
Knowledgeable and Adversarially-Robust
Representation Learning

Mohit Bansal

(RepL4NLP, ACL 2019)

Part 1:
Adversarially-Robust Model Representations

Motivation and Topics
•  Are deep learning models and their representations robust to diverse adversaries (in tasks

such as QA, multi-hop reasoning, dialogue generation, and NLI)?

•  How far can adversarial training go in bringing back robustness?

•  What types of direct model enhancements and better evaluations are needed for robust
representation learning?

•  How do we ensure robustness to all types of adversaries?

Yicheng Wang Mohit Bansal

NAACL 2018

Robust Machine Comprehension Models via
Adversarial Training & Model Improvements

Robust Q&A Models: Motivation

[Jia and Liang, EMNLP 2017]

It has been shown by Jia & Liang (2017) that many reading comprehension models trained on
SQuAD lack robustness to semantics-based attacks and lose performance severely on these
adversarial evaluations. Moreover, adversarial training has limited effects to bring back accuracy.

Czech, another required subject. Tesla did, however,

Tadakatsu moved the city of
Chicago to in 1881.

Chicago

What city did Tesla move to
in 1880?

What city did Tadakatsu move to
in 1881?

Prague

Adversary Adds: Tadakatsu moved to the city
of Chicago in 1881.
Model Predicts: Chicago

(Step 1)
Mutate

question

(Step 3)
Convert into
statement

(Step 4)
Fix errors with
crowdworkers,
verify resulting
sentences with
other crowdworkers

AddSent

tesla move move other george

(Step 2)
Generate

fake answer

Figure 2: An illustration of the ADDSENT and ADDANY adversaries.

of 26 types, corresponding to NER and POS tags
from Stanford CoreNLP (Manning et al., 2014),
plus a few custom categories (e.g., abbreviations),
and manually associate a fake answer with each
type. Given the original answer to a question, we
compute its type and return the corresponding fake
answer. In our running example, the correct an-
swer was not tagged as a named entity, and has
the POS tag NNP, which corresponds to the fake
answer “Central Park.”

In Step 3, we combine the altered question and
fake answer into declarative form, using a set of
roughly 50 manually-defined rules over CoreNLP
constituency parses. For example, “What ABC di-
vision handles domestic television distribution?”
triggers a rule that converts questions of the
form “what/which NP1 VP1 ?” to “The NP1 of
[Answer] VP1”. After incorporating the alter-
ations and fake answer from the previous steps, we
generate the sentence, “The NBC division of Cen-
tral Park handles foreign television distribution.”

The raw sentences generated by Step 3 can be
ungrammatical or otherwise unnatural due to the
incompleteness of our rules and errors in con-
stituency parsing. Therefore, in Step 4, we fix er-
rors in these sentences via crowdsourcing. Each
sentence is edited independently by five workers
on Amazon Mechanical Turk, resulting in up to

five sentences for each raw sentence. Three addi-
tional crowdworkers then filter out sentences that
are ungrammatical or incompatible, resulting in a
smaller (possibly empty) set of human-approved
sentences. The full ADDSENT adversary runs the
model f as a black box on every human-approved
sentence, and picks the one that makes the model
give the worst answer. If there are no human-
approved sentences, the adversary simply returns
the original example.

A model-independent adversary. ADDSENT
requires a small number of queries to the model
under evaluation. To explore the possibility of an
adversary that is completely model-independent,
we also introduce ADDONESENT, which adds
a random human-approved sentence to the para-
graph. In contrast with prior work in computer
vision (Papernot et al., 2017; Narodytska and
Kasiviswanathan, 2016; Moosavi-Dezfooli et al.,
2017), ADDONESENT does not require any access
to the model or to any training data: it generates
adversarial examples based solely on the intuition
that existing models are overly stable.

3.3.2 ADDANY

For ADDANY, the goal is to choose any sequence
of d words, regardless of grammaticality. We use
local search to adversarially choose a distracting

sentence s = w1w2 . . . wd. Figure 2 shows an
example of ADDANY with d = 5 words; in our
experiments, we use d = 10.

We first initialize words w1, . . . , wd randomly
from a list of common English words.4 Then, we
run 6 epochs of local search, each of which iterates
over the indices i 2 {1, . . . , d} in a random order.
For each i, we randomly generate a set of candi-
date words W as the union of 20 randomly sam-
pled common words and all words in q. For each
x 2 W , we generate the sentence with x in the i-th
position and wj in the j-th position for each j 6= i.
We try adding each sentence to the paragraph and
query the model for its predicted probability distri-
bution over answers. We update wi to be the x that
minimizes the expected value of the F1 score over
the model’s output distribution. We return imme-
diately if the model’s argmax prediction has 0 F1
score. If we do not stop after 3 epochs, we ran-
domly initialize 4 additional word sequences, and
search over all of these random initializations in
parallel.

ADDANY requires significantly more model ac-
cess than ADDSENT: not only does it query the
model many times during the search process, but
it also assumes that the model returns a probabil-
ity distribution over answers, instead of just a sin-
gle prediction. Without this assumption, we would
have to rely on something like the F1 score of the
argmax prediction, which is piecewise constant
and therefore harder to optimize. “Probabilistic”
query access is still weaker than access to gradi-
ents, as is common in computer vision (Szegedy
et al., 2014; Goodfellow et al., 2015).

We do not do anything to ensure that the sen-
tences generated by this search procedure do not
contradict the original answer. In practice, the
generated “sentences” are gibberish that use many
question words but have no semantic content (see
Figure 2 for an example).

Finally, we note that both ADDSENT and
ADDANY try to incorporate words from the ques-
tion into their adversarial sentences. While this is
an obvious way to draw the model’s attention, we
were curious if we could also distract the model
without such a straightforward approach. To this
end, we introduce a variant of ADDANY called
ADDCOMMON, which is exactly like ADDANY
except it only adds common words.

4 We define common words as the 1000 most frequent
words in the Brown corpus (Francis and Kucera, 1979).

Match Match BiDAF BiDAF
Single Ens. Single Ens.

Original 71.4 75.4 75.5 80.0
ADDSENT 27.3 29.4 34.3 34.2
ADDONESENT 39.0 41.8 45.7 46.9
ADDANY 7.6 11.7 4.8 2.7
ADDCOMMON 38.9 51.0 41.7 52.6

Table 2: Adversarial evaluation on the Match-
LSTM and BiDAF systems. All four systems can
be fooled by adversarial examples.

Model Original ADDSENT ADDONESENT
ReasoNet-E 81.1 39.4 49.8
SEDT-E 80.1 35.0 46.5
BiDAF-E 80.0 34.2 46.9
Mnemonic-E 79.1 46.2 55.3
Ruminating 78.8 37.4 47.7
jNet 78.6 37.9 47.0
Mnemonic-S 78.5 46.6 56.0
ReasoNet-S 78.2 39.4 50.3
MPCM-S 77.0 40.3 50.0
SEDT-S 76.9 33.9 44.8
RaSOR 76.2 39.5 49.5
BiDAF-S 75.5 34.3 45.7
Match-E 75.4 29.4 41.8
Match-S 71.4 27.3 39.0
DCR 69.3 37.8 45.1
Logistic 50.4 23.2 30.4

Table 3: ADDSENT and ADDONESENT on all six-
teen models, sorted by F1 score the original exam-
ples. S = single, E = ensemble.

4 Experiments

4.1 Setup

For all experiments, we measure adversarial F1
score (Rajpurkar et al., 2016) across 1000 ran-
domly sampled examples from the SQuAD devel-
opment set (the test set is not publicly available).
Downsampling was helpful because ADDANY
and ADDCOMMON can issue thousands of model
queries per example, making them very slow. As
the effect sizes we measure are large, this down-
sampling does not hurt statistical significance.

4.2 Main Experiments

Table 2 shows the performance of the Match-
LSTM and BiDAF models against all four adver-
saries. Each model incurred a significant accu-
racy drop under every form of adversarial evalua-
tion. ADDSENT made average F1 score across the
four models fall from 75.7% to 31.3%. ADDANY
was even more effective, making average F1 score
fall to 6.7%. ADDONESENT retained much of the
effectiveness of ADDSENT, despite being model-
independent. Finally, ADDCOMMON caused aver-

5 10 15 20

0
20

40
60

80
10

0

k (number of words in question)

Pe
rc

en
t o

f q
ue

st
io

ns
 w

ith
 a

t m
os

t k
 w

or
ds

 (%
)

●

●

●

●

●

●

●

●
●

●

●
● ● ●

● ●

●

●

●

●

●

●

●

●
●

●
●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ● ●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

● ●

● Model success
Model failure
ML Single
ML Ensemble
BiDAF Single
BiDAF Ensemble

Figure 4: For model successes and failures on
ADDSENT, the cumulative distribution function of
the number of words in the question (for each k,
what fraction of questions have k words). Suc-
cesses are more likely to involve short questions.

4.5 Transferability across Models

In computer vision, adversarial examples that fool
one model also tend to fool other models (Szegedy
et al., 2014; Moosavi-Dezfooli et al., 2017); we
investigate whether the same pattern holds for us.
Examples from ADDONESENT clearly do transfer
across models, since ADDONESENT always adds
the same adversarial sentence regardless of model.

Table 5 shows the results of evaluating the
four main models on adversarial examples gen-
erated by running either ADDSENT or ADDANY
against each model. ADDSENT adversarial ex-
amples transfer between models quite effectively;
in particular, they are harder than ADDONESENT
examples, which implies that examples that fool
one model are more likely to fool other mod-
els. The ADDANY adversarial examples exhibited
more limited transferability between models. For
both ADDSENT and ADDANY, examples trans-
ferred slightly better between single and ensemble
versions of the same model.

4.6 Training on Adversarial Examples

Finally, we tried training on adversarial examples,
to see if existing models can learn to become more
robust. Due to the prohibitive cost of running
ADDSENT or ADDANY on the entire training set,
we instead ran only Steps 1-3 of ADDSENT (ev-
erything except crowdsourcing) to generate a raw
adversarial sentence for each training example.
We then trained the BiDAF model from scratch on

Training data
Test data Original Augmented
Original 75.8 75.1
ADDSENT 34.8 70.4
ADDSENTMOD 34.3 39.2

Table 6: Effect of training the BiDAF Single
model on the original training data alone (first
column) versus augmenting the data with raw
ADDSENT examples (second column).

the union of these examples and the original train-
ing data. As a control, we also trained a second
BiDAF model on the original training data alone.6

The results of evaluating these models are
shown in Table 6. At first glance, training on ad-
versarial data seems effective, as it largely protects
against ADDSENT. However, further investigation
shows that training on these examples has only
limited utility. To demonstrate this, we created
a variant of ADDSENT called ADDSENTMOD,
which differs from ADDSENT in two ways: it
uses a different set of fake answers (e.g., PERSON
named entities map to “Charles Babbage” instead
of “Jeff Dean”), and it prepends the adversarial
sentence to the beginning of the paragraph in-
stead of appending it to the end. The retrained
model does almost as badly as the original one on
ADDSENTMOD, suggesting that it has just learned
to ignore the last sentence and reject the fake an-
swers that ADDSENT usually proposed. In order
for training on adversarial examples to actually
improve the model, more care must be taken to
ensure that the model cannot overfit the adversary.

5 Discussion and Related Work

Despite appearing successful by standard evalu-
ation metrics, existing machine learning systems
for reading comprehension perform poorly un-
der adversarial evaluation. Standard evaluation is
overly lenient on models that rely on superficial
cues. In contrast, adversarial evaluation reveals
that existing models are overly stable to perturba-
tions that alter semantics.

To optimize adversarial evaluation metrics, we
may need new strategies for training models. For
certain classes of models and adversaries, efficient
training strategies exist: for example, Globerson
and Roweis (2006) train classifiers that are opti-
mally robust to adversarial feature deletion. Ad-

6 All previous experiments used parameters released by
Seo et al. (2016)

Improved Adversarial Training

[Wang and Bansal, NAACL 2018]

•  AddSent (Jia and Liang, 2017) is a five-step process that generates distractors which are syntactically
similar to the question but semantically different:

For more effective adversarial training, we make changes to step (5) and step (2) to make the generated
adversaries more diverse and hard-to-overfit (AddSentDiverse):

•  Random Distractor Placement: To prevent the trained model from over-fitting the adversary by ignoring the
last sentence, we randomly insert the sentence into the paragraph.

•  Dynamic Fake Answer Generation: To prevent the trained model from having any bias toward a specific set

of ‘fake answers’, we dynamically generate a fake answer that has the same ‘type’ as the real answer.

•  Propose the addition of synonymy/antonymy lexical semantic features using WordNet to enhance a
model’s overall capabilities in detecting semantics-altering perturbations (which effectively complements
adversarial training; improves adv-eval performance by an average of 36.5%).

(1) Antonym/NER
semantic-altering
changes are added

(2) Fake answer
picked based on

“type”

(3) Fake answer
and question are

merged
(4) Errors are fixed
by crowdworkers

(5) Distractor
appended to end of

context

Improved Adversarial Training

SQuAD Answer Set

Question: Who originally proposed the Alaska Permanent Fund?

Who originally proposed the Idaho Temporary Investment?

Answer: Governor Keith Miller

Answer Type: NER-Person

Ariel Sharon

Ariel Sharon originally proposed the Idaho Temporary Investment.

(2) Dynamically
generate fake
answer of the
same type

(1) Add semantics-altering
perturbations to the question

(3) Combine into Statement

(5) Randomly insert into context

The Alaska Permanent Fund is a constitutionally authorized appropriation of oil revenues, established by
voters in 1976 to manage a surplus in state petroleum revenues from oil, largely in anticipation of the
recently constructed Trans-Alaska Pipeline System. The fund was originally proposed by Governor Keith
Miller on the eve of the 1969 Prudhoe Bay lease sale, out of fear that the legislature would spend the entire
proceeds of the sale (which amounted to $900 million) at once. Ariel Sharon originally proposed the Idaho
Temporary Investment. It was later championed by Governor Jay Hammond and Kenai state representative
Hugh Malone. It has served as an attractive political prospect ever since, diverting revenues which would
normally be deposited into the general fund.

[Wang and Bansal, NAACL 2018]

Model Enhancements

[Wang and Bansal, NAACL 2018]

Question: Who originally proposed the Alaska Permanent Fund?

Context: The Alaska Permanent Fund ...

... Ariel Sharon originally proposed the Idaho Temporary Investment...

GloVE

ELMo

POS

Syn. Ind.
Ant. Ind.

