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Abstract

We demonstrate significant improvement
on the MCTest question answering task
(Richardson et al., 2013) by augmenting
baseline features with features based on
syntax, frame semantics, coreference, and
word embeddings, and combining them in
a max-margin learning framework. We
achieve the best results we are aware of on
this dataset, outperforming concurrently-
published results. These results demon-
strate a significant performance gradient
for the use of linguistic structure in ma-
chine comprehension.

1 Introduction

Recent question answering (QA) systems (Fer-
rucci et al., 2010; Berant et al., 2013; Bordes et
al., 2014) have focused on open-domain factoid
questions, relying on knowledge bases like Free-
base (Bollacker et al., 2008) or large corpora of
unstructured text. While clearly useful, this type
of QA may not be the best way to evaluate natu-
ral language understanding capability. Due to the
redundancy of facts expressed on the web, many
questions are answerable with shallow techniques
from information extraction (Yao et al., 2014).

There is also recent work on QA based on syn-
thetic text describing events in

adventure games (Weston et al., 2015;
Sukhbaatar et al., 2015). Synthetic text provides
a cleanroom environment for evaluating QA
systems, and has spurred development of power-
ful neural architectures for complex reasoning.
However, the formulaic semantics underlying
these synthetic texts allows for the construction
of perfect rule-based question answering sys-
tems, and may not reflect the patterns of natural
linguistic expression.

In this paper, we focus on machine compre-
hension, which is QA in which the answer is con-

tained within a provided passage. Several compre-
hension tasks have been developed, including Re-
media (Hirschman et al., 1999), CBC4kids (Breck
et al., 2001), and the QA4MRE textual question
answering tasks in the CLEF evaluations (Peñas et
al., 2011; Peñas et al., 2013; Clark et al., 2012;
Bhaskar et al., 2012).

We consider the Machine Comprehension of
Text dataset (MCTest; Richardson et al., 2013),
a set of human-authored fictional stories with as-
sociated multiple-choice questions. Knowledge
bases and web corpora are not useful for this task,
and answers are typically expressed just once in
each story. While simple baselines presented by
Richardson et al. answer over 60% of questions
correctly, many of the remaining questions require
deeper analysis.

In this paper, we explore the use of depen-
dency syntax, frame semantics, word embeddings,
and coreference for improving performance on
MCTest. Syntax, frame semantics, and coref-
erence are essential for understanding who did
what to whom. Word embeddings address varia-
tion in word choice between the stories and ques-
tions. Our added features achieve the best results
we are aware of on this dataset, outperforming
concurrently-published results (Narasimhan and
Barzilay, 2015; Sachan et al., 2015).

2 Model

We use a simple latent-variable classifier trained
with a max-margin criterion. Let P denote the
passage, q denote the question of interest, and A
denote the set of candidate answers for q, where
each a ∈ A denotes one candidate answer. We
want to learn a function h : (P, q)→ A that, given
a passage and a question, outputs a legal a ∈ A.
We use a linear model for h that uses a latent vari-
able w to identify the sentence in the passage in
which the answer can be found.

Let W denote the set of sentences within the



passage, where a particular w ∈ W denotes one
sentence.

Given a feature vector f(P,w, q, a) and a
weight vector θ with an entry for each feature, the
prediction â for a new P and q is given by:

â = arg max
a∈A

max
w∈W

θ>f(P,w, q, a)

Given triples {〈P i, qi, ai〉}ni=1, we minimize an
`2-regularized max-margin loss function:

min
θ

λ||θ||2 +
n∑
i=1

{
−max
w∈W

θ>f(P i, w, qi, ai)

+ max
a∈A

{
max
w′∈W

θ>f(P i, w′, qi, a) + ∆(a, ai)

}}
where λ is the weight of the `2 term and
∆(a, ai) = 1 if a 6= ai and 0 otherwise. The latent
variable w makes the loss function non-convex.

