefly sketch the
procedure here.

Belief propagation is a general-purpose infer-
ence method that computes marginals via directed
messages passed from variables to adjacent fac-
tors (and vice versa) in the factor graph. These
messages take the form of (possibly unnormal-
ized) distributions over values of the variable. The
two types of messages (variable to factor or fac-
tor to variable) have mutually recursive defini-
tions. The message from a factor F to an adjacent
variable V involves a sum over all possible val-
ues of every other variable that F touches. While
the EDGE and SIBLING factors are simple enough
to compute this sum by brute force, performing
the sum naı̈vely for computing messages from the
TREE factor would take exponential time. How-

system learns, suppose we are interested in build-
ing a taxonomy for types of mammals (see Fig-
ure 1). Frequent attestation of hypernymy patterns
like rat is a rodent in large corpora is a strong sig-
nal of the link rodent → rat. Moreover, sibling
or coordination cues like either rats or squirrels
suggest that rat is a sibling of squirrel and adds
evidence for the links rodent → rat and rodent
→ squirrel. Our supervised model captures ex-
actly these types of intuitions by automatically dis-
covering such heterogeneous relational patterns as
features (and learning their weights) on edges and
on sibling edge pairs, respectively.

There have been several previous studies on
taxonomy induction. e.g., the incremental tax-
onomy induction system of Snow et al. (2006),
the longest path approach of Kozareva and Hovy
(2010), and the maximum spanning tree (MST)
approach of Navigli et al. (2011) (see Section 4 for
a more detailed overview). The main contribution
of this work is that we present the first discrimina-
tively trained, structured probabilistic model over
the full space of taxonomy trees, using a struc-
tured inference procedure through both the learn-
ing and decoding phases. Our model is also the
first to directly learn relational patterns as part of
the process of training an end-to-end taxonomic
induction system, rather than using patterns that
were hand-selected or learned via pairwise clas-
sifiers on manually annotated co-occurrence pat-
terns. Finally, it is the first end-to-end (i.e., non-
incremental) system to include sibling (e.g., coor-
dination) patterns at all.

We test our approach in two ways. First, on
the task of recreating fragments of WordNet, we
achieve a 51% error reduction on ancestor-based
F1 over a chance baseline, including a 15% error
reduction due to the non-hypernym-factored sib-
ling features. Second, we also compare to the re-
sults of Kozareva and Hovy (2010) by predicting
the large animal subtree of WordNet. Here, we
get up to 29% relative error reduction on ancestor-
based F1. We note that our approach falls at a
different point in the space of performance trade-
offs from past work – by producing complete,
highly articulated trees, we naturally see a more
even balance between precision and recall, while
past work generally focused on precision.1 To

1While different applications will value precision and
recall differently, and past work was often intentionally
precision-focused, it is certainly the case that an ideal solu-
tion would maximize both.

avoid presumption of a single optimal tradeoff, we
also present results for precision-based decoding,
where we trade off recall for precision.

2 Structured Taxonomy Induction
Given an input term set x = {x1, x2, . . . , xn},
we wish to compute the conditional distribution
over taxonomy trees y. This distribution P (y|x)
is represented using the graphical model formu-
lation shown in Figure 2. A taxonomy tree y is
composed of a set of indicator random variables
yij (circles in Figure 2), where yij = ON means
that xi is the parent of xj in the taxonomy tree
(i.e. there exists a directed edge from xi to xj).
One such variable exists for each pair (i, j) with
0 ≤ i ≤ n, 1 ≤ j ≤ n, and i �= j.2

In a factor graph formulation, a set of factors
(squares and rectangles in Figure 2) determines the
probability of each possible variable assignment.
Each factor F has an associated scoring function
φF , with the probability of a total assignment de-
termined by the product of all these scores:

P (y|x) ∝
�

F

φF (y) (1)

2.1 Factor Types
In the models we present here, there are three
types of factors: EDGE factors that score individ-
ual edges in the taxonomy tree, SIBLING factors
that score pairs of edges with a shared parent, and
a global TREE factor that imposes the structural
constraint that y form a legal taxonomy tree.