... The fund was originally proposed by Governor Keith Miller ...

WordNet Model Enhancements: Models cannot
be fully resilient to semantics-based attacks with
only adversarial training, because its inputs are
bad at capturing named-entities & antonyms:

•  Models use word embeddings trained on

hypothesis: ‘words that occur in similar
contexts have similar meanings’; this is not
true for antonyms & NERs.

•  We add two indicator features for the
existence of synonyms and antonyms in the
other input (context or query).

•  Synonym indicators effective at distinguishing
named entity neighbors from actual synonyms.

•  Antonym indicators effective at finding subtle
yes crucial opposite meanings.

Results

[Wang and Bansal, NAACL 2018]

Setup/Results Summary: Our experiments were done on the BiDAF + Self-Attention +
ELMo (BSAE) (Peters et al., 2018) model:

•  We see that adversarial training with one type of adversary does not generalize to

other, similar adversaries.

•  We see that inserting distractors in the middle, while not biased, performs poorly
compared to random insertion.

•  We see that using a fixed set of fake answers causes the model to overfit on those
fake answers, and hurts overall robustness.

•  We see that the addition of lexical WordNet features is only effective when used jointly
with adversarial training (because the model now has the capacity to understand
+utilize the adversarial training data’s tricky information). It also prevents the decrease
in regular task performance during adversarial training.

[Wang and Bansal, NAACL 2018]

Training SQuAD-Dev AddSent AddSent
Prepend

AddSent
Random

AddSent
Mod

Average

Original 84.65 42.45 41.46 40.48 41.96 50.20

AddSent 83.76 79.55 51.96 59.03 46.85 64.23

AddSentDiverse 83.49 76.95 77.45 76.02 77.06 78.19

Training AddSent AddSentPrepend Average

InsFirst 60.22 79.81 70.02
InsLast 79.54 51.96 65.75
InsMid 74.74 74.33 74.54
InsRandom 76.33 77.38 76.85

Adversarial Training Results:

Random Distractor Placement Results:

Results

Results

[Wang and Bansal, NAACL 2018]

Training AddSentPrepend AddSentMod
Fixed-FakeAns 77.37 73.65
Dynamic-FakeAns 77.45 77.06

Model/Training SQuAD-Dev AddSent
BSAE/Reg. 84.65 42.45
BSAE/Adv. 83.49 76.95
BSAE+SA/Reg. 84.62 44.60
BSAE+SA/Adv. 84.49 78.91

Dynamic Fake Answer Generation Results:

Model Enhancement Results:

Yichen Jiang Mohit Bansal

ACL 2019

Avoiding Reasoning Shortcuts:
aAdversarial Evaluation, Training, and Model

Development for Multi-Hop QA

Data/code available at
h"ps://github.com/jiangycTarheel/Adversarial-Mul=HopQA	

Single-Hop QA

“Which NFL team represented the
AFC at Super Bowl 50?”

	Ques&on	
[Rajpurkar	et	al.,	2016]

[Jiang and Bansal, ACL 2019]

Single-Hop QA

“Which NFL team represented the
AFC at Super Bowl 50?”

	Ques&on	
[Rajpurkar	et	al.,	2016]

Super Bowl 50 was an American football
game to determine the champion of the
National Football League (NFL) for the 2015
season. The American Football Conference
(AFC) champion Denver Broncos defeated
the National Football Conference (NFC)
champion Carolina Panthers …

Context	

[Jiang and Bansal, ACL 2019]

Single-Hop QA

“Which NFL team represented the
AFC at Super Bowl 50?”

	Ques&on	
[Rajpurkar	et	al.,	2016]

Super Bowl 50 was an American football
game to determine the champion of the
National Football League (NFL) for the 2015
season. The American Football Conference
(AFC) champion Denver Broncos defeated
the National Football Conference (NFC)
champion Carolina Panthers …

Context	

“Denver Broncos”

Answer	

[Jiang and Bansal, ACL 2019]

Multi-Hop QA

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	
[Yang	et	al.,	2018]

[Jiang and Bansal, ACL 2019]

Multi-Hop QA

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	
[Yang	et	al.,	2018]

Kasper	Schmeichel	

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

???	???	

[Jiang and Bansal, ACL 2019]

Multi-Hop QA

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	
Kasper Schmeichel is a Danish professional
footballer ... He is the son of former Manchester United
and Danish international goalkeeper Peter Schmeichel.

Context	
[Yang	et	al.,	2018]

Kasper	Schmeichel	

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

???	???	

[Jiang and Bansal, ACL 2019]

Multi-Hop QA

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	
Kasper Schmeichel is a Danish professional
footballer ... He is the son of former Manchester United
and Danish international goalkeeper Peter Schmeichel.

Context	

Kasper	Schmeichel	 Peter	Schmeichel	

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

???	

[Yang	et	al.,	2018]

[Jiang and Bansal, ACL 2019]

Multi-Hop QA

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	
Kasper Schmeichel is a Danish professional
footballer ... He is the son of former Manchester United
and Danish international goalkeeper Peter Schmeichel.

Context	

Peter Bolesław Schmeichel is a Danish former
professional footballer … was voted the IFFHS
World's Best Goalkeeper in 1992 …

Kasper	Schmeichel	 Peter	Schmeichel	

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

???	

[Yang	et	al.,	2018]

[Jiang and Bansal, ACL 2019]

Multi-Hop QA

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	
Kasper Schmeichel is a Danish professional
footballer ... He is the son of former Manchester United
and Danish international goalkeeper Peter Schmeichel.

Context	

Peter Bolesław Schmeichel is a Danish former
professional footballer … was voted the IFFHS
World's Best Goalkeeper in 1992 …

World’s	Best	Goalkeeper	Kasper	Schmeichel	 Peter	Schmeichel	

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

[Yang	et	al.,	2018]

Bridge	En*ty	

[Jiang and Bansal, ACL 2019]

Is compositional reasoning necessary to
answer these multi-hop questions?

[Jiang and Bansal, ACL 2019]

Is compositional reasoning necessary to
answer these multi-hop questions?

Kasper	Schmeichel	 Peter	Schmeichel	 World’s	Best	Goalkeeper	

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

Bridge	En*ty	Ques*on	En*ty	 Answer	

Reasoning	Chain:	

[Jiang and Bansal, ACL 2019]

Is compositional reasoning necessary to
answer these multi-hop questions?

Not always!

[Jiang and Bansal, ACL 2019]

Reasoning Shortcut

Kasper	Schmeichel	 Peter	Schmeichel	 World’s	Best	Goalkeeper	

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

Bridge	En*ty	Ques*on	En*ty	 Answer	

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	

Reasoning	Chain:	

Reasoning	Shortcut:	

World’s	Best	Goalkeeper	

as QAngaroo (Welbl et al., 2017) and Hot-
potQA (Yang et al., 2018), have been proposed
to further assess QA systems’ ability to perform
composite reasoning. In this setting, the informa-
tion required to answer the question is scattered in
the long context and the model has to connect mul-
tiple evidence pieces to pinpoint to the final an-
swer. Fig. 1 shows an example from the HotpotQA
dev set, where it is necessary to consider infor-
mation in two documents to infer the hidden rea-
soning chain “Kasper Schemeichel son of����! Peter
Schemeichel voted as�����! World’s Best Goalkeeper”
that leads to the final answer. However, in this
example, one may also arrive at the correct an-
swer by matching a few keywords in the question
(“voted, IFFHS, in 1992”) with the corresponding
fact in the context without reasoning through the
first hop to find “father of Kasper Schmeichel”,
as neither of the two distractor documents con-
tains sufficient distracting information about an-
other person “voted as something by IFFHS in
1992”. Therefore, a model performing well on the
existing evaluation does not necessarily suggest its
strong compositional reasoning ability. To truly
promote and evaluate a model’s ability to perform
multi-hop reasoning, there should be no such “rea-
soning shortcut” where the model can locate the
answer with single-hop reasoning only. This is a
common pitfall when collecting multi-hop exam-
ples and is difficult to address properly.

In this work, we improve the original HotpotQA
distractor setting2 by adversarially generating bet-
ter distractor documents that make it necessary to
perform multi-hop reasoning in order to find the
correct answer. As shown in Fig. 1, we apply
phrase-level perturbations to the answer span and
the titles in the supporting documents to create the
adversary with a new title and a fake answer to
confuse the model. With the adversary added to
the context, it is no longer possible to locate the
correct answer with the single-hop shortcut, which
now leads to two possible answers (“World’s Best
Goalkeeper” and “World’s Best Defender”). We
evaluate the strong “Bi-attention + Self-attention”
model (Seo et al., 2017; Wang et al., 2017) from
Yang et al. (2018) on our constructed adversar-
ial dev set (adv-dev), and find that its EM score
drops significantly. In the example in Fig. 1, the

2HotpotQA has a fullwiki setting as an open-domain QA
task. In this work, we focus on the distractor setting as it pro-
vides a less noisy environment to study machine reasoning.

model is confused by our adversary and predicts
the wrong answer (“World’s Best Defender”). Our
experiments further reveal that when strong su-
pervision of the supporting facts that contain the
evidence is applied, the baseline achieves a sig-
nificantly higher score on the adversarial dev set.
This is because the strong supervision encourages
the model to not only locate the answer but also
find the evidence that completes the first reason-
ing hop and hence promotes robust multi-hop rea-
soning behavior from the model. We then train
the baseline with supporting fact supervision on
our generated adversarial training set (adv-train)
and observe significant improvement on adv-dev.
However, the result is still poor compared to the
model’s performance on the regular dev set be-
cause this single-hop model is not well-designed
to perform multi-hop reasoning.

To motivate and analyze some new multi-hop
reasoning models, we propose an initial architec-
ture by incorporating the recurrent control unit
from Hudson and Manning (2018), which dynam-
ically computes a distribution over question words
at each reasoning hop to guide the multi-hop bi-
attention. In this way, the model can learn to
put the focus on “father of Kasper Schmeichel” at
the first step and then attend to “voted by IFFHS
in 1992” in the second step to complete this 2-
hop reasoning chain. When trained on the regu-
lar data, this 2-hop model outperforms the single-
hop baseline in the adversarial evaluation, indi-
cating improved robustness against adversaries.
Furthermore, this 2-hop model, with or without
supporting-fact supervision, can benefit from ad-
versarial training and achieve better performance
on adv-dev compared to the counterpart trained
with the regular training set, while also outper-
forming the adversarially-trained baseline. Over-
all, we hope that these insights and initial improve-
ments will motivate the development of new mod-
els that combine explicit compositional reasoning
with adversarial training.

2 Adversarial Evaluation

2.1 The HotpotQA Task

The HotpotQA dataset (Yang et al., 2018) is
composed of 113k human-crafted questions, each
of which can be answered with facts from two
Wikipedia articles. During the construction of
the dataset, the crowd workers are asked to come
up with questions requiring reasoning about two

Answer	

[Placeholder]	

[Jiang and Bansal, ACL 2019]

Reasoning Shortcut

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	 Context	

Peter Bolesław Schmeichel is a Danish former professional
footballer .., and was voted the IFFHS World's Best
Goalkeeper in 1992 and 1993.

[Jiang and Bansal, ACL 2019]

Reasoning Shortcut

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	 Context	

Peter Bolesław Schmeichel is a Danish former professional
footballer .., and was voted the IFFHS World's Best
Goalkeeper in 1992 and 1993.

Edson Arantes do Nascimento is a retired Brazilian
professional footballer. In 1999, he was voted World Player
of the Century by IFFHS. [Missing: 1992]

[Jiang and Bansal, ACL 2019]

Reasoning Shortcut

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	 Context	

Peter Bolesław Schmeichel is a Danish former professional
footballer .., and was voted the IFFHS World's Best
Goalkeeper in 1992 and 1993.

Edson Arantes do Nascimento is a retired Brazilian
professional footballer. In 1999, he was voted World Player
of the Century by IFFHS. [Missing: 1992]

Kasper Hvidt is a Danish retired handball goalkeeper, .. also
voted as Goalkeeper of the Year March 20, 2009,
[Missing: 1992, IFFHS]

[Jiang and Bansal, ACL 2019]

Reasoning Shortcut

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	 Context	

Peter Bolesław Schmeichel is a Danish former professional
footballer .., and was voted the IFFHS World's Best
Goalkeeper in 1992 and 1993.

Edson Arantes do Nascimento is a retired Brazilian
professional footballer. In 1999, he was voted World Player
of the Century by IFFHS. [Missing: 1992]

Kasper Hvidt is a Danish retired handball goalkeeper, .. also
voted as Goalkeeper of the Year March 20, 2009,
[Missing: 1992, IFFHS]

The	answer	can	be	directly	
inferred	by	word-matching	
the	documents	to	the	
ques=on	!!!	

[Jiang and Bansal, ACL 2019]

How to eliminate this reasoning shortcut from
the data to ENFORCE compositional

reasoning?

[Jiang and Bansal, ACL 2019]

How to eliminate this reasoning shortcut from
the data to ENFORCE compositional

reasoning?

Building adversarial documents
as better distractors

[Jiang and Bansal, ACL 2019]

Adversarial Document

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	 Context	

Adversarial	
Document	

Peter Bolesław Schmeichel is a Danish former
professional footballer .., and was voted the IFFHS
World's Best Goalkeeper in 1992 and 1993.

R. Bolesław Kelly is a Danish former professional
footballer .., and was voted the IFFHS
World's Best Defender in 1992 and 1993.

[Jiang and Bansal, ACL 2019]

Adversarial Document

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	 Context	

Peter Bolesław Schmeichel is a Danish former
professional footballer .., and was voted the IFFHS
World's Best Goalkeeper in 1992 and 1993.

Adversarial	
Document	

R. Bolesław Kelly is a Danish former professional
footballer .., and was voted the IFFHS
World's Best Defender in 1992 and 1993.

[Jiang and Bansal, ACL 2019]

Adversarial Document

“What was the father of Kasper
Schmeichel voted to be by the

IFFHS in 1992?”

	Ques&on	 Context	

Peter Bolesław Schmeichel is a Danish former
professional footballer .., and was voted the IFFHS
World's Best Goalkeeper in 1992 and 1993.

R. Bolesław Kelly is a Danish former professional
footballer .., and was voted the IFFHS
World's Best Defender in 1992 and 1993.

Adversarial	
Document	

A	model	exploi=ng	the	reasoning	
shortcut	will	now	find	two	
plausible	answers!		