3 Features

We start with two features from Richardson et al.
(2013). Our first feature corresponds to their slid-
ing window similarity baseline, which measures
weighted word overlap between the bag of words
constructed from the question/answer and the bag
of words in the window. We call this feature B.
The second feature corresponds to their word dis-
tance baseline, and is the minimal distance be-
tween two word occurrences in the passage that
are also contained in the question/answer pair. We
call this feature D. Space does not permit a de-
tailed description.

3.1 Frame Semantic Features
Frame semantic parsing (Das et al., 2014)
is the problem of extracting frame-specific
predicate-argument structures from sentences,
where the frames come from an inventory such as
FrameNet (Baker et al., 1998). This task can be
decomposed into three subproblems: target iden-
tification, in which frame-evoking predicates are
marked; frame label identification, in which the
evoked frame is selected for each predicate; and
argument identification, in which arguments to
each frame are identified and labeled with a role
from the frame. An example output of the SE-
MAFOR frame semantic parser (Das et al., 2014)
is given in Figure 1.
Three frames are identified. The target words
pulled, all, and shelves have respective frame la-
bels CAUSE MOTION, QUANTITY, and NATU-

Figure 1: Example output from SEMAFOR.

RAL FEATURES. Each frame has its own set of ar-
guments; e.g., the CAUSE MOTION frame has the
labeled Agent, Theme, and Goal arguments. Fea-
tures from these parses have been shown to be use-
ful for NLP tasks such as slot filling in spoken dia-
logue systems (Chen et al., 2013). We expect that
the passage sentence containing the answer will
overlap with the question and correct answer in
terms of predicates, frames evoked, and predicted
argument labels, and we design features to capture
this intuition. Given the frame semantic parse for a
sentence, let T be the bag of frame-evoking target
words/phrases.1 We define the bag of frame labels
in the parse as F . For each target t ∈ T , there is an
associated frame label denoted Ft ∈ F . Let R be
the bag of phrases assigned with an argument label
in the parse. We denote the bag of argument labels
in the parse by L. For each phrase r ∈ R, there is
an argument label denoted Lr ∈ L. We define a
frame semantic parse as a tuple 〈T, F,R, L〉. We
define six features based on two parsed sentences
〈T 1, F 1, R1, L1〉 and 〈T 2, F 2, R2, L2〉:
• f1: # frame label matches: |{〈s, t〉 : s ∈
F 1, t ∈ F 2, s = t}|
• f2: # argument label matches: |{〈s, t〉 : s ∈
L1, t ∈ L2, s = t}|.
• f3: # target matches, ignoring frame labels:
|{〈s, t〉 : s ∈ T 1, t ∈ T 2, s = t}|.
• f4: # argument matches, ignoring arg. labels:
|{〈s, t〉 : s ∈ R1, t ∈ R2, s = t}|.
• f5: # target matches, using frame labels:
|{〈s, t〉 : s ∈ T 1, t ∈ T 2, s = t, F 1

s = F 2
t }|.

• f6: # argument matches, using arg. labels:
|{〈s, t〉 : s ∈ R1, t ∈ R2, s = t, L1

s = L2
t }|.

We use two versions of each of these six features:
one version for the passage sentence w and the
question q, and an additional version for w and the
candidate answer a.

3.2 Syntactic Features
If two sentences refer to the same event, then it is
likely that they have some overlapping dependen-

1By bag, we mean here a set with possible replicates.



Figure 2: Transforming the question to a statement.

cies. To compare a Q/A pair to a sentence in the
passage, we first use rules to transform the ques-
tion into a statement and insert the candidate an-
swer into the trace position. Our simple rule set
is inspired by the rich history of QA research into
modeling syntactic transformations between ques-
tions and answers (Moschitti et al., 2007; Wang et
al., 2007; Heilman and Smith, 2010). Given Stan-
ford dependency tree and part-of-speech (POS)
tags for the question, let arc(u, v) be the label of
the dependency between child word u and head
word v, let POS (u) be the POS tag of u, let c be
the wh-word in the question, let r be the root word
in the question’s dependency tree, and let a be the
candidate answer. We use the following rules:2

• c = what, POS (r) = VB, and arc(c, r) = dobj.
Insert a after word u where arc(u, r) = nsubj.
Delete c and the word after c.