EDGE Factors. For each edge variable yij in
the model, there is a corresponding factor Eij

(small blue squares in Figure 2) that depends only
on yij . We score each edge by extracting a set
of features f(xi, xj) and weighting them by the
(learned) weight vector w. So, the factor scoring
function is:

φEij (yij) =

�
exp(w · f(xi, xj)) yij = ON

exp(0) = 1 yij = OFF

SIBLING Factors. Our second model also in-
cludes factors that permit 2nd-order features look-
ing at terms that are siblings in the taxonomy tree.
For each triple (i, j, k) with i �= j, i �= k, and
j < k,3 we have a factor Sijk (green rectangles in

2We assume a special dummy root symbol x0.
3The ordering of the siblings xj and xk doesn’t mat-

ter here, so having separate factors for (i, j, k) and (i, k, j)
would be redundant.

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

T

(a) Edge Features Only

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

S12n

S21n

Sn12

T

(b) Full Model

Figure 2: Factor graph representation of our model, both without (a) and with (b) SIBLING factors.

Figure 2b) that depends on yij and yik, and thus
can be used to encode features that should be ac-
tive whenever xj and xk share the same parent, xi.
The scoring function is similar to the one above:

φSijk (yij , yik) =

�
exp(w · f(xi, xj , xk)) yij = yik = ON

1 otherwise

TREE Factor. Of course, not all variable as-
signments y form legal taxonomy trees (i.e., di-
rected spanning trees). For example, the assign-
ment ∀i, j, yij = ON might get a high score, but
would not be a valid output of the model. Thus,
we need to impose a structural constraint to ensure
that such illegal variable assignments are assigned
0 probability by the model. We encode this in our
factor graph setting using a single global factor T
(shown as a large red square in Figure 2) with the
following scoring function:

φT (y) =

�
1 y forms a legal taxonomy tree
0 otherwise

Model. For a given global assignment y, let

f(y) =
�

i,j
yij=ON

f(xi, xj) +
�

i,j,k
yij=yik=ON

f(xi, xj , xk)

Note that by substituting our model’s factor scor-
ing functions into Equation 1, we get:

P (y|x) ∝
�
exp(w · f(y)) y is a tree
0 otherwise

Thus, our model has the form of a standard loglin-
ear model with feature function f .

2.2 Inference via Belief Propagation

With the model defined, there are two main in-
ference tasks we wish to accomplish: computing
expected feature counts and selecting a particular
taxonomy tree for a given set of input terms (de-
coding). As an initial step to each of these pro-
cedures, we wish to compute the marginal prob-
abilities of particular edges (and pairs of edges)
being on. In a factor graph, the natural infer-
ence procedure for computing marginals is belief
propagation. Note that finding taxonomy trees is
a structurally identical problem to directed span-
ning trees (and thereby non-projective dependency
parsing), for which belief propagation has previ-
ously been worked out in depth (Smith and Eisner,
2008). Therefore, we will only briefly sketch the
procedure here.

Belief propagation is a general-purpose infer-
ence method that computes marginals via directed
messages passed from variables to adjacent fac-
tors (and vice versa) in the factor graph. These
messages take the form of (possibly unnormal-
ized) distributions over values of the variable. The
two types of messages (variable to factor or fac-
tor to variable) have mutually recursive defini-
tions. The message from a factor F to an adjacent
variable V involves a sum over all possible val-
ues of every other variable that F touches. While
the EDGE and SIBLING factors are simple enough
to compute this sum by brute force, performing
the sum naı̈vely for computing messages from the
TREE factor would take exponential time. How-

Edge features	 Sibling features	

Inference

!   2 main inference tasks:

!   learn (expected feature counts)

!   decode (select a taxonomy tree)

!   Each needs marginals of edges and triples being

!   One natural way to compute marginals in factor graph:

Belief Propagation (MacKay, 2003)

ON

w

Inference: Belief Propagation

!   Message from variables to factors:

!   Message from factors to variables:

2008). However, we will briefly sketch the proce-
dure here.

Belief propagation is a general-purpose infer-
ence method that computes marginals via mes-
sages that are passed between variables and fac-
tors in the factor graph. Messages are always be-
tween an adjacent variable and factor in the graph,
and take the form of (possibly unnormalized) dis-
tributions over values of the variable. There are
two types of messages, depending on the direction
(variable to factor or factor to variable), with mu-
tually recursive definitions.

Let N(V) denote the set of factors neighbor-
ing variable V in the factor graph and N(F) the
set of variables neighboring F . The message from
a variable V to a factor F is fairly simple, as it
simply collects the information that variable has
received from all of its other adjacent factors:

mV→F (v) ∝
�

F �∈N(V)\{F}

mF �→V (v)

The message from F to V collects information
from other adjacent variables, but also includes the
factor’s own scoring function:

mF→V (v) ∝
�

XF ,XF [V]=v

φF (XF)
�

V �∈N(F)\V

mV �→F (XF [V
�]) (2)

where XF is a partial assignment of values to just
the variables in N(F).