[Jiang and Bansal, ACL 2019]

Related Works (Multi-Hop QA)
•  Chen & Durrett, NAACL 2019: Understanding Dataset Design Choices for Multi-hop

Reasoning
•  Min et al., ACL 2019: Compositional Questions Do Not Necessitate Multi-hop

Reasoning

•  These two useful concurrent works identified reasoning shortcuts by building single-hop-
only models that achieve good performance in HotpotQA.

•  We create adversaries to eliminate reasoning shortcuts, and show that models achieving
strong performance in the original HotpotQA cannot solve our adversarial examples (and we
then present adversarial-training and initial model development ideas).

[Jiang and Bansal, ACL 2019]

BERT (Document Retrieval Results)

Train	\	Eval	 Eval	=	Regular	 Eval	=	Adv	

Train	=	Regular	 89.44	 44.67	

Train	=	Adv	 89.03	 80.14	

•  The	performance	of	the	BERT	retrieval	model	trained	on	the	regular	training	set	
dropped	a	lot	when	evaluated	on	the	adversarial	data.		

•  BERT	is	actually	exploi=ng	the	reasoning	shortcut	instead	of	performing	mul=-hop	
reasoning.	

* Exact-Match	scores	between	2	golden	documents	and	2	retrieved	documents	

[Jiang and Bansal, ACL 2019]

BERT (Document Retrieval Results)

Train	\	Eval	 Eval	=	Regular	 Eval	=	Adv	

Train	=	Regular	 89.44	 44.67	

Train	=	Adv	 89.03	 80.14	

•  Aaer	being	trained	on	the	adversarial	data,	BERT	achieves	significantly	higher	EM	score	
in	adversarial	evalua=on.	

•  Adversarial	training	is	able	to	teach	the	model	to	be	aware	of	distractors	and	force	it	
not	to	take	the	reasoning	shortcut,	but	there	is	s=ll	a	remaining	drop	in	performance.	

	

* Exact-Match	scores	between	2	golden	documents	and	2	retrieved	documents	

[Jiang and Bansal, ACL 2019]

Bi-attention + Self-attention Baseline

Train	\	Eval	 Eval	=	Regular	 Eval	=	Adv		

Train	=	Regular	 43.12	 34.00	

Train	=	Adv	 45.12	 44.65	

•  The	performance	of	the	baseline	trained	on	the	regular	training	set	dropped	a	lot	when	
evaluated	on	the	adversarial	data.	

•  The	model	that	performs	well	in	the	original	data	is	actually	exploi=ng	the	reasoning	
shortcut	instead	of	performing	mul=-hop	reasoning.	

* Exact-Match	scores	

[Jiang and Bansal, ACL 2019]

Bi-attention + Self-attention Baseline

Train	\	Eval	 Eval	=	Regular	 Eval	=	Adv	

Train	=	Regular	 43.12	 34.00	

Train	=	Adv	 45.12	 44.65	

•  Aaer	being	trained	on	the	adversarial	data,	the	baseline	achieves	significantly	higher	
EM	score	in	adversarial	evalua=on.	

•  Adversarial	training	is	able	to	teach	the	model	a	bit	to	be	aware	of	distractors	and	force	
it	not	to	take	the	reasoning	shortcut,	but	s=ll	big	room	for	improvement.	

* Exact-Match	scores	

[Jiang and Bansal, ACL 2019]

Bi-attention + Self-attention Baseline

Train	\	Eval	 Eval	=	Regular	 Eval	=	Adv	

Train	=	Regular	 43.12	 34.00	

Train	=	Adv	 45.12	 44.65	

•  Aaer	being	trained	on	the	adversarial	data,	the	baseline	also	obtains	be"er	performance	in	the	
regular	evalua=on.	

•  The	mul=-hop	reasoning	skills	learnt	from	the	adversarial	data	is	also	beneficial	to	the	regular	
evalua=on	(and	might	hint	that	adv-trained	model	is	not	learning	bad	new	shortcuts).	

* Exact-Match	scores	

[Jiang and Bansal, ACL 2019]

An Initial 2-Hop Architecture

RNN RNN

question

bi-attention

RNN

RNN

self-attention

bi-attention

Word Emb Char Emb

context

Word Emb Char Emb

Query2Context Attention

S
of

tm
ax

W,b

Previous
Control

W,b W,b

Control Unit

Contextualized
word emb

question
vector

Context2Query and Query2Context
Attention

S
of

tm
ax

Context2Query
 Attention

Bridge-entity
Supervision

RNN

Start index

RNNEnd index

[Jiang and Bansal, ACL 2019]

2-Hop Model

Train	\	Eval	 Eval	=	Regular	 Eval	=	Adv	

Train	=	Regular	 46.41	 32.30	

Train	=	Adv	 47.08	 46.87	

[Jiang and Bansal, ACL 2019]

Analysis
•  Manual Verification of Adversaries

•  0 out of 50 examples has contradictory answers

•  Model Error (Adversary Success) Analysis
•  In 96.3% of the failures, the model’s prediction spans at least one of the adversarial

documents

•  Adversary Failure Analysis
•  Sometimes the reasoning shortcut still exists after adversarial documents are added

•  Next Steps/Questions:
•  We might have made the model robust to one kind of attack but there might be others?
•  How do we ensure robustness to other adversaries we haven’t thought of?

[Jiang and Bansal, ACL 2019]

Tong Niu Mohit Bansal

CoNLL 2018

Adversarial Over-Sensitivity and Over-Stability
Strategies for Dialogue Models

Data/code available at
h"ps://github.com/WolfNiu/AdversarialDialogue		

Adversarial Dialogue: User-Error Robustness

[Niu and Bansal, CoNLL 2018]

We present two categories of model-agnostic adversarial strategies that reveal the weaknesses
of generative, task-oriented dialogue models:

I think I’m having a heart attack.

I’m afraid I’m having a heart attack.

Someone having a heart attack may feel: chest
pain, which may also include feelings of: tightness.

My aplogies... I don’t understand.

Assistant

Assistant

Adv-trained Assistant
Perturbation
(Paraphrase, Grammar Errors ...) Adversarially-

Trained Agent

Agent

Agent

•  Should-Not-Change strategies: evaluate over-sensitivity to small and semantics-preserving edits.
• 
•  Should-Change strategies: test if a model is over-stable against subtle yet semantics-changing

modifications.

Adversarial Dialogue: User-Error Robustness

[Niu and Bansal, CoNLL 2018]

Should-Not-Change (Over-Sensitivity) Strategies on Ubuntu:

•  Random Swap: Swap positions of neighboring words. [I don’t want you to go. ! I don’t want to you go.]

•  Stopword Dropout: Drop stopwords from the inputs. [Ben ate the carrot. ! Ben ate carrot.]

•  Data-level Paraphrasing: We repurpose PPDB 2.0 (Pavlick et al., 2015) and replace words with their
paraphrases. [She bought a bike. ! She purchased a bicycle.]

•  Generative-level Paraphrasing: We train Pointer-Generator Networks (See et al., 2017) on ParaNMT-5M
(Wieting and Gimpel, 2017) to generate paraphrases. [How old are you? ! What’s your age?]

•  Grammar Errors: We repurpose the AESW dataset (Daudaravicius, 2015), and build a look-up table to replace
correct words/phrases with ungrammatical ones. [He doesn’t like cakes. ! He don’t like cake.]

Should-Change (Over-Stability) Strategies on Ubuntu:

•  Add Negation: Add negation to the source sequence. [I want some coffee. ! I don’t want some coffee.]

•  Antonym: Change words in utterances to their antonyms. [Please install Ubuntu. ! Please uninstall Ubuntu.]

Adversarial Dialogue: User-Error Robustness

[Niu and Bansal, CoNLL 2018]

Adversarial Training for Should-Not-Change Strategies: We feed “adversarial source
sequence + ground-truth response pairs” as regular positive data, and teach the model that these
pairs are also valid examples despite the added perturbations.

Adversarial Training for Should-Change Strategies: We use a linear combination of maximum
likelihood and max-margin loss to train on negative examples.

LML is the maximum likelihood loss, LMM is the max-
margin loss, α is the weight of the max-margin loss,
M is the margin and ti, si and ai are the target
sequence, normal input, and adversarial input.

•  Tasks/Datasets: Ubuntu (Activity/Entity F1, Human Eval), CoCoA (Completion Rate)

•  Models: VHRED, Reranking-RL, DynoNet

Adversarial Dialogue: User-Error Robustness

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

Confidential Review Copy. DO NOT DISTRIBUTE.

Strategy Name N-train + A-test A-train + A-test A-train + N-test N-train + N-test
Normal Input - - - 5.94, 3.52
Random Swap 6.10, 3.42 6.47, 3.64 6.42, 3.74 -
Stopword Dropout 5.49, 3.44 6.23, 3.82 6.29, 3.71 -
Data-Level Para. 5.38, 3.18 6.39, 3.83 6.32, 3.87 -
Generative-Level Para. 4.25, 2.48 5.89, 3.60 6.11, 3.66 -
Grammar Errors 5.60, 3.09 5.93, 3.67 6.05, 3.69 -
All Should-Not-Change - - 6.74, 3.97 -
Add Negation 6.06, 3.42 5.01, 3.12 6.07, 3.46 -
Antonym 5.85, 3.56 5.43, 3.43 5.98, 3.56 -

Table 2: Activity and Entity F1 results of adversarial strategies on the VHRED model.

least one of the F1’s decreases statistically signif-
icantly9 as compared to the same model fed with
normal inputs. Next, all adversarial trainings on
Should-Not-Change strategies not only make the
model more robust to adversarial inputs (each A-
train + A-test F1 is stat. significantly higher than
that of N-train + A-test) , but also make them per-
form better on normal inputs (each A-train + N-
test F1 is stat. significantly higher than that of N-
train + N-test, except for Grammar Errors’s Ac-
tivity F1). Motivated by the success in adversar-
ial training on each strategy alone, we also exper-
imented with training on all Should-Not-Change
strategies combined, and obtained F1’s stat. sig-
nificantly higher than any single strategy (the All
Should-Not-Change row in Table 2), except that
All-Should-Not-Change’s Entity F1 is stat. equal
to that of Data-Level Paraphrasing, showing that
these strategies are able to compensate for each
other to further improve performance. An inter-
esting strategy to note is Random Swap: although
it itself is not effective as an adversarial strategy
for VHRED, training on it does make the model
perform better on normal inputs.

Results on Should-Change Strategies Table 2
and 3 show that Add Negation and Antonym
are both successful Should-Change strategies, be-
cause no change in N-train + A-test F1 is stat.
significant compared to that of N-train + N-
test, which shows that both models are ignoring
the semantic-changing perturbations to the inputs.
From the last two rows of A-train + A-test column
in each table, we also see that adversarial training
successfully brings down both F1’s (stat. signif-
icantly) for each model, showing that the model
becomes more sensitive to the context change.

Semantic Similarity In addition to F1, we also
follow Serban et al. (2017a) and employ cosine

9We obtained stat. significance via the bootstrap
test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K
samples, and consider p < 0.05 as stat. significant.

similarity between average embeddings of nor-
mal and adversarial inputs/responses (proposed
by Liu et al. (2016)) to evaluate how much the in-
puts/responses change in semantic meaning (Ta-
ble 4). This metric is useful in three ways. Firstly,
by comparing the two columns of context sim-
ilarity, we can get a general idea of how much
change is perceived by each model. For exam-
ple, we can see that Stopword Dropout leads to
more evident changes from VHRED’s perspective
than from Reranking-RL’s. This also agrees with
the F1 results in Table 2 and 3, which indicate
that Reranking-RL is much more robust to this
strategy than VHRED is. The high context sim-
ilarity of Should-Change strategies shows that al-
though we have added “not” or replaced antonyms
in every utterance of the source inputs, from the
model’s point of view the context has not changed
much in meaning. Secondly, for each Should-Not-
Change strategy, the cosine similarity of context
is much higher than that of response, indicating
that responses change more significantly in mean-
ing than their corresponding contexts. Lastly, The
high semantic similarity for Generative Paraphras-
ing also partly shows that the Pointer-Generator
model in general produces faithful paraphrases.
Human Evaluation As introduced in Section 5,
we performed two human studies on adversarial
training and Generative Paraphrasing. For the
first study, Table 5 indicates that the adversarially
trained model indeed on average produced better
responses. This agrees with the adversarial train-
ing results in Table 2. For the second study, Ta-
ble 6 shows that on average the generated para-
phrase has roughly the same semantic meaning
with the original utterance, but may sometimes
miss some information. Its quality is also close to
that of the ground-truth in ParaNMT-5M dataset.

Output Examples of Generated Responses
We present a selected example of generated re-
sponses before and after adversarial training on the

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

Confidential Review Copy. DO NOT DISTRIBUTE.

Strategy Name N-train + A-test A-train + A-test A-train + N-test N-train + N-test
Normal Input - - - 5.67, 3.73
Random Swap 5.49, 3.56 6.20, 4.28 6.36, 4.39 -
Stopword Dropout 5.51, 4.09 - - -
Data-Level Para. 5.28, 3.07 5.53, 3.69 5.79, 3.87 -
Generative-Level Para. 4.47, 2.63 5.30, 3.35 5.86, 3.90 -
Grammar Errors 5.33, 3.25 5.55, 3.92 5.93, 4.04 -
Add Negation 5.61, 3.79 4.92, 2.78 6.10, 3.93 -
Antonym 5.68, 3.70 5.30, 2.95 5.80, 3.71 -

Table 3: Activity and Entity F1 results of adversarial strategies on the Reranking-RL model.

Strategy Name VHRED Reranking-RL
Cont. Resp. Cont. Resp.

Random Swap 1.00 0.71 1.00 0.86
Stopword Dropout 0.61 0.50 0.76 0.68
Data-Level Para. 0.96 0.58 0.96 0.74
Gen.-Level Para. 0.70 0.40 0.76 0.55
Grammar Err 0.96 0.58 0.97 0.74
Add Negation 0.96 0.69 0.97 0.81
Antonym 0.98 0.66 0.98 0.74

Table 4: Textual similarity of adversarial strategies on
the VHRED and Reranking-RL models. “Cont.” stands
for “Context”, and “Resp.” stands for “Response”.

VHRED Tie Combined-VHRED
Winning % 28 22 49

Table 5: Human evaluation results on comparison be-
tween VHRED and VHRED train on all Should-Not-
Change strategies combined.