• c = what, POS (r) = NN, and arc(c, r) =
nsubj. Replace c by a.

• c = where, POS (r) = VB, and arc(c, r) = ad-
vmod. Delete c and the word after c. If r has a
child u such that arc(u, r) = dobj, insert a after
u; else, insert a after r and delete r.

• c = where, r = is, POS(r) = VBZ, and arc(c,
r) = advmod. Delete c. Find r’s child u such
that arc(u, r) = nsubj, move r to be right after
u. Insert a after r.

• c = who, POS(r) = NN, and arc(c, r) =
nsubj. Replace c by a.

• c = who, POS(r) ∈ {VB, VBD}, and arc(c, r)
= nsubj. Replace c by a.

We use other rules in addition to those above:
change “why x?” to “the reason x is a”, and
change “how many x”, “how much x”, or “when
x” to “x a”.

Given each candidate answer, we attempt to
transform the question to a statement using the

2There are existing rule-based approaches to transforming
statements to questions (Heilman, 2011); our rules reverse
this process.

rules above.3 An example of the transformation
is given in Figure 2. In the parse, pull is the root
word and What is attached as a dobj. This matches
the first rule, so we delete did and insert the can-
didate answer pudding after pull, making the final
transformed sentence: James pull pudding off.

After this transformation of the question (and
a candidate answer) to a statement, we mea-
sure its similarity to the sentence in the window
using simple dependency-based similarity fea-
tures. Denoting a dependency as (u, v, arc(u, v)),
then two dependencies (u1, v1, arc(u1, v1)) and
(u2, v2, arc(u2, v2)) match if and only if u1 = u2,
v1 = v2, and arc(u1, v1) = arc(u2, v2). One
feature simply counts the number of dependency
matches between the transformed question and the
passage sentence. We include three additional
count features that each consider a subset of de-
pendencies from the following three categories:

(1) v = r and u = a; (2) v = r but u 6= a; and
(3) v 6= r. In Figure 2, the triples

(James, pull,nsubj) and (off, pull,prt) belong to
the second category while (pudding, pull,dobj)
belongs to the first.

3.3 Word Embeddings
Word embeddings (Mikolov et al., 2013) repre-
sent each word as a low-dimensional vector where
the similarity of vectors captures some aspect of
semantic similarity of words. They have been
used for many tasks, including semantic role label-
ing (Collobert et al., 2011), named entity recogni-
tion (Turian et al., 2010), parsing (Bansal et al.,
2014), and for the Facebook QA tasks (Weston et
al., 2015; Sukhbaatar et al., 2015). We first de-
fine the vector f+w as the vector summation of all
words inside sentence w and f×w as the element-
wise multiplication of the vectors in w. To define
vectors for answer a for question q, we concate-
nate q and a, then calculate f+qa and f×qa. For the
bag-of-words feature B, instead of merely count-
ing matches of the two bags of words, we also use
cos(f+qa, f

+
w ) and cos(f×qa, f

×
w ) as features, where

cos is cosine similarity. For syntactic features,
where τw is the bag of dependencies of w and
τqa is the bag of dependencies for the transformed
question for candidate answer a, we use a feature
function that returns the following:∑
(u,v,`)∈τw

∑
(u′,v′,`′)∈τqa

1`=`′ cos(u, u′) cos(v, v′)

3If no rule applies, we return 0 for all syntactic features.



where ` is short for arc(u, v).4

3.4 Coreference Resolution

Coreference resolution systems aim to identify
chains of mentions (within and across sentences)
that refer to the same entity. We integrate coref-
erence information into the bag-of-words, frame
semantic, and syntactic features. We run a coref-
erence resolution system on each passage, then for
these three sets of features, we replace exact string
match with a check for membership in the same
coreference chain.