The idea behind Equation 2 is that if you’re
computing the message for a specific value v, you
fix that value, then sum over all possible values
of every other variable that F touches, multiply-
ing together the factor score (which depends on all
these variables) and the messages for each other
variable to get the summand for each assignment.
For example, if computing a message from a SIB-
LING factor to an adjacent variable, the equation
comes out to:

mSijk→Yij (yij) ∝
�

yik

φSijk(yij , yik)mYik→Sijk(yik)

While the EDGE and SIBLING factors are sim-
ple enough to perform the computation in Equa-
tion 2 by brute force, performing the sum naı̈vely
for computing messages from the TREE factor
would take exponential time. However, due to the
structure of that particular factor, all of its out-
going messages can be computed simultaneously
in O(n3) time by using an efficient adaptation of

Kirchhoff’s Matrix Tree Theorem (Tutte, 1984)
which computes partition functions and marginals
for directed spanning trees.3

Once message passing is completed, marginal
beliefs are computed by merely multiplying to-
gether all the messages received by a particular
variable or factor:

bV (v) ∝
�

F∈N(V)

mF→V (v) (3)

bF (vN(F)) ∝ φF (vN(F))
�

V ∈N(F)

mV→F (v) (4)

2.2.1 Loopy Belief Propagation
Looking closely at Figure 2a, one can observe
that the factor graph for the first version of our
model, containing only EDGE and TREE factors,
is acyclic. In this special case, belief propaga-
tion is exact: after one round of message passing,4

the beliefs computed by equations 3 and 4 will be
the true marginal probabilities under the current
model. However, in the full model, shown in Fig-
ure 2b, the SIBLING factors introduce cycles into
the factor graph. When a factor graph contains cy-
cles, the messages that are being passed around of-
ten depend on each other5 and so they will change
as they are recomputed.

The process of iteratively recomputing mes-
sages based on earlier messages is known as loopy
belief propagation. This procedure only finds ap-
proximate marginal beliefs, and is not actually
guaranteed to converge, but in practice can be
quite effective for finding workable marginals in
models for which exact inference is intractable, as
is the case here. All else equal, the more rounds
of message passing that are performed, the closer
the computed marginal beliefs will be to the true
marginals, though in practice, there are usually di-
minishing returns after the first few iterations. In
our experiments, we used a fairly conservative up-
per bound of 20 iterations, but in most cases, the
messages converged much earlier than that.

2.3 Training
We used gradient-based maximum likelihood
training to learn the model parameters w. Since

3See Smith and Eisner (2008) for details on how to incor-
porate the MTT into belief propagation.

4Assuming messages are ordered appropriately along the
graph.

5The degree of dependency depends on the length of the
cycles in the graph and the strength of variable interactions in
the factor scoring functions.

!"##$%"#&'"(")$*&+,)-
!"##$%"#&.),-&.$/0,)#&0,&1$)2$3*"#4

VF

!"##$%"#&'"(")$*&+,)-
!"##$%"#&.),-&/$)0$1*"#&2,&.$32,)#4

V F

2008). However, we will briefly sketch the proce-
dure here.

Belief propagation is a general-purpose infer-
ence method that computes marginals via mes-
sages that are passed between variables and fac-
tors in the factor graph. Messages are always be-
tween an adjacent variable and factor in the graph,
and take the form of (possibly unnormalized) dis-
tributions over values of the variable. There are
two types of messages, depending on the direction
(variable to factor or factor to variable), with mu-
tually recursive definitions.

Let N(V) denote the set of factors neighbor-
ing variable V in the factor graph and N(F) the
set of variables neighboring F . The message from
a variable V to a factor F is fairly simple, as it
simply collects the information that variable has
received from all of its other adjacent factors:

mV→F (v) ∝
�

F �∈N(V)\{F}

mF �→V (v)

The message from F to V collects information
from other adjacent variables, but also includes the
factor’s own scoring function:

mF→V (v) ∝
�

XF ,XF [V]=v

φF (XF)
�

V �∈N(F)\V

mV �→F (XF [V
�]) (2)

where XF is a partial assignment of values to just
the variables in N(F).