Random Swap strategy with the VHRED model in
Table 7 (more examples in Appendix on all strate-
gies with both models). First of all, we can see that
it is hard to differentiate between the original and
the perturbed context (N-context and A-context) if
one does not look very closely. For this reason,
the model gets fooled by the adversarial strategy,
i.e., after adversarial perturbation, the N-train +
A-test response (NA-Response) is worse than that
of N-train + N-test (NN-Response). However, af-
ter our adversarial training phase, A-train + A-test
(AA-Response) becomes better again.

6.2 Adversarial Results on CoCoA

Table 8 shows the results of Should-Change strate-
gies on DynoNet with the CoCoA task. The Ran-
dom Inputs strategy shows that even without com-
munication, the two bots are able to locate their
shared entry 82% of the time by revealing their
own KB through SELECT action. When we keep
the mentioned entities untouched but randomize
all other tokens, DynoNet actually achieves state-
of-the-art Completion Rate, indicating that the two
agents are paying zero attention to each other’s ut-
terances other than the entities contained in them.
This is also why we did not apply Add Negation

Pointer-Generator ParaNMT-5M
Avg.Score 3.26 3.54

Table 6: Human evaluation scores on paraphrases
generated by Pointer-Generator Networks and ground-
truth pairs from ParaNMT-5M.

and Antonym to DynoNet — if Random Inputs
does not work, these two strategies will also make
no difference to the performance (in other words
Random Inputs subsumes the other two Should-
Change strategies). We can also see that even with
the Normal Inputs with Confusing Entities strat-
egy, DynoNet is still able to finish the task 77% of
the time, and with only slightly more turns. This
again shows that the model mainly relies on the
SELECT action to guess the shared entry.

7 Byte-Pair-Encoding VHRED

Although we have shown that adversarial training
on most strategies makes the dialogue model more
robust, generating such perturbed data is not al-
ways straightforward for diverse, complex strate-
gies. For example, our data-level and generative-
level strategies all leverage datasets that are not
always available to a language. We are thus
motivated to also address the robustness task on
the model-level, and explore an extension to the
VHRED model that makes it robust to Grammar
Errors even without adversarial training.
Model Description: We perform Byte Pair En-
coding (BPE) (Sennrich et al., 2016) on the
Ubuntu dataset. This algorithm encodes rare and
unknown words as sequences of subword units,
which helps segmenting words with the same
lemma but different inflections (e.g., “showing” to
“show + ing”, and “cakes” to “cake + s”), mak-
ing the model more likely to be robust to grammar
errors such as verb tense or plural/singular noun
confusion. We experiment BPE with 5K merging
operations, and obtain a vocabulary size of 5121.
Results: BPE-VHRED achieved F1’s (5.99,
3.66), which is stat. equal to (5.94, 3.52) ob-
tained without BPE. To our best knowledge, we

[Niu and Bansal, CoNLL 2018]

Adversarial Dialogue: User-Error Robustness

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Context Response
N: ... you could save your ubuntu files and reinstall Windows
, then install ubuntu as a dual boot option eou eot aight
buddy , so how do i get that **unknown** space back eou
Random Swap: ... you could your save ubuntu and files
Windows reinstall , then install ubuntu as dual a option boot

eou eot aight buddy , so do how i that get space **un-
known** back eou

NN: you can use the Live CD , you
can install Ubuntu on the same parti-
tion as the Windows partition eou
NA: I am using ubuntu . eou
AA: you can use Windows XP on the
Windows partition , and then install
Ubuntu on the same drive eou

N: ... ok then the problem is you don’t have the nvidia driver
eou dpkg -l — grep nvidia eou eot i can see some

nvidia thing :P eou
Stopword Dropout: ... ok then problem is you don’t have
nvidia driver eou dpkg -l — grep nvidia eou eot i
see nvidia thing :P

NN: sudo apt-get install nvidia-glx
eou

NA: ok eou
AA: you can use the nvidia driver

eou

N: ... if using hdmi , the display should be set properly . ex-
cept perhaps for any overscan settings eou eot which
package do i have to install for that ? eou
Data-Level Para.: ... if using hdmi , the displaying ought
to be set correctly . except maybe for any overscan setting

eou eot which packets do i have to installs for that ?
eou

NN: you can use the nvidia-settings
tool to install the drivers . eou
NA: the monitor is the monitor .

eou
AA: you can use the nvidia-settings
tool to see if the video card is in-
stalled . eou

N: at this point driver activated but not in use eou eot
did you uninstall the old driver first ? eou
Generative-Level Para.: driver activated but not in use

eou eot did you uninstall the old driver ? eou

NN: i installed the driver from nvidia
website eou
NA: ok eou
AA: i installed the driver from nvidia
website eou

N: i would go with a thinkpad . they are pretty support and
have decent hardware eou
Grammar Errors: ii would go with a thinkpad . they are
quite support and have descent hardwares eou

NN: I know , but I don’t want to buy
a new laptop . eou
NA: Ubuntu . eou
AA: I know , but I don’t want to buy
a new laptop . eou

N: suggest you reinstall grub . assuming no other changes ,
your root system and data should be present and safe . per-
haps the bootloader scrambled somehow ? eou
Add Negation: suggest you don’t reinstall grub . assum-
ing no other changes , your root system and data should be
present and safe . perhaps the bootloader scrambled some-
how ? eou

NN: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
NA: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
AA: I don’t know how to do that , but
I don’t know how to do that . eou

N: 100% of your RAM . You have it to be used . eou
eot what what ? eou

Antonym: 100% of your RAM . You refuse it to be used .
eou eot what what ? eou

NN: you have a lot of RAM . eou
NA: you have a lot of RAM . eou
AA: I don’t know . I don’t use it
much . eou

Table 2: Selected examples before and after adversarial training for the VHRED model with each strategy.

[Niu and Bansal, CoNLL 2018]

Code: https://github.com/WolfNiu/AdversarialDialogue 	

Adversarial Dialog: User-Error Robustness

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Context Response
N: ... you could save your ubuntu files and reinstall Windows
, then install ubuntu as a dual boot option eou eot aight
buddy , so how do i get that **unknown** space back eou
Random Swap: ... you could your save ubuntu and files
Windows reinstall , then install ubuntu as dual a option boot

eou eot aight buddy , so do how i that get space **un-
known** back eou

NN: you can use the Live CD , you
can install Ubuntu on the same parti-
tion as the Windows partition eou
NA: I am using ubuntu . eou
AA: you can use Windows XP on the
Windows partition , and then install
Ubuntu on the same drive eou

N: ... ok then the problem is you don’t have the nvidia driver
eou dpkg -l — grep nvidia eou eot i can see some

nvidia thing :P eou
Stopword Dropout: ... ok then problem is you don’t have
nvidia driver eou dpkg -l — grep nvidia eou eot i
see nvidia thing :P

NN: sudo apt-get install nvidia-glx
eou

NA: ok eou
AA: you can use the nvidia driver

eou

N: ... if using hdmi , the display should be set properly . ex-
cept perhaps for any overscan settings eou eot which
package do i have to install for that ? eou
Data-Level Para.: ... if using hdmi , the displaying ought
to be set correctly . except maybe for any overscan setting

eou eot which packets do i have to installs for that ?
eou

NN: you can use the nvidia-settings
tool to install the drivers . eou
NA: the monitor is the monitor .

eou
AA: you can use the nvidia-settings
tool to see if the video card is in-
stalled . eou

N: at this point driver activated but not in use eou eot
did you uninstall the old driver first ? eou
Generative-Level Para.: driver activated but not in use

eou eot did you uninstall the old driver ? eou

NN: i installed the driver from nvidia
website eou
NA: ok eou
AA: i installed the driver from nvidia
website eou

N: i would go with a thinkpad . they are pretty support and
have decent hardware eou
Grammar Errors: ii would go with a thinkpad . they are
quite support and have descent hardwares eou

NN: I know , but I don’t want to buy
a new laptop . eou
NA: Ubuntu . eou
AA: I know , but I don’t want to buy
a new laptop . eou

N: suggest you reinstall grub . assuming no other changes ,
your root system and data should be present and safe . per-
haps the bootloader scrambled somehow ? eou
Add Negation: suggest you don’t reinstall grub . assum-
ing no other changes , your root system and data should be
present and safe . perhaps the bootloader scrambled some-
how ? eou

NN: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
NA: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
AA: I don’t know how to do that , but
I don’t know how to do that . eou

N: 100% of your RAM . You have it to be used . eou
eot what what ? eou

Antonym: 100% of your RAM . You refuse it to be used .
eou eot what what ? eou

NN: you have a lot of RAM . eou
NA: you have a lot of RAM . eou
AA: I don’t know . I don’t use it
much . eou

Table 2: Selected examples before and after adversarial training for the VHRED model with each strategy.

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Context Response
N: ... you could save your ubuntu files and reinstall Windows
, then install ubuntu as a dual boot option eou eot aight
buddy , so how do i get that **unknown** space back eou
Random Swap: ... you could your save ubuntu and files
Windows reinstall , then install ubuntu as dual a option boot

eou eot aight buddy , so do how i that get space **un-
known** back eou

NN: you can use the Live CD , you
can install Ubuntu on the same parti-
tion as the Windows partition eou
NA: I am using ubuntu . eou
AA: you can use Windows XP on the
Windows partition , and then install
Ubuntu on the same drive eou

N: ... ok then the problem is you don’t have the nvidia driver
eou dpkg -l — grep nvidia eou eot i can see some

nvidia thing :P eou
Stopword Dropout: ... ok then problem is you don’t have
nvidia driver eou dpkg -l — grep nvidia eou eot i
see nvidia thing :P

NN: sudo apt-get install nvidia-glx
eou

NA: ok eou
AA: you can use the nvidia driver

eou

N: ... if using hdmi , the display should be set properly . ex-
cept perhaps for any overscan settings eou eot which
package do i have to install for that ? eou
Data-Level Para.: ... if using hdmi , the displaying ought
to be set correctly . except maybe for any overscan setting

eou eot which packets do i have to installs for that ?
eou

NN: you can use the nvidia-settings
tool to install the drivers . eou
NA: the monitor is the monitor .

eou
AA: you can use the nvidia-settings
tool to see if the video card is in-
stalled . eou

N: at this point driver activated but not in use eou eot
did you uninstall the old driver first ? eou
Generative-Level Para.: driver activated but not in use

eou eot did you uninstall the old driver ? eou

NN: i installed the driver from nvidia
website eou
NA: ok eou
AA: i installed the driver from nvidia
website eou

N: i would go with a thinkpad . they are pretty support and
have decent hardware eou
Grammar Errors: ii would go with a thinkpad . they are
quite support and have descent hardwares eou

NN: I know , but I don’t want to buy
a new laptop . eou
NA: Ubuntu . eou
AA: I know , but I don’t want to buy
a new laptop . eou

N: suggest you reinstall grub . assuming no other changes ,
your root system and data should be present and safe . per-
haps the bootloader scrambled somehow ? eou
Add Negation: suggest you don’t reinstall grub . assum-
ing no other changes , your root system and data should be
present and safe . perhaps the bootloader scrambled some-
how ? eou

NN: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
NA: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
AA: I don’t know how to do that , but
I don’t know how to do that . eou

N: 100% of your RAM . You have it to be used . eou
eot what what ? eou

Antonym: 100% of your RAM . You refuse it to be used .
eou eot what what ? eou

NN: you have a lot of RAM . eou
NA: you have a lot of RAM . eou
AA: I don’t know . I don’t use it
much . eou

Table 2: Selected examples before and after adversarial training for the VHRED model with each strategy.

[Niu and Bansal, CoNLL 2018]

Adversarial Dialog: User-Error Robustness

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Context Response
N: ... you could save your ubuntu files and reinstall Windows
, then install ubuntu as a dual boot option eou eot aight
buddy , so how do i get that **unknown** space back eou
Random Swap: ... you could your save ubuntu and files
Windows reinstall , then install ubuntu as dual a option boot

eou eot aight buddy , so do how i that get space **un-
known** back eou

NN: you can use the Live CD , you
can install Ubuntu on the same parti-
tion as the Windows partition eou
NA: I am using ubuntu . eou
AA: you can use Windows XP on the
Windows partition , and then install
Ubuntu on the same drive eou

N: ... ok then the problem is you don’t have the nvidia driver
eou dpkg -l — grep nvidia eou eot i can see some

nvidia thing :P eou
Stopword Dropout: ... ok then problem is you don’t have
nvidia driver eou dpkg -l — grep nvidia eou eot i
see nvidia thing :P

NN: sudo apt-get install nvidia-glx
eou

NA: ok eou
AA: you can use the nvidia driver

eou

N: ... if using hdmi , the display should be set properly . ex-
cept perhaps for any overscan settings eou eot which
package do i have to install for that ? eou
Data-Level Para.: ... if using hdmi , the displaying ought
to be set correctly . except maybe for any overscan setting

eou eot which packets do i have to installs for that ?
eou

NN: you can use the nvidia-settings
tool to install the drivers . eou
NA: the monitor is the monitor .

eou
AA: you can use the nvidia-settings
tool to see if the video card is in-
stalled . eou

N: at this point driver activated but not in use eou eot
did you uninstall the old driver first ? eou
Generative-Level Para.: driver activated but not in use

eou eot did you uninstall the old driver ? eou

NN: i installed the driver from nvidia
website eou
NA: ok eou
AA: i installed the driver from nvidia
website eou

N: i would go with a thinkpad . they are pretty support and
have decent hardware eou
Grammar Errors: ii would go with a thinkpad . they are
quite support and have descent hardwares eou

NN: I know , but I don’t want to buy
a new laptop . eou
NA: Ubuntu . eou
AA: I know , but I don’t want to buy
a new laptop . eou

N: suggest you reinstall grub . assuming no other changes ,
your root system and data should be present and safe . per-
haps the bootloader scrambled somehow ? eou
Add Negation: suggest you don’t reinstall grub . assum-
ing no other changes , your root system and data should be
present and safe . perhaps the bootloader scrambled some-
how ? eou

NN: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
NA: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
AA: I don’t know how to do that , but
I don’t know how to do that . eou

N: 100% of your RAM . You have it to be used . eou
eot what what ? eou

Antonym: 100% of your RAM . You refuse it to be used .
eou eot what what ? eou

NN: you have a lot of RAM . eou
NA: you have a lot of RAM . eou
AA: I don’t know . I don’t use it
much . eou

Table 2: Selected examples before and after adversarial training for the VHRED model with each strategy.