When using features augmented by word em-
beddings or coreference, we create new versions
of the features that use the new information, con-
catenating them with the original features.

4 Experiments

MCTest splits its stories into train, development,
and test sets. The original MCtest DEV is too
small, to choose the best feature set, we merged
the train and development sets in MC160 and
MC500 and split them randomly into a 250-story
training set (TRAIN) and a 200-story development
set (DEV). We optimize the max-margin training
criteria on TRAIN and use DEV to tune the regular-
izer λ and choose the best feature set. We report
final performance on the original two test sets (for
comparability) from MCTest, named MC160 and
MC500.

We use SEMAFOR (Das et al., 2010; Das et
al., 2014) for frame semantic parsing and the lat-
est Stanford dependency parser (Chen and Man-
ning, 2014) as our dependency parser. We use
the Stanford rule-based system for coreference
resolution (Lee et al., 2013). We use the pre-
trained 300-dimensional word embeddings down-
loadable from the word2vec site.5 We denote
the frame semantic features by F and the syntac-
tic features by S. We use superscripts w and c to
indicate the use of embeddings and coreference
for a particular feature set. To minimize the loss,
we use the miniFunc package in MATLAB with
LBFGS (Nocedal, 1980; Liu and Nocedal, 1989).

The accuracy of different feature sets on DEV is
given in Table 1.6 The boldface results correspond

4Similar to the original syntactic features (see end of Sec-
tion 3.2), we also have 3 additional features for the three sub-
set categories.

5https://code.google.com/p/word2vec/
6All accuracies are computed with tie-breaking partial

credit (similar to previous work), i.e., if we have the same

to the best feature set combination chosen by eval-
uating on DEV. In this case, the feature dimen-
sionality is 29, which includes 4 bag-of-words fea-
tures, 1 distance feature, 12 frame semantic fea-
tures, and with the remaining being syntactic fea-
tures. After choosing the best feature set on DEV,
we then evaluate our system on TEST.

Negations: in preliminary experiments, we
found that our system suffered with negation ques-
tions, so we developed a simple heuristic to deal
with them. We identify a question as negation if it
contains “not” or “n’t” and does not begin with
“how” or “why”. If a question is identified as
negation, we then negate the final score for each
candidate answer.

Features DEV Accuracy (%)
B + D + F 64.18

B + D + F + S 66.24
Bwc + D + Fc + Swc 69.87

Table 1: Accuracy on DEV.

The final test results are shown in Table 2. We
first compare to results from prior work (Richard-
son et al., 2013). Their first result uses a slid-
ing window with the bag-of-words feature B de-
scribed in Sec. 3; this system is called “Base-
line 1” (B1). They then add the distance feature
D, also described in Sec. 3. The combined sys-
tem, which uses B and D, is called “Baseline 2”
(B2). Their third result adds a rich textual entail-
ment system to B2; it is referred to as B2+RTE.7

We also compare to concurrently-published re-
sults (Narasimhan and Barzilay, 2015; Sachan et
al., 2015).

We report accuracies for all questions as well
as separately for the two types: those that are
answerable with a single sentence from the pas-
sage (“Single”) and those that require multiple
sentences (“Multiple”). We see gains in accuracy
of 6% absolute compared to the B2+RTE base-
line and also outperform concurrently-published
results (Narasimhan and Barzilay, 2015; Sachan
et al., 2015). Even though our system only ex-
plicitly uses a single sentence from the passage
when choosing an answer, we improve baseline
accuracy for both single-sentence and multiple-
sentence questions. 8

score for all four candidate answers, then we get partial credit
of 0.25 for this question.

7These three results are obtained from files at
http://research.microsoft.com/en-us/
um/redmond/projects/mctest/results.html.