The idea behind Equation 2 is that if you’re
computing the message for a specific value v, you
fix that value, then sum over all possible values
of every other variable that F touches, multiply-
ing together the factor score (which depends on all
these variables) and the messages for each other
variable to get the summand for each assignment.
For example, if computing a message from a SIB-
LING factor to an adjacent variable, the equation
comes out to:

mSijk→Yij (yij) ∝
�

yik

φSijk(yij , yik)mYik→Sijk(yik)

While the EDGE and SIBLING factors are sim-
ple enough to perform the computation in Equa-
tion 2 by brute force, performing the sum naı̈vely
for computing messages from the TREE factor
would take exponential time. However, due to the
structure of that particular factor, all of its out-
going messages can be computed simultaneously
in O(n3) time by using an efficient adaptation of

Kirchhoff’s Matrix Tree Theorem (Tutte, 1984)
which computes partition functions and marginals
for directed spanning trees.3

Once message passing is completed, marginal
beliefs are computed by merely multiplying to-
gether all the messages received by a particular
variable or factor:

bV (v) ∝
�

F∈N(V)

mF→V (v) (3)

bF (vN(F)) ∝ φF (vN(F))
�

V ∈N(F)

mV→F (v) (4)

2.2.1 Loopy Belief Propagation
Looking closely at Figure 2a, one can observe
that the factor graph for the first version of our
model, containing only EDGE and TREE factors,
is acyclic. In this special case, belief propaga-
tion is exact: after one round of message passing,4

the beliefs computed by equations 3 and 4 will be
the true marginal probabilities under the current
model. However, in the full model, shown in Fig-
ure 2b, the SIBLING factors introduce cycles into
the factor graph. When a factor graph contains cy-
cles, the messages that are being passed around of-
ten depend on each other5 and so they will change
as they are recomputed.

The process of iteratively recomputing mes-
sages based on earlier messages is known as loopy
belief propagation. This procedure only finds ap-
proximate marginal beliefs, and is not actually
guaranteed to converge, but in practice can be
quite effective for finding workable marginals in
models for which exact inference is intractable, as
is the case here. All else equal, the more rounds
of message passing that are performed, the closer
the computed marginal beliefs will be to the true
marginals, though in practice, there are usually di-
minishing returns after the first few iterations. In
our experiments, we used a fairly conservative up-
per bound of 20 iterations, but in most cases, the
messages converged much earlier than that.

2.3 Training
We used gradient-based maximum likelihood
training to learn the model parameters w. Since

3See Smith and Eisner (2008) for details on how to incor-
porate the MTT into belief propagation.

4Assuming messages are ordered appropriately along the
graph.

5The degree of dependency depends on the length of the
cycles in the graph and the strength of variable interactions in
the factor scoring functions.

Smith and Eisner, 2008; Burkett and Klein, 2012 (tutorial); Gormley and Eisner, 2014 (tutorial) 	

Inference: Belief Propagation

!   Messages from tree factor exponentially slow!

 à Matrix Tree Theorem (Tutte, 1984)

!   Marginal beliefs:

!   Loopy belief propagation (sibling factors introduce cycles)

2008). However, we will briefly sketch the proce-
dure here.

Belief propagation is a general-purpose infer-
ence method that computes marginals via mes-
sages that are passed between variables and fac-
tors in the factor graph. Messages are always be-
tween an adjacent variable and factor in the graph,
and take the form of (possibly unnormalized) dis-
tributions over values of the variable. There are
two types of messages, depending on the direction
(variable to factor or factor to variable), with mu-
tually recursive definitions.

Let N(V) denote the set of factors neighbor-
ing variable V in the factor graph and N(F) the
set of variables neighboring F . The message from
a variable V to a factor F is fairly simple, as it
simply collects the information that variable has
received from all of its other adjacent factors:

mV→F (v) ∝
�

F �∈N(V)\{F}

mF �→V (v)

The message from F to V collects information
from other adjacent variables, but also includes the
factor’s own scoring function:

mF→V (v) ∝
�

XF ,XF [V]=v

φF (XF)
�

V �∈N(F)\V

mV �→F (XF [V
�]) (2)

where XF is a partial assignment of values to just
the variables in N(F).