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Context Response
N: ... you could save your ubuntu files and reinstall Windows
, then install ubuntu as a dual boot option eou eot aight
buddy , so how do i get that **unknown** space back eou
Random Swap: ... you could your save ubuntu and files
Windows reinstall , then install ubuntu as dual a option boot

eou eot aight buddy , so do how i that get space **un-
known** back eou

NN: you can use the Live CD , you
can install Ubuntu on the same parti-
tion as the Windows partition eou
NA: I am using ubuntu . eou
AA: you can use Windows XP on the
Windows partition , and then install
Ubuntu on the same drive eou

N: ... ok then the problem is you don’t have the nvidia driver
eou dpkg -l — grep nvidia eou eot i can see some

nvidia thing :P eou
Stopword Dropout: ... ok then problem is you don’t have
nvidia driver eou dpkg -l — grep nvidia eou eot i
see nvidia thing :P

NN: sudo apt-get install nvidia-glx
eou

NA: ok eou
AA: you can use the nvidia driver

eou

N: ... if using hdmi , the display should be set properly . ex-
cept perhaps for any overscan settings eou eot which
package do i have to install for that ? eou
Data-Level Para.: ... if using hdmi , the displaying ought
to be set correctly . except maybe for any overscan setting

eou eot which packets do i have to installs for that ?
eou

NN: you can use the nvidia-settings
tool to install the drivers . eou
NA: the monitor is the monitor .

eou
AA: you can use the nvidia-settings
tool to see if the video card is in-
stalled . eou

N: at this point driver activated but not in use eou eot
did you uninstall the old driver first ? eou
Generative-Level Para.: driver activated but not in use

eou eot did you uninstall the old driver ? eou

NN: i installed the driver from nvidia
website eou
NA: ok eou
AA: i installed the driver from nvidia
website eou

N: i would go with a thinkpad . they are pretty support and
have decent hardware eou
Grammar Errors: ii would go with a thinkpad . they are
quite support and have descent hardwares eou

NN: I know , but I don’t want to buy
a new laptop . eou
NA: Ubuntu . eou
AA: I know , but I don’t want to buy
a new laptop . eou

N: suggest you reinstall grub . assuming no other changes ,
your root system and data should be present and safe . per-
haps the bootloader scrambled somehow ? eou
Add Negation: suggest you don’t reinstall grub . assum-
ing no other changes , your root system and data should be
present and safe . perhaps the bootloader scrambled some-
how ? eou

NN: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
NA: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
AA: I don’t know how to do that , but
I don’t know how to do that . eou

N: 100% of your RAM . You have it to be used . eou
eot what what ? eou

Antonym: 100% of your RAM . You refuse it to be used .
eou eot what what ? eou

NN: you have a lot of RAM . eou
NA: you have a lot of RAM . eou
AA: I don’t know . I don’t use it
much . eou

Table 2: Selected examples before and after adversarial training for the VHRED model with each strategy.

[Niu and Bansal, CoNLL 2018]

Yixin Nie Yicheng Wang Mohit Bansal

AAAI 2019

Analyzing Compositionality-Sensitivity of NLI
Models

Data/code available at
https://github.com/easonnie/analyze-compositionality-sensitivity-NLI 		

Overall Analysis Process
• Adversarial Evaluation

 • Reveal NLI models’ limited compositionality-awareness and their over-reliance on
 lexical features.

• Compositionality-Removal Analysis

 • Reveal the limitations of current evaluation.

• Compositional-Sensitivity Testing

 • Provide a tool to explicitly analyze models’ compositionality-sensitivity and better
 evaluation subsets.

[Gururangan et al. (2018); Poliak et al. (2018b); Tsuchiya (2018); Zhao, Dua, Singh, 2018; Nie, Wang, Bansal, AAAI 2019]

Importance of NLI

[Dagan et al., 2006; Harabagiu and Hickl, 2006; Bowman et al., 2015; Williams et al., 2017]

(Premise, Hypothesis) ! Label { Entailment, Contradiction, Neutral }

Importance and Difficulty of NLI
The concepts of entailment and contradiction are central to all aspects of natural language
understanding.

Building computation systems that can recognize these relationships is essential to many NLP
tasks such as question answering and summarization.

Intuitively, success in natural language inference needs a high degree of sentence-level
understanding.

Sentence-level understanding requires a model to capture both lexical and compositional
semantics.

[Dagan et al., 2006; Harabagiu and Hickl, 2006; Bowman et al., 2015; Williams et al., 2017]

Importance and Difficulty of NLI

[Nie, Wang, Bansal, AAAI 2019]

Despite their high performance, it is unclear if
models employ compositional understanding
or are simply performing shallow pattern
matching.

Model designs indicate an over-focus on
lexical information, which is different from
human reasoning.

This motivates our analytic study of models’
compositionality-sensitivity.

SNLI leaderboard

Importance and Difficulty of NLI

[Nie, Wang, Bansal, AAAI 2019]

SNLI leaderboard

information.
Hence, in order to analyze a model’s abilities to rea-

son beyond the lexical level and reveal its sensitivity to
compositional differences, we present a ‘compositionality-
sensitivity’ testing setup: we select examples for which a
bag-of-words model is misguided (assigns a high probabil-
ity to one wrong label), this allows us to directly measure
how much compositional information the model takes into
consideration. We hope that this testing setup will encour-
age the development of models that are sensitive to com-
positional clues regarding the pairs’ logical relationships by
effectively punishing models’ over-reliance on lexical fea-
tures and compositionality-unawareness. We also hope that
analysis like ours highlights lexical bias in current datasets,
and encourages more balanced datasets in the future.

We show that although our seven models and their vari-
ants have comparable performance on standard evaluation
(SNLI and MNLI), our new compositionality-sensitivity
testing differentiates them by their capability to capture
compositional information (e.g., bag-of-words-like models
perform worse than sequential models, which in turn per-
form worse than syntactic-tree based models). Unlike adver-
sarial evaluation, this setup uses natural examples that are
not confined to any specific linguistic context or domain by
leveraging existing NLI datasets to the largest extent possi-
ble for compositional testing, which hopefully encourages
future research on the development of compositional-aware
sentence-level modeling.

We end by discussing how our compositionality-
sensitivity evaluation setup complements other recently
proposed evaluation setups. Specifically, while certain
linguistically-driven diagnostic datasets are useful in test-
ing for a model’s performance in a specific realistic setting,
model-driven evaluations such as ours gives insight into why
models succeed and fail in these specific linguistic scenarios.
The main contributions of this paper are three-fold: 1) we in-
troduce two new adversarial setups that expose current state-
of-the-art models’ inability to process simple sentence-level
semantics when lexical features give no information; 2) we
rigorously test and expose the limits of standard and adver-
sarial evaluations; 3) we propose a novel compositionality-
sensitivity test that explicitly analyzes a model’s ability to
recognize compositional semantics beyond the lexical level,
and show its effectiveness in separating models based on ar-
chitecture.

2 Models and Motivation
2.1 NLI Models
Many different models have been proposed for the NLI task;
they all fall under one of two broad categories: sentence
encoding-based (sentence encoders) or co-attention based.
Sentence encoders independently encode each sentence as a
fixed-length vector, and then make a prediction, while co-
attention models make inferences by jointly processing the
premise and hypothesis. The constraint of independent pro-
cessing for sentence encoders was put in place to encourage
the development of effective fixed-length sentence repre-
sentations generalizable to higher-level tasks. However, co-

Model SNLI Type Representation
RSE 86.47 Enc Sequential

G-TLSTM 85.04 Enc Recursive (latent)
DAM 85.88 CoAtt Bag-of-Words
ESIM 88.17 CoAtt Sequential

S-TLSTM 88.10 CoAtt Recursive (syntax)
DIIN 88.10 CoAtt Sequential

DR-BiLSTM 88.28 CoAtt Sequential

Table 1: Summary of the models we evaluate, including their
performance, type, and sentence representation.
‘Enc’ = Sentence Encoder ‘CoAtt’ = Co-Attention Model

attention models with recursive or sequential modeling have
achieved much better performance on popular NLI datasets.
In this paper, we analyze 7 different models spanning both
categories, which are, or were, state-of-the-art in their re-
spective category.3 We give a brief description of each model
below (see Table 1):
RSE Residual Sentence Encoder (Nie and Bansal 2017) is
an encoding-based model that first uses multiple layers of
residually-connected BiLSTM to encode the tokens in a sen-
tence and then obtain the sentence’s fixed-length represen-
tation by max pooling over RNN’s hidden states from all
timesteps. It is one of the top performing sentence encoders
on the Multi-NLI dataset.
G-TLSTM Gumbel-TreeLSTM (Choi, Yoo, and Lee 2017)
is a recursive encoding-based model that learns latent-tree
representations for sentences via reinforcement learning.
DAM Decomposable Attention Model (Parikh et al. 2016)
is a light-weight co-attention model that performs cross-
attention at the word level with decomposable attention ma-
trices.
ESIM Enhanced Sequential Inference Model (Chen et al.
2017) is a strong co-attention model that uses BiLSTM to
encode tokens within each sentence, and perform cross-
attention on these encoded token representations.
S-TLSTM Syntactic TreeLSTM (Chen et al. 2017) is iden-
tical to ESIM except it encodes sentence tokens via a TreeL-
STM based on the dependency parse instead of sequential
BiLSTM. It is the highest performing NLI model with a re-
cursive component.
DIIN Densely Interactive Inference Network (Gong, Luo,
and Zhang 2017) is a novel co-attention model that ex-
tracts phrase-level alignment features using densely con-
nected convolutional layers a word-level interactive matrix.
DR-BiLSTM Dependent Reading Bidirectional LSTM
(Ghaeini et al. 2018) is a model that modifies on ESIM with
a dependent reading mechanism that encodes each sentence
conditioned on the other.

We were able to obtain original implementations for RSE,
G-TLSTM, S-TLSTM and DIIN. We used our own im-
plementation for the other three models and were able to
achieve comparable results on standard evaluation sets.4

3
https://nlp.stanford.edu/projects/snli/

https://repeval2017.github.io/shared/

4We will release our implementations publicly.

Semantics-based Adversaries

[Nie, Wang, Bansal, AAAI 2019]

Goal: To show that models are over-reliant on word-level information and have limited ability
to process compositional structures.

Method: Created adversaries whose logical relations cannot be extracted from lexical
information alone.

Natural Language Inference:

Goal:
To show that models are over-reliant on word-level information
and have limited ability to process compositional structures.

Method:
Created adversaries whose logical relations cannot be extracted

from lexical information alone.

(Premise, Hypothesis) à Label { Entailment, Contradiction, Neutral }

Neural Models:

Neural Network Model

premise

predicted label

Trained on provided training set.

Datasets:

• Stanford Natural Language
Inference (SNLI) 570k pairs
(image caption genre)

• Multi-Genre Natural Language
Inference (MNLI) 433k pairs
(multiple genres e.g. news, fiction)

SNLI Leaderboard:

information.
Hence, in order to analyze a model’s abilities to rea-

son beyond the lexical level and reveal its sensitivity to
compositional differences, we present a ‘compositionality-
sensitivity’ testing setup: we select examples for which a
bag-of-words model is misguided (assigns a high probabil-
ity to one wrong label), this allows us to directly measure
how much compositional information the model takes into
consideration. We hope that this testing setup will encour-
age the development of models that are sensitive to com-
positional clues regarding the pairs’ logical relationships by
effectively punishing models’ over-reliance on lexical fea-
tures and compositionality-unawareness. We also hope that
analysis like ours highlights lexical bias in current datasets,
and encourages more balanced datasets in the future.

We show that although our seven models and their vari-
ants have comparable performance on standard evaluation
(SNLI and MNLI), our new compositionality-sensitivity
testing differentiates them by their capability to capture
compositional information (e.g., bag-of-words-like models
perform worse than sequential models, which in turn per-
form worse than syntactic-tree based models). Unlike adver-
sarial evaluation, this setup uses natural examples that are
not confined to any specific linguistic context or domain by
leveraging existing NLI datasets to the largest extent possi-
ble for compositional testing, which hopefully encourages
future research on the development of compositional-aware
sentence-level modeling.

We end by discussing how our compositionality-
sensitivity evaluation setup complements other recently
proposed evaluation setups. Specifically, while certain
linguistically-driven diagnostic datasets are useful in test-
ing for a model’s performance in a specific realistic setting,
model-driven evaluations such as ours gives insight into why
models succeed and fail in these specific linguistic scenarios.
The main contributions of this paper are three-fold: 1) we in-
troduce two new adversarial setups that expose current state-
of-the-art models’ inability to process simple sentence-level
semantics when lexical features give no information; 2) we
rigorously test and expose the limits of standard and adver-
sarial evaluations; 3) we propose a novel compositionality-
sensitivity test that explicitly analyzes a model’s ability to
recognize compositional semantics beyond the lexical level,
and show its effectiveness in separating models based on ar-
chitecture.

2 Models and Motivation
2.1 NLI Models
Many different models have been proposed for the NLI task;
they all fall under one of two broad categories: sentence
encoding-based (sentence encoders) or co-attention based.
Sentence encoders independently encode each sentence as a
fixed-length vector, and then make a prediction, while co-
attention models make inferences by jointly processing the
premise and hypothesis. The constraint of independent pro-
cessing for sentence encoders was put in place to encourage
the development of effective fixed-length sentence repre-
sentations generalizable to higher-level tasks. However, co-

Model SNLI Type Representation
RSE 86.47 Enc Sequential

G-TLSTM 85.04 Enc Recursive (latent)
DAM 85.88 CoAtt Bag-of-Words
ESIM 88.17 CoAtt Sequential

S-TLSTM 88.10 CoAtt Recursive (syntax)
DIIN 88.10 CoAtt Sequential

DR-BiLSTM 88.28 CoAtt Sequential

Table 1: Summary of the models we evaluate, including their
performance, type, and sentence representation.
‘Enc’ = Sentence Encoder ‘CoAtt’ = Co-Attention Model

attention models with recursive or sequential modeling have
achieved much better performance on popular NLI datasets.
In this paper, we analyze 7 different models spanning both
categories, which are, or were, state-of-the-art in their re-
spective category.3 We give a brief description of each model
below (see Table 1):
RSE Residual Sentence Encoder (Nie and Bansal 2017) is
an encoding-based model that first uses multiple layers of
residually-connected BiLSTM to encode the tokens in a sen-
tence and then obtain the sentence’s fixed-length represen-
tation by max pooling over RNN’s hidden states from all
timesteps. It is one of the top performing sentence encoders
on the Multi-NLI dataset.
G-TLSTM Gumbel-TreeLSTM (Choi, Yoo, and Lee 2017)
is a recursive encoding-based model that learns latent-tree
representations for sentences via reinforcement learning.
DAM Decomposable Attention Model (Parikh et al. 2016)
is a light-weight co-attention model that performs cross-
attention at the word level with decomposable attention ma-
trices.
ESIM Enhanced Sequential Inference Model (Chen et al.
2017) is a strong co-attention model that uses BiLSTM to
encode tokens within each sentence, and perform cross-
attention on these encoded token representations.
S-TLSTM Syntactic TreeLSTM (Chen et al. 2017) is iden-
tical to ESIM except it encodes sentence tokens via a TreeL-
STM based on the dependency parse instead of sequential
BiLSTM. It is the highest performing NLI model with a re-
cursive component.
DIIN Densely Interactive Inference Network (Gong, Luo,
and Zhang 2017) is a novel co-attention model that ex-
tracts phrase-level alignment features using densely con-
nected convolutional layers a word-level interactive matrix.
DR-BiLSTM Dependent Reading Bidirectional LSTM
(Ghaeini et al. 2018) is a model that modifies on ESIM with
a dependent reading mechanism that encodes each sentence
conditioned on the other.