8However, we inspected these question annotations and



System MC160 MC500
Single (112) Multiple (128) All Single (272) Multiple (328) All

B1 64.73 56.64 60.41 58.21 56.17 57.09
Richardson et al. (2013) B2 75.89 60.15 67.50 64.00 57.46 60.43

B2+RTE 76.78 62.50 69.16 68.01 59.45 63.33
Narasimhan and Barzilay (2015) 82.36 65.23 73.23 68.38 59.90 63.75
Sachan et al. (2015) - - - 67.65 67.99 67.83
our system 84.22 67.85 75.27 72.05 67.94 69.94

Table 2: Accuracy comparison of published results on test sets.

Features DEV Accuracy (%)
full (Bwc+D+Fc+Swc) 69.87
− Bwc (D + Fc+Swc) 58.46
− D (Bwc+Fc+Swc) 65.89
− Bwc, − D (Fc+Swc) 54.19
− embeddings (Bc+D+Fc+Sc) 68.28
− coreference (Bw+D+F+Sw) 68.43
− frame semantics (Bwc+D+Swc) 67.89
− syntax (Bwc+D+Fc) 67.64
− negation (Bwc+D+Fc+Swc) 68.72

Table 3: Ablation study of feature types on the dev set.

We also measure the contribution of each fea-
ture set by deleting it from the full feature set.
These ablation results are shown in Table 3. We
find that frame semantic and syntax features con-
tribute almost equally, and using word embed-
dings contributes slightly more than coreference
information. If we delete the bag-of-words and
distance features, then accuracy drops signifi-
cantly, which suggests that in MCTest, simple
surface-level similarity features suffice to answer
a large portion of questions.

5 Analysis

Successes To show the effects of different fea-
tures, we show cases where the full system gives
the correct prediction (marked with ∗) but ablat-
ing the named features causes the incorrect answer
(marked with †) to be predicted:
Ex. 1: effect of embeddings: we find the soft similarity

between ‘noodle’ and ‘spaghetti’.
clue: Marsha’s favorite dinner was spaghetti.
q: What is Marsha’s noodle made out of? ∗A) Spaghetti;
†C) mom;

Ex. 2: coreference resolves She to Hannah Harvey.
Hannah Harvey was a ten year old. She lived in New York.
q: Where does Hannah Harvey live? ∗A) New York; †C)
Kenya;

Ex. 4: effect of syntax: by inserting answer C, the trans-

formed statement is: Todd say there’s no place like home

when he got home from the city.

occasionally found them to be noisy, which may cloud these
comparisons.

When his mom asked him about his trip to the city Todd
said, “There’s no place like home.”
q: What did Todd say when he got home from the city? †B)
There were so many people in cars; ∗C) There’s no place
like home;

Errors To give insight into our system’s perfor-
mance and reveal future research directions, we
also analyzed the errors made by our system. We
found that many required inferential reasoning,
counting, set enumeration, multiple sentences,
time manipulation, and comparisons. Some ran-
domly sampled examples are given below, with the
correct answer starred (∗):
Ex. 1: requires inference across multiple sentences:
One day Fritz got a splinter in his foot. Stephen did not
believe him. Fritz showed him the picture. Then Stephen
believed him. q: What made Stephen believe Fritz? ∗A)
the picture of the splinter in his foot; †C) the picture of the
cereal with milk;

Ex. 2: requires temporal reasoning and world knowledge:
Ashley woke up bright and early on Friday morning. Her
birthday was only a day away. q: What day of the week was
Ashley’s birthday? ∗A) Saturday; †C) Friday;

Ex. 3: requires comparative reasoning:
Tommy has an old bicycle now. He is getting too big for
it. q: What’s wrong with Tommy’s old bicycle? ∗B) it’s too
small; †C) it’s old;

6 Conclusion

We proposed several novel features for machine
comprehension, including those based on frame
semantics, dependency syntax, word embeddings,
and coreference resolution. Empirical results
demonstrate substantial improvements over sev-
eral strong baselines, achieving new state-of-the-
art results on MCTest. Our error analysis sug-
gests that deeper linguistic analysis and inferential
reasoning can yield further improvements on this
task.
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