The idea behind Equation 2 is that if you’re
computing the message for a specific value v, you
fix that value, then sum over all possible values
of every other variable that F touches, multiply-
ing together the factor score (which depends on all
these variables) and the messages for each other
variable to get the summand for each assignment.
For example, if computing a message from a SIB-
LING factor to an adjacent variable, the equation
comes out to:

mSijk→Yij (yij) ∝
�

yik

φSijk(yij , yik)mYik→Sijk(yik)

While the EDGE and SIBLING factors are sim-
ple enough to perform the computation in Equa-
tion 2 by brute force, performing the sum naı̈vely
for computing messages from the TREE factor
would take exponential time. However, due to the
structure of that particular factor, all of its out-
going messages can be computed simultaneously
in O(n3) time by using an efficient adaptation of

Kirchhoff’s Matrix Tree Theorem (Tutte, 1984)
which computes partition functions and marginals
for directed spanning trees.3

Once message passing is completed, marginal
beliefs are computed by merely multiplying to-
gether all the messages received by a particular
variable or factor:

bV (v) ∝
�

F∈N(V)

mF→V (v) (3)

bF (vN(F)) ∝ φF (vN(F))
�

V ∈N(F)

mV→F (v) (4)

2.2.1 Loopy Belief Propagation
Looking closely at Figure 2a, one can observe
that the factor graph for the first version of our
model, containing only EDGE and TREE factors,
is acyclic. In this special case, belief propaga-
tion is exact: after one round of message passing,4

the beliefs computed by equations 3 and 4 will be
the true marginal probabilities under the current
model. However, in the full model, shown in Fig-
ure 2b, the SIBLING factors introduce cycles into
the factor graph. When a factor graph contains cy-
cles, the messages that are being passed around of-
ten depend on each other5 and so they will change
as they are recomputed.

The process of iteratively recomputing mes-
sages based on earlier messages is known as loopy
belief propagation. This procedure only finds ap-
proximate marginal beliefs, and is not actually
guaranteed to converge, but in practice can be
quite effective for finding workable marginals in
models for which exact inference is intractable, as
is the case here. All else equal, the more rounds
of message passing that are performed, the closer
the computed marginal beliefs will be to the true
marginals, though in practice, there are usually di-
minishing returns after the first few iterations. In
our experiments, we used a fairly conservative up-
per bound of 20 iterations, but in most cases, the
messages converged much earlier than that.

2.3 Training
We used gradient-based maximum likelihood
training to learn the model parameters w. Since

3See Smith and Eisner (2008) for details on how to incor-
porate the MTT into belief propagation.

4Assuming messages are ordered appropriately along the
graph.

5The degree of dependency depends on the length of the
cycles in the graph and the strength of variable interactions in
the factor scoring functions.

!"#$%&"'()*'%*+,

V

O(n3)

Smith and Eisner, 2008; Burkett and Klein, 2012 (tutorial); Gormley and Eisner, 2014 (tutorial) 	

Learning

!   Gradient-based maximum likelihood training to learn

!   Run loopy BP to get approximate marginals

!   Compute expected feature counts and gradients

!   Plug into any gradient optimizer – we use AdaGrad

(Duchi et al., 2011)

w

Decoding

w!   After learning , run BP again to get marginal beliefs

!   Set edge-scores = belief-odds-ratio =

!   Run MST algorithm to get minimum Bayes risk tree

our model has a loglinear form, the derivative of
w with respect to the likelihood objective is com-
puted by just taking the gold feature vector and
subtracting the vector of expected feature counts.

We have features from two types of factors
(EDGE and SIBLING), but their expected counts
are computed in the same way. First, we run be-
lief propagation until completion (one iteration for
the first model, several for the second). Then, for
each factor in the model we simply read off the
marginal probability of that factor being active6

according to Equation 4, and accumulate a partial
count for each feature that’s fired by that factor. If
the model permits exact inference, then this will
yield the exact gradient, whereas if the marginal
beliefs are computed using loopy belief propaga-
tion then the gradient will be an approximation,
though hopefully a reasonable one.

This method of computing the gradient can be
plugged into any gradient-based optimizer in or-
der to learn the weights w. In our experiments
we used AdaGrad (Duchi et al., 2011), an adaptive
subgradient variant of standard stochastic gradient
ascent for online learning.