We were able to obtain original implementations for RSE,
G-TLSTM, S-TLSTM and DIIN. We used our own im-
plementation for the other three models and were able to
achieve comparable results on standard evaluation sets.4

3
https://nlp.stanford.edu/projects/snli/

https://repeval2017.github.io/shared/

4We will release our implementations publicly.

Table 1: The NLI models we

analyzed including an encoding-

based models, co-attention
models, sequential models, and

recursive models.

Despite their high

performance, it is

unclear if models
employ semantic
understanding or are
just shallow pattern
matching.

Counterintuitive
designs indicate an
over-focus on lexical

information, which is

different from human
reasoning.

SubObjSwap:

Take a premise with a subject-verb-object structure; Create the
hypothesis by swapping the subject and object.

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

Adv-Evaluation:

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

All models fail to
recognize the effects of
our compositional
manipulations.

Goal:
To show that regular evaluation fails to assess models’ deeper
compositional understanding.

Method:
Train models with compositional structures explicitly removed

and compare their results with those before on regular evaluation.

21

Compositional-Removal Analysis

RNN replacement:
Create strong bag-of-words-like models by replacing RNN layers with fully-connected
layers, and train them on the standard training set.

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell FC FC FC FC

w1 w2 w3 wn w1 w2 w3 wn

22

Compositional-Removal Analysis

Word-Shuffled Training:
We train the NLI models with the words of the two input sentences shuffled, such that
the compositional information is diluted and hard to learn.

Model Model

premise hypothesis shuffled premise shuffled hypothesis

RNN Replacement:

Word Shuffled Training:

Analysis Results:

Removing compositional structures doesn’t induce as much

performance drop as expected.

Perfect Model:

Current Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Sets of lexical features model captured

Sets of compositional features model captured

Bag-of-Words Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Our hypothesis:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

References:

Acknowledgement: This work was supported by faculty research awards from Verisk, Google, and Facebook.

- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning
natural language inference. EMNLP.
- Vicente Ivan Sanchez Carmona, Jeff Mitchell, and Sebastian Riedel. 2018. Behavior analysis of nli models: Uncovering the
influence of three factors on robustness. NAACL.

yixin1@cs.unc.edu yicheng@cs.unc.edu mbansal@cs.unc.edu

Analyzing Compositionality-Sensitivity of NLI
Models

*Yixin Nie *Yicheng Wang Mohit Bansal

Background & Motivation

hypothesis

Semantic-based Adversaries

Limitations of Regular Evaluation

Model SNLI MNLI Matched MNLI MisMatched
Original BoW WS Original BoW WS Original BoW WS

RSE 86.47 85.02 – 72.80 70.02 – 74.00 71.10 –
ESIM 88.17 82.37 86.79 76.16 68.98 73.70 76.22 69.77 74.20
DR-BiLSTM 88.28 82.81 86.90 76.90 70.11 73.27 77.49 70.70 73.25

Table 3: The ‘Original’ columns show results for vanilla models on the resp. validation sets. The ‘BoW’ column show results
for BoW-like variants created replacing their RNNs with fully-connected layers. The ‘WS’ columns show results for models
trained with shuffled input sentences.

SOSWAP ADDAMOD
E/C/N E/C/N

None 96.4/2.1/1.5 85.6/9.6/4.8
SOSWAP 0.9/99.1/0.0 66.7/26.9/6.5
ADDAMOD 73.1/1.0/25.9 0.3/0.1/99.6

Table 4: The percentages of predicting E/C/N by ESIM with
different types of adversarial training, where an underlined
number indicates the accuracy on the correct label.

uation set.4 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information5. The models’
poor performance on these adversarial test sets contrasts
sharply with their high performance on standard evaluation,
raising doubts on the effectiveness and reliability of standard
evaluation. However, adversarial evaluation as done here has
its own issues. We discuss problems with current evaluation
further in the next section.

4 Limitations of Existing Evaluations
In this section, we show that models’ performance on stan-
dard evaluation does not reflect their compositional under-
standing capabilities, which we suspect leads to the lack of
focus on this type of modeling in the current literature.

4.1 Regular Evaluation Limitations
The gap in model performance between standard evaluation
and adversarial evaluation (see Table 2) indicates the limita-
tions of regular evaluation at testing a model’s ability to pro-
cess sentences’ compositional structure. More importantly,
regular evaluation fails to separate or differentiate mod-
els that are relying on lexical pattern-matching from those
with deeper compositional understanding. To further illus-
trate this point, we conduct the following two experiments

4The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

5Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing
the modifier relationship, but we see that it still fails on adversaries
with longer-range dependency requirements such as SOSWAP.

in which we intentionally force the models to be unaware
of compositional information by either removing RNN con-
nections in their architectures or by randomizing word order
during training.
RNN Replacement: We create strong bag-of-words-like
models by replacing RNN layers in RSE, ESIM, and DR-
BiLSTM with fully-connected layers, and train them on the
standard training set.
Word-Shuffled Training: We train the ESIM and DR-
BiLSTM models with the words of the two input sentences
shuffled, such that the compositional information is diluted
and hard to learn.

The results of these models and their corresponding vari-
ants on SNLI, MNLI matched, and MNLI mismatched de-
velopment set are shown in Table 3, where we see that their
performance is not too far from that of their original, recur-
rent counterparts. To be specific, there is roughly 6-7 points
drop in accuracy when RNNs connections are removed and
only 2-3 points drop when words are shuffled during train-
ing. These counter-intuitive findings indicate that even a
model which only considers shallow lexical features is able
to get a decent result on standard evaluation, despite using a
mechanism that is very different from human reasoning.

4.2 Adversarial Evaluation Limitations
Although, rule-based adversaries were able to expose the
models’ lack of knowledge of compositional semantics, they
have their own limitations and do not serve well as a general
analysis tool. Due to the recursive nature of language, there
are infinitely many ways for compositional information to
affect a sentence’s meaning, but each type of rule-based ad-
versary only tests for one specific compositional rule. Thus,
success on one type of adversary only demonstrates knowl-
edge of that single rule, and does not indicate general knowl-
edge of compositionality rules. The easiest way to see this is
via adversarial training and data-augmentation: we trained
the ESIM model with data augmentation from either type
of adversaries,6 and re-evaluated the retrained models on
both SOSWAP and ADDAMOD. As shown in Table 4, while
adversarial data-augmentation leads to improvement on the
same type of adversary, it does not generalize to other types
of adversaries. In fact, we see that focusing on one type of
adversarial performance may lead to over-fitting that par-

6We add 20,000 adversarial examples into training at each
epoch. Adv-Training data was created from SNLI training set while
Adv-Evaluation set was created from SNLI dev set.

Compositionality-Sensitivity Testing

AddAmod:

Take a premise that has at least two different noun entities; Pick an
adjective modifier; Create the premise by adding the modifier to
one of the nouns, and the hypothesis by adding it to the other.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

is that: the more lexically misleading an example is, the more

confident we are that compositional information is required

to solve it. We thus use LMS to select examples from exist-
ing evaluation sets for our evaluation.

5.4 Subsampling and Testing
Given a standard evaluation set and associated ‘ground-
truth’ labels, D = {(xi, ci)}Ni=1, we create CS�, the
compositionality-sensitivity evaluation set of confidence �:

CS� = {(xi, ci) 2 D | fLMS(xi, ci) � �}

The choice of � represents a trade-off between being
confident about the individual examples’ ability to test
compositionality-sensitivity and keeping a decent sample
size of evaluation data. CS0 is equivalent to testing on the en-
tire evaluation dataset, whereas CS0.95 (in a 3-way classifier)
gives us an extremely small evaluation set (e.g. CS0.95 on
SNLI only has 148 examples) with highly misleading lexi-
cal features. Empirically, we found that for SNLI and MNLI,
� = 0.7 gives a good balance between size of the evaluation
set and its ability to test compositionality-sensitivity (e.g.,
CS0.7 on SNLI has 999 examples). Fig. 2 shows examples
of sentence pairs with high LMS from the SNLI validation
set that were in CS0.7 for SNLI.11

5.5 Evaluation of Existing Models on CS�

Table 5 shows the performance of our seven models re-
evaluated with CS� at different � values.
General Trend: We see that in general, model performance
decreases as � increases, whereas human performance12 suf-
fered much less with increasing � values. This is consistent
with our hypothesis that there are significant differences be-
tween human-style deep reasoning (with both lexical and
compositional knowledge) and inference by current models,
which overly relies on lexical information. We also noticed
that for all the models on SNLI, MNLI matched, and MNLI

11We release the LMS values of the SNLI and MNLI develop-
ment set in the supplementary materials.

12We approximate human performance by the mechanism pro-
posed by Gong, Luo, and Zhang (2017): we choose one of the an-
notator labels (out of 5) and compare it against the ground truth.
Due to noisy data collection procedure, the actual ceiling of human
performance should be much higher than this value.

mismatch dev set, there is a big gap between the accuracy on
the whole dev set and those on CS0.7. This demonstrates that
our models have very limited ability to utilize or even recog-
nize compositional information for semantic understanding.
These findings indicate the space and need for further re-
search on structured sentence modeling.
Seqential Model vs. Structured Model: The results on
CS0.7 differentiates models based on their architectures.
More importantly, it explicitly reveals models’ composi-
tional understanding which is otherwise largely hidden on
the standard evaluation. Specifically, the results for ESIM
and S-TLSTM (row 3 and 4) give a clear comparison be-
tween sequential and recursive modeling since the two mod-
els have the same architecture with the exception that ESIM
uses sequential RNN and S-TLSTM uses recursive RNN to
encode the sentences. We see that S-TLSTM is better than
ESIM on CS0.7, despite ESIM getting better results on all
three standard evaluation datasets. This indicates that the re-
cursive model with additional syntactic tree input does in
fact induce more compostional understanding ability, which
is completely invisible if we merely focus on the results
of standard evaluation. Moreover, DIIN (row 5) obtains the
best results on all the CS0.7 subsets, substantially surpass-
ing that of DR-BiLSTM (row 6), the most powerful sequen-
tial model in the table. This is also consistent with the in-
tuition that DIIN’s convolutional network and phrase-level
alignment provide much more compositional information
than simple RNN-based sequential models. Another inter-
esting fact is the difference in performance between a recur-
sive model trained with explicit external linguistic supervi-
sion (S-TLSTM) and one trained via latent tree learning (G-
TLSTM). We see that S-TLSTM is able to capture composi-
tional information more effectively than G-TLSTM (row 2),
which is consistent with findings from diagnostic datasets
regarding recursive modeling (Nangia and Bowman 2018).
Necessity of Compositional Information: In the lower side
of the table (row 9-13), we evaluate models with either sev-
ered RNNs connections or word-shuffled training data. The
results represent models with limited compositional acces-
sibility or awareness. As expected, the results on CS0.7 are
similar to or even below the majority vote even though their
performance on standard evaluation is on the same level as
that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results of
models with limited compositional information are at the bottom of the table.

This motivates our analytic study of models’ compositionality-sensitivity.

SubObjSwap: Take a premise with a subject-verb-object structure;
create the hypothesis by swapping the subject and object.

AddAmod: Take a premise that has at least two
different noun entities; pick an adjective modifier;
create the premise by adding the modifier to one of the
nouns, and the hypothesis by adding it to the other

Semantics-based Adversaries

[Nie, Wang, Bansal, AAAI 2019]

Most types of models fail to recognize the effects of our compositional manipulations!

Natural Language Inference:

Goal:
To show that models are over-reliant on word-level information
and have limited ability to process compositional structures.

Method:
Created adversaries whose logical relations cannot be extracted

from lexical information alone.

(Premise, Hypothesis) à Label { Entailment, Contradiction, Neutral }

Neural Models:

Neural Network Model

premise

predicted label

Trained on provided training set.

Datasets:

• Stanford Natural Language
Inference (SNLI) 570k pairs
(image caption genre)

• Multi-Genre Natural Language
Inference (MNLI) 433k pairs
(multiple genres e.g. news, fiction)

SNLI Leaderboard:

information.
Hence, in order to analyze a model’s abilities to rea-

son beyond the lexical level and reveal its sensitivity to
compositional differences, we present a ‘compositionality-
sensitivity’ testing setup: we select examples for which a
bag-of-words model is misguided (assigns a high probabil-
ity to one wrong label), this allows us to directly measure
how much compositional information the model takes into
consideration. We hope that this testing setup will encour-
age the development of models that are sensitive to com-
positional clues regarding the pairs’ logical relationships by
effectively punishing models’ over-reliance on lexical fea-
tures and compositionality-unawareness. We also hope that
analysis like ours highlights lexical bias in current datasets,
and encourages more balanced datasets in the future.

We show that although our seven models and their vari-
ants have comparable performance on standard evaluation
(SNLI and MNLI), our new compositionality-sensitivity
testing differentiates them by their capability to capture
compositional information (e.g., bag-of-words-like models
perform worse than sequential models, which in turn per-
form worse than syntactic-tree based models). Unlike adver-
sarial evaluation, this setup uses natural examples that are
not confined to any specific linguistic context or domain by
leveraging existing NLI datasets to the largest extent possi-
ble for compositional testing, which hopefully encourages
future research on the development of compositional-aware
sentence-level modeling.

We end by discussing how our compositionality-
sensitivity evaluation setup complements other recently
proposed evaluation setups. Specifically, while certain
linguistically-driven diagnostic datasets are useful in test-
ing for a model’s performance in a specific realistic setting,
model-driven evaluations such as ours gives insight into why
models succeed and fail in these specific linguistic scenarios.
The main contributions of this paper are three-fold: 1) we in-
troduce two new adversarial setups that expose current state-
of-the-art models’ inability to process simple sentence-level
semantics when lexical features give no information; 2) we
rigorously test and expose the limits of standard and adver-
sarial evaluations; 3) we propose a novel compositionality-
sensitivity test that explicitly analyzes a model’s ability to
recognize compositional semantics beyond the lexical level,
and show its effectiveness in separating models based on ar-
chitecture.

2 Models and Motivation
2.1 NLI Models
Many different models have been proposed for the NLI task;
they all fall under one of two broad categories: sentence
encoding-based (sentence encoders) or co-attention based.
Sentence encoders independently encode each sentence as a
fixed-length vector, and then make a prediction, while co-
attention models make inferences by jointly processing the
premise and hypothesis. The constraint of independent pro-
cessing for sentence encoders was put in place to encourage
the development of effective fixed-length sentence repre-
sentations generalizable to higher-level tasks. However, co-

Model SNLI Type Representation
RSE 86.47 Enc Sequential

G-TLSTM 85.04 Enc Recursive (latent)
DAM 85.88 CoAtt Bag-of-Words
ESIM 88.17 CoAtt Sequential

S-TLSTM 88.10 CoAtt Recursive (syntax)
DIIN 88.10 CoAtt Sequential

DR-BiLSTM 88.28 CoAtt Sequential

Table 1: Summary of the models we evaluate, including their
performance, type, and sentence representation.
‘Enc’ = Sentence Encoder ‘CoAtt’ = Co-Attention Model

attention models with recursive or sequential modeling have
achieved much better performance on popular NLI datasets.
In this paper, we analyze 7 different models spanning both
categories, which are, or were, state-of-the-art in their re-
spective category.3 We give a brief description of each model
below (see Table 1):
RSE Residual Sentence Encoder (Nie and Bansal 2017) is
an encoding-based model that first uses multiple layers of
residually-connected BiLSTM to encode the tokens in a sen-
tence and then obtain the sentence’s fixed-length represen-
tation by max pooling over RNN’s hidden states from all
timesteps. It is one of the top performing sentence encoders
on the Multi-NLI dataset.
G-TLSTM Gumbel-TreeLSTM (Choi, Yoo, and Lee 2017)
is a recursive encoding-based model that learns latent-tree
representations for sentences via reinforcement learning.
DAM Decomposable Attention Model (Parikh et al. 2016)
is a light-weight co-attention model that performs cross-
attention at the word level with decomposable attention ma-
trices.
ESIM Enhanced Sequential Inference Model (Chen et al.
2017) is a strong co-attention model that uses BiLSTM to
encode tokens within each sentence, and perform cross-
attention on these encoded token representations.
S-TLSTM Syntactic TreeLSTM (Chen et al. 2017) is iden-
tical to ESIM except it encodes sentence tokens via a TreeL-
STM based on the dependency parse instead of sequential
BiLSTM. It is the highest performing NLI model with a re-
cursive component.
DIIN Densely Interactive Inference Network (Gong, Luo,
and Zhang 2017) is a novel co-attention model that ex-
tracts phrase-level alignment features using densely con-
nected convolutional layers a word-level interactive matrix.
DR-BiLSTM Dependent Reading Bidirectional LSTM
(Ghaeini et al. 2018) is a model that modifies on ESIM with
a dependent reading mechanism that encodes each sentence
conditioned on the other.

We were able to obtain original implementations for RSE,
G-TLSTM, S-TLSTM and DIIN. We used our own im-
plementation for the other three models and were able to
achieve comparable results on standard evaluation sets.4

3
https://nlp.stanford.edu/projects/snli/

https://repeval2017.github.io/shared/

4We will release our implementations publicly.

Table 1: The NLI models we

analyzed including an encoding-

based models, co-attention
models, sequential models, and

recursive models.

Despite their high

performance, it is

unclear if models
employ semantic
understanding or are
just shallow pattern
matching.

Counterintuitive
designs indicate an
over-focus on lexical

information, which is

different from human
reasoning.

SubObjSwap:

Take a premise with a subject-verb-object structure; Create the
hypothesis by swapping the subject and object.

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

Adv-Evaluation:

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

All models fail to
recognize the effects of
our compositional
manipulations.

Goal:
To show that regular evaluation fails to assess models’ deeper
compositional understanding.

Method:
Train models with compositional structures explicitly removed

and compare their results with those before on regular evaluation.

21

Compositional-Removal Analysis

RNN replacement:
Create strong bag-of-words-like models by replacing RNN layers with fully-connected
layers, and train them on the standard training set.

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell FC FC FC FC

w1 w2 w3 wn w1 w2 w3 wn

22

Compositional-Removal Analysis

Word-Shuffled Training:
We train the NLI models with the words of the two input sentences shuffled, such that
the compositional information is diluted and hard to learn.

Model Model

premise hypothesis shuffled premise shuffled hypothesis

RNN Replacement:

Word Shuffled Training:

Analysis Results:

Removing compositional structures doesn’t induce as much

performance drop as expected.

Perfect Model:

Current Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Sets of lexical features model captured

Sets of compositional features model captured

Bag-of-Words Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Our hypothesis:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

References:

Acknowledgement: This work was supported by faculty research awards from Verisk, Google, and Facebook.

- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning
natural language inference. EMNLP.
- Vicente Ivan Sanchez Carmona, Jeff Mitchell, and Sebastian Riedel. 2018. Behavior analysis of nli models: Uncovering the
influence of three factors on robustness. NAACL.

yixin1@cs.unc.edu yicheng@cs.unc.edu mbansal@cs.unc.edu

Analyzing Compositionality-Sensitivity of NLI
Models

*Yixin Nie *Yicheng Wang Mohit Bansal

Background & Motivation

hypothesis

Semantic-based Adversaries

Limitations of Regular Evaluation

Model SNLI MNLI Matched MNLI MisMatched
Original BoW WS Original BoW WS Original BoW WS

RSE 86.47 85.02 – 72.80 70.02 – 74.00 71.10 –
ESIM 88.17 82.37 86.79 76.16 68.98 73.70 76.22 69.77 74.20
DR-BiLSTM 88.28 82.81 86.90 76.90 70.11 73.27 77.49 70.70 73.25

Table 3: The ‘Original’ columns show results for vanilla models on the resp. validation sets. The ‘BoW’ column show results
for BoW-like variants created replacing their RNNs with fully-connected layers. The ‘WS’ columns show results for models
trained with shuffled input sentences.

SOSWAP ADDAMOD
E/C/N E/C/N

None 96.4/2.1/1.5 85.6/9.6/4.8
SOSWAP 0.9/99.1/0.0 66.7/26.9/6.5
ADDAMOD 73.1/1.0/25.9 0.3/0.1/99.6

Table 4: The percentages of predicting E/C/N by ESIM with
different types of adversarial training, where an underlined
number indicates the accuracy on the correct label.

uation set.4 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information5. The models’
poor performance on these adversarial test sets contrasts
sharply with their high performance on standard evaluation,
raising doubts on the effectiveness and reliability of standard
evaluation. However, adversarial evaluation as done here has
its own issues. We discuss problems with current evaluation
further in the next section.

4 Limitations of Existing Evaluations
In this section, we show that models’ performance on stan-
dard evaluation does not reflect their compositional under-
standing capabilities, which we suspect leads to the lack of
focus on this type of modeling in the current literature.

4.1 Regular Evaluation Limitations
The gap in model performance between standard evaluation
and adversarial evaluation (see Table 2) indicates the limita-
tions of regular evaluation at testing a model’s ability to pro-
cess sentences’ compositional structure. More importantly,
regular evaluation fails to separate or differentiate mod-
els that are relying on lexical pattern-matching from those
with deeper compositional understanding. To further illus-
trate this point, we conduct the following two experiments

4The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

5Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing
the modifier relationship, but we see that it still fails on adversaries
with longer-range dependency requirements such as SOSWAP.

in which we intentionally force the models to be unaware
of compositional information by either removing RNN con-
nections in their architectures or by randomizing word order
during training.
RNN Replacement: We create strong bag-of-words-like
models by replacing RNN layers in RSE, ESIM, and DR-
BiLSTM with fully-connected layers, and train them on the
standard training set.
Word-Shuffled Training: We train the ESIM and DR-
BiLSTM models with the words of the two input sentences
shuffled, such that the compositional information is diluted
and hard to learn.

The results of these models and their corresponding vari-
ants on SNLI, MNLI matched, and MNLI mismatched de-
velopment set are shown in Table 3, where we see that their
performance is not too far from that of their original, recur-
rent counterparts. To be specific, there is roughly 6-7 points
drop in accuracy when RNNs connections are removed and
only 2-3 points drop when words are shuffled during train-
ing. These counter-intuitive findings indicate that even a
model which only considers shallow lexical features is able
to get a decent result on standard evaluation, despite using a
mechanism that is very different from human reasoning.

4.2 Adversarial Evaluation Limitations
Although, rule-based adversaries were able to expose the
models’ lack of knowledge of compositional semantics, they
have their own limitations and do not serve well as a general
analysis tool. Due to the recursive nature of language, there
are infinitely many ways for compositional information to
affect a sentence’s meaning, but each type of rule-based ad-
versary only tests for one specific compositional rule. Thus,
success on one type of adversary only demonstrates knowl-
edge of that single rule, and does not indicate general knowl-
edge of compositionality rules. The easiest way to see this is
via adversarial training and data-augmentation: we trained
the ESIM model with data augmentation from either type
of adversaries,6 and re-evaluated the retrained models on
both SOSWAP and ADDAMOD. As shown in Table 4, while
adversarial data-augmentation leads to improvement on the
same type of adversary, it does not generalize to other types
of adversaries. In fact, we see that focusing on one type of
adversarial performance may lead to over-fitting that par-

6We add 20,000 adversarial examples into training at each
epoch. Adv-Training data was created from SNLI training set while
Adv-Evaluation set was created from SNLI dev set.

Compositionality-Sensitivity Testing

AddAmod:

Take a premise that has at least two different noun entities; Pick an
adjective modifier; Create the premise by adding the modifier to
one of the nouns, and the hypothesis by adding it to the other.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

is that: the more lexically misleading an example is, the more

confident we are that compositional information is required

to solve it. We thus use LMS to select examples from exist-
ing evaluation sets for our evaluation.

5.4 Subsampling and Testing
Given a standard evaluation set and associated ‘ground-
truth’ labels, D = {(xi, ci)}Ni=1, we create CS�, the
compositionality-sensitivity evaluation set of confidence �:

CS� = {(xi, ci) 2 D | fLMS(xi, ci) � �}

The choice of � represents a trade-off between being
confident about the individual examples’ ability to test
compositionality-sensitivity and keeping a decent sample
size of evaluation data. CS0 is equivalent to testing on the en-
tire evaluation dataset, whereas CS0.95 (in a 3-way classifier)
gives us an extremely small evaluation set (e.g. CS0.95 on
SNLI only has 148 examples) with highly misleading lexi-
cal features. Empirically, we found that for SNLI and MNLI,
� = 0.7 gives a good balance between size of the evaluation
set and its ability to test compositionality-sensitivity (e.g.,
CS0.7 on SNLI has 999 examples). Fig. 2 shows examples
of sentence pairs with high LMS from the SNLI validation
set that were in CS0.7 for SNLI.11

5.5 Evaluation of Existing Models on CS�

Table 5 shows the performance of our seven models re-
evaluated with CS� at different � values.
General Trend: We see that in general, model performance
decreases as � increases, whereas human performance12 suf-
fered much less with increasing � values. This is consistent
with our hypothesis that there are significant differences be-
tween human-style deep reasoning (with both lexical and
compositional knowledge) and inference by current models,
which overly relies on lexical information. We also noticed
that for all the models on SNLI, MNLI matched, and MNLI

11We release the LMS values of the SNLI and MNLI develop-
ment set in the supplementary materials.

12We approximate human performance by the mechanism pro-
posed by Gong, Luo, and Zhang (2017): we choose one of the an-
notator labels (out of 5) and compare it against the ground truth.
Due to noisy data collection procedure, the actual ceiling of human
performance should be much higher than this value.

mismatch dev set, there is a big gap between the accuracy on
the whole dev set and those on CS0.7. This demonstrates that
our models have very limited ability to utilize or even recog-
nize compositional information for semantic understanding.
These findings indicate the space and need for further re-
search on structured sentence modeling.
Seqential Model vs. Structured Model: The results on
CS0.7 differentiates models based on their architectures.
More importantly, it explicitly reveals models’ composi-
tional understanding which is otherwise largely hidden on
the standard evaluation. Specifically, the results for ESIM
and S-TLSTM (row 3 and 4) give a clear comparison be-
tween sequential and recursive modeling since the two mod-
els have the same architecture with the exception that ESIM
uses sequential RNN and S-TLSTM uses recursive RNN to
encode the sentences. We see that S-TLSTM is better than
ESIM on CS0.7, despite ESIM getting better results on all
three standard evaluation datasets. This indicates that the re-
cursive model with additional syntactic tree input does in
fact induce more compostional understanding ability, which
is completely invisible if we merely focus on the results
of standard evaluation. Moreover, DIIN (row 5) obtains the
best results on all the CS0.7 subsets, substantially surpass-
ing that of DR-BiLSTM (row 6), the most powerful sequen-
tial model in the table. This is also consistent with the in-
tuition that DIIN’s convolutional network and phrase-level
alignment provide much more compositional information
than simple RNN-based sequential models. Another inter-
esting fact is the difference in performance between a recur-
sive model trained with explicit external linguistic supervi-
sion (S-TLSTM) and one trained via latent tree learning (G-
TLSTM). We see that S-TLSTM is able to capture composi-
tional information more effectively than G-TLSTM (row 2),
which is consistent with findings from diagnostic datasets
regarding recursive modeling (Nangia and Bowman 2018).
Necessity of Compositional Information: In the lower side
of the table (row 9-13), we evaluate models with either sev-
ered RNNs connections or word-shuffled training data. The
results represent models with limited compositional acces-
sibility or awareness. As expected, the results on CS0.7 are
similar to or even below the majority vote even though their
performance on standard evaluation is on the same level as
that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results of
models with limited compositional information are at the bottom of the table.