2.4 Decoding

Finally, once the model parameters have been
learned, we want to use the model to find taxon-
omy trees for particular sets of input terms. Note
that if we limit our scores to be edge-factored,
then, as in non-projective dependency parsing,
finding the highest scoring taxonomy tree be-
comes an instance of the MST problem. Also
known as the maximum arborescence problem (for
the directed case), the MST problem can be solved
efficiently in quadratic time (Tarjan, 1977) using
the greedy, recursive Chu-Liu-Edmonds algorithm
(Chu and Liu, 1965; Edmonds, 1967).7

Since the MST problem can be solved effi-
ciently, the main challenge becomes finding a way
to ensure that our scores are edge-factored. In the
first version of our model, we could simply set the
score of each edge to be w·f(xi, xj), and the MST
recovered in this way would indeed be the high-

6By active we just mean that features are being extracted,
so for Eij , active means that yij = on, whereas for Sijk,
active means that yij = yik = on.

7See Georgiadis (2003) for a detailed algorithmic proof,
and McDonald et al. (2005) for an illustrative example. Also,
we constrain the Chu-Liu-Edmonds MST algorithm to out-
put only single-root MSTs, where the (dummy) root has ex-
actly one child (Koo et al., 2007), because multi-root span-
ning ‘forests’ are not applicable to our task.

est scoring tree: arg maxyP (y|x). However, this
straightforward approach doesn’t apply to the full
model which also uses sibling features. Hence, at
decoding time, we instead start out by once more
using belief propagation to find marginal beliefs.
Once we have computed marginal edge beliefs ac-
cording to Equation 3, we set the score of each
edge to be its belief odds ratio:

bYij (on)
bYij (off) . The MST

that is found using these edge scores is actually
the minimum Bayes risk tree (Goodman, 1996) for
an edge accuracy loss function (Smith and Eisner,
2008).

2.4.1 Relationship to Dependency Parsing
Spanning trees are familiar from non-projective
dependency parsing (McDonald et al., 2005).
However, there are some important differences be-
tween dependency parsing and taxonomy induc-
tion. First, where the linear order (i.e. the in-
dexing) of the words is critical for dependency
parsing, it is purely notational for taxonomy in-
duction, and so here no features will refer to the
indices’ order (such as the distance, linear di-
rection, and in-between identity features used in
dependency parsing). Moreover, features based
on lexical identities and syntactic word classes,
which are primary drivers for dependency parsing,
are mostly uninformative here. Instead, in taxon-
omy induction, we need to learn semantic rela-
tional preferences, for which we will next present
features that capture the relations based on co-
occurrence patterns and statistics in large corpora,
in addition to surface features that capture string
similarities.

3 Features

Inducing taxonomies requires world knowledge
to capture the semantic relations between vari-
ous terms. Hence, configurational and word class
features are mostly uninformative here. Instead,
we use semantic cues to hypernymy and sibling-
hood via simple surface patterns and statistics in
large text corpora.8 We fire features on both the
edge and the sibling factors. We first describe all

8Note that one could also add various complementary
types of useful features presented by previous work, e.g.,
bootstrapping using syntactic heuristics (Phillips and Riloff,
2002), dependency patterns (Snow et al., 2006), doubly an-
chored patterns (Kozareva et al., 2008; Hovy et al., 2009),
and Web definition classifiers (Navigli et al., 2011). How-
ever, in our work, we focus mainly on the structured learning
aspect.

Smith and Eisner, 2008	

Sibling Features

!   Consider each potential sibling pair in factor

!   Fire similar Web n-gram and Wikipedia features

(xj , xk) Sijk

Web Ngrams
…	

C1 w1 w2 w3 C2 x
…

w1 C1 w2 w3 C2 x
…

C1 w1 w2 C2 w3 x	

…

C1 w1 w2 C2 	
 x
…
…

 C1 	

(squirrel)	

C2 	

(rat)	

Top 100 strings

Results: Adding Siblings

6.9

24.6

42.2
46.8

54.8

0

20

40

60

A
nc

es
to

r
F1

Baseline	 Surface	 Semantic	 Surf+Sem	 +Sibling	

!   Setup: Train on a WordNet portion and reproduce the rest

Analysis: Learned Sibling Features

C1 and C2	

C1 or C2 of	

 , C1 , C2 and	

the C1 / C2	

C1 , C2 (

C1 and / or C2	

either C1 or C2	

<s> C1 and C2 </s>	

!   High-weight sibling pattern examples

Conclusion

!   Structured learning for taxonomy induction

!   No lexicalized features possible, so learned external
pattern features from Web n-grams and Wikipedia

!   Incorporated sibling information via 2nd order factors and

loopy BP

!   Strong improvements on WordNet corpora

Thank you!

Questions?