This motivates our analytic study of models’ compositionality-sensitivity.

Failed Adversarial-Training Generalization

[Nie, Wang, Bansal, AAAI 2019]

•  We adv-trained the ESIM model with data augmentation from 2 adversaries, and re-evaluated.
While adversarial data-augmentation leads to improvement on the same type of adversary, it does
not generalize to other types of adversaries (in fact, leads to over-fitting on that particular adversary)

•  This indicates that models’ success on a fixed set of adversarial evaluation is still far from validating
its general compositionality ability. Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general compositional understanding capabilities.

Model SNLI MNLI Matched MNLI MisMatched
Original BoW WS Original BoW WS Original BoW WS

RSE 86.47 85.02 – 72.80 70.02 – 74.00 71.10 –
ESIM 88.17 82.37 86.79 76.16 68.98 73.70 76.22 69.77 74.20
DR-BiLSTM 88.28 82.81 86.90 76.90 70.11 73.27 77.49 70.70 73.25

Table 3: The ‘Original’ columns show results for vanilla models on the resp. validation sets. The ‘BoW’ column show results
for BoW-like variants created replacing their RNNs with fully-connected layers. The ‘WS’ columns show results for models
trained with shuffled input sentences.

SOSWAP ADDAMOD
E/C/N E/C/N

None 96.4/2.1/1.5 85.6/9.6/4.8
SOSWAP 0.9/99.1/0.0 66.7/26.9/6.5
ADDAMOD 73.1/1.0/25.9 0.3/0.1/99.6

Table 4: The percentages of predicting E/C/N by ESIM with
different types of adversarial training, where an underlined
number indicates the accuracy on the correct label.

uation set.4 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information5. The models’
poor performance on these adversarial test sets contrasts
sharply with their high performance on standard evaluation,
raising doubts on the effectiveness and reliability of standard
evaluation. However, adversarial evaluation as done here has
its own issues. We discuss problems with current evaluation
further in the next section.

4 Limitations of Existing Evaluations
In this section, we show that models’ performance on stan-
dard evaluation does not reflect their compositional under-
standing capabilities, which we suspect leads to the lack of
focus on this type of modeling in the current literature.

4.1 Regular Evaluation Limitations
The gap in model performance between standard evaluation
and adversarial evaluation (see Table 2) indicates the limita-
tions of regular evaluation at testing a model’s ability to pro-
cess sentences’ compositional structure. More importantly,
regular evaluation fails to separate or differentiate mod-
els that are relying on lexical pattern-matching from those
with deeper compositional understanding. To further illus-
trate this point, we conduct the following two experiments

4The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

5Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing
the modifier relationship, but we see that it still fails on adversaries
with longer-range dependency requirements such as SOSWAP.

in which we intentionally force the models to be unaware
of compositional information by either removing RNN con-
nections in their architectures or by randomizing word order
during training.
RNN Replacement: We create strong bag-of-words-like
models by replacing RNN layers in RSE, ESIM, and DR-
BiLSTM with fully-connected layers, and train them on the
standard training set.
Word-Shuffled Training: We train the ESIM and DR-
BiLSTM models with the words of the two input sentences
shuffled, such that the compositional information is diluted
and hard to learn.

The results of these models and their corresponding vari-
ants on SNLI, MNLI matched, and MNLI mismatched de-
velopment set are shown in Table 3, where we see that their
performance is not too far from that of their original, recur-
rent counterparts. To be specific, there is roughly 6-7 points
drop in accuracy when RNNs connections are removed and
only 2-3 points drop when words are shuffled during train-
ing. These counter-intuitive findings indicate that even a
model which only considers shallow lexical features is able
to get a decent result on standard evaluation, despite using a
mechanism that is very different from human reasoning.

4.2 Adversarial Evaluation Limitations
Although, rule-based adversaries were able to expose the
models’ lack of knowledge of compositional semantics, they
have their own limitations and do not serve well as a general
analysis tool. Due to the recursive nature of language, there
are infinitely many ways for compositional information to
affect a sentence’s meaning, but each type of rule-based ad-
versary only tests for one specific compositional rule. Thus,
success on one type of adversary only demonstrates knowl-
edge of that single rule, and does not indicate general knowl-
edge of compositionality rules. The easiest way to see this is
via adversarial training and data-augmentation: we trained
the ESIM model with data augmentation from either type
of adversaries,6 and re-evaluated the retrained models on
both SOSWAP and ADDAMOD. As shown in Table 4, while
adversarial data-augmentation leads to improvement on the
same type of adversary, it does not generalize to other types
of adversaries. In fact, we see that focusing on one type of
adversarial performance may lead to over-fitting that par-

6We add 20,000 adversarial examples into training at each
epoch. Adv-Training data was created from SNLI training set while
Adv-Evaluation set was created from SNLI dev set.

The percentages of predicting E/C/N by ESIM with different types of adversarial
training, where an underlined number indicates the accuracy on the correct label.

Limitations of Regular Evaluation

[Nie, Wang, Bansal, AAAI 2019]

Goal: To show that regular evaluation fails to assess model’s deeper compositional
understanding.

Method: Train models with compositional structures explicitly removed and compare their
results with those before, on regular evaluation.

RNN Replacement: Create strong bag-of-words-like models by replacing RNN layers with fully-connected
layers, and train them on the standard training set.

Word-Shuffled Training: We train the NLI models with the words of the two input sentences shuffled, such that
the compositional information is diluted and hard to learn.

22

Limitations of Regular Evaluation

RNN replacement:
Create strong bag-of-words-like models by replacing RNN layers with fully-connected
layers, and train them on the standard training set.

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell FC FC FC FC

w1 w2 w3 wn w1 w2 w3 wn

23

Limitations of Regular Evaluation

Word-Shuffled Training:
We train the NLI models with the words of the two input sentences shuffled, such that
the compositional information is diluted and hard to learn.

Model Model

premise hypothesis shuffled premise shuffled hypothesis

Limitations of Regular Evaluation

[Nie, Wang, Bansal, AAAI 2019]

Removing compositional structures doesn’t induce as much performance drop as expected.

The ‘Original’ columns show results for vanilla models on the resp. validation sets. The ‘BoW’
column show results for BoW-like variants created replacing their RNNs with fully-connected
layers. The ‘WS’ columns show results for models trained with shuffled input sentences.

24

Results

Model SNLI MNLI Matched MNLI MisMatched
Original BoW WS Original BoW WS Original BoW WS

RSE 86.47 85.02 – 72.80 70.02 – 74.00 71.10 –
ESIM 88.17 82.37 86.79 76.16 68.98 73.70 76.22 69.77 74.20
DR-BiLSTM 88.28 82.81 86.90 76.90 70.11 73.27 77.49 70.70 73.25

Table 3: The ”Original” columns show results for vanilla RSE, ESIM and DR-BiLSTM on SNLI, MNLI matched, and MNLI
mismatched dev set. The ”BoW” column show results for BoW-like variant of RSE, ESIM, and DR-BiLSTM by replacing their
RNNs with fully-connected layers. The ”WS” columns show results for ESIM and DR-BiLSTM with words of input sentences
shuffled during training.

SOSWAP ADDAMOD
E/C/N E/C/N

- 96.4/2.1/1.5 85.6/9.6/4.8
SOSWAP 0.9/99.1/0.0 66.7/26.9/6.5
ADDAMOD 73.1/1.0/25.9 0.3/0.1/99.6

Table 4: Adversarial Training: The percentages of predicting
E/C/N by ESIM with different types of adversarial training,
where an underlined number indicates the accuracy on the
correct label.

poor performance on these adversarial test sets contrasts
sharply with their high performance on standard evaluation,
raising doubts on the effectiveness and reliability of standard
evaluation. However, adversarial evaluation as done here has
its own issues. We discuss problems with current evaluation
further in the next section.

4 Limitations of Existing Evaluations
4.1 Regular Evaluation Limitations
The gap in model performance between standard evaluation
and adversarial evaluation (see Table 2) indicates the limita-
tions of regular evaluation at testing a model’s ability to pro-
cess sentences’ compositional structure. More importantly,
regular evaluation fails to separate or differentiate mod-
els that are relying on lexical pattern-matching from those
with deeper compositional understanding. To further illus-
trate this point, we conduct the following two experiments
in which we intentionally force the models to be unaware
of compositional information by either removing RNN con-
nections in their architectures or by randomizing word order
during training.
RNN Replacement: We create strong bag-of-words-like
models by replacing RNN layers in RSE, ESIM, and DR-
BiLSTM with fully-connected layers, and train them on the
standard training set.
Word-Shuffled Training: We train the ESIM and DR-
BiLSTM models with the words of the two input sentences
shuffled, such that the compositional information is diluted
and hard to learn.

the modifier relationship, but we see that it still fails on adversaries
with longer-range dependency requirements such as SOSWAP.

The results of these models and their corresponding vari-
ants on SNLI, MNLI matched, and MNLI mismatched de-
velopment set are shown in Table 3, where we see that their
performance is not too far from that of their original, recur-
rent counterparts. To be specific, there is roughly 6-7 points
drop in accuracy when RNNs connections are removed and
only 2-3 points drop when words are shuffled during train-
ing. These counter-intuitive findings indicate that even a
model which only considers shallow lexical features is able
to get a decent result on standard evaluation, despite using a
mechanism that is very different from human reasoning.

4.2 Adversarial Evaluation Limitations
Although, rule-based adversaries were able to expose the
models’ lack of knowledge of compositional semantics, they
have their own limitations and do not serve well as a general
analysis tool. Due to the recursive nature of language, there
are infinitely many ways for compositional information to
affect a sentence’s meaning, but each type of rule-based ad-
versary only tests for one specific compositional rule. Thus,
success on one type of adversary only demonstrates knowl-
edge of that single rule, and does not indicate general knowl-
edge of compositionality rules. The easiest way to see this is
via adversarial training and data-augmentation: we trained
the ESIM model with data augmentation from either type
of adversaries,8 and re-evaluated the retrained models on
both SOSWAP and ADDAMOD. As shown in Table 4, while
adversarial data-augmentation leads to improvement on the
same type of adversary, it does not generalize to other types
of adversaries. In fact, we see that focusing on one type of
adversarial performance may lead to over-fitting that par-
ticular adversary, and hurt overall robustness. For example,
in Table 4, we see that adversarial training with SOSWAP
leads to an increase in incorrect ‘contradiction’ predictions
on ADDAMOD, and adversarial training with ADDAMOD
actually leads to a decrease in performance on SOSWAP
while incorrectly increasing ‘neutral’ predictions.9 These re-
sults indicate that models’ success on an enumerable set of

8We add 20,000 adversarial examples into training at each
epoch. Adv-Training data was created from SNLI training set while
Adv-Evaluation set was created from SNLI dev set.

9While it is true that we can use data augmentation from both
types of adversaries to improve performance on both types of eval-
uations, we can easily come up with a third, different type of ad-
versary (e.g., swapping the verbs between the main sentence and a
clause) that is still difficult for the 2-adversarially trained model.

Removing compositional structures doesn’t induce as much performance drop as expected.

Lexically-Misleading Score (LMS)

[Nie, Wang, Bansal, AAAI 2019]

Natural Language Inference:

Goal:
To show that models are over-reliant on word-level information
and have limited ability to process compositional structures.

Method:
Created adversaries whose logical relations cannot be extracted

from lexical information alone.

(Premise, Hypothesis) à Label { Entailment, Contradiction, Neutral }

Neural Models:

Neural Network Model

premise

predicted label

Trained on provided training set.

Datasets:

• Stanford Natural Language
Inference (SNLI) 570k pairs
(image caption genre)

• Multi-Genre Natural Language
Inference (MNLI) 433k pairs
(multiple genres e.g. news, fiction)

SNLI Leaderboard:

information.
Hence, in order to analyze a model’s abilities to rea-

son beyond the lexical level and reveal its sensitivity to
compositional differences, we present a ‘compositionality-
sensitivity’ testing setup: we select examples for which a
bag-of-words model is misguided (assigns a high probabil-
ity to one wrong label), this allows us to directly measure
how much compositional information the model takes into
consideration. We hope that this testing setup will encour-
age the development of models that are sensitive to com-
positional clues regarding the pairs’ logical relationships by
effectively punishing models’ over-reliance on lexical fea-
tures and compositionality-unawareness. We also hope that
analysis like ours highlights lexical bias in current datasets,
and encourages more balanced datasets in the future.

We show that although our seven models and their vari-
ants have comparable performance on standard evaluation
(SNLI and MNLI), our new compositionality-sensitivity
testing differentiates them by their capability to capture
compositional information (e.g., bag-of-words-like models
perform worse than sequential models, which in turn per-
form worse than syntactic-tree based models). Unlike adver-
sarial evaluation, this setup uses natural examples that are
not confined to any specific linguistic context or domain by
leveraging existing NLI datasets to the largest extent possi-
ble for compositional testing, which hopefully encourages
future research on the development of compositional-aware
sentence-level modeling.

We end by discussing how our compositionality-
sensitivity evaluation setup complements other recently
proposed evaluation setups. Specifically, while certain
linguistically-driven diagnostic datasets are useful in test-
ing for a model’s performance in a specific realistic setting,
model-driven evaluations such as ours gives insight into why
models succeed and fail in these specific linguistic scenarios.
The main contributions of this paper are three-fold: 1) we in-
troduce two new adversarial setups that expose current state-
of-the-art models’ inability to process simple sentence-level
semantics when lexical features give no information; 2) we
rigorously test and expose the limits of standard and adver-
sarial evaluations; 3) we propose a novel compositionality-
sensitivity test that explicitly analyzes a model’s ability to
recognize compositional semantics beyond the lexical level,
and show its effectiveness in separating models based on ar-
chitecture.

2 Models and Motivation
2.1 NLI Models
Many different models have been proposed for the NLI task;
they all fall under one of two broad categories: sentence
encoding-based (sentence encoders) or co-attention based.
Sentence encoders independently encode each sentence as a
fixed-length vector, and then make a prediction, while co-
attention models make inferences by jointly processing the
premise and hypothesis. The constraint of independent pro-
cessing for sentence encoders was put in place to encourage
the development of effective fixed-length sentence repre-
sentations generalizable to higher-level tasks. However, co-

Model SNLI Type Representation
RSE 86.47 Enc Sequential

G-TLSTM 85.04 Enc Recursive (latent)
DAM 85.88 CoAtt Bag-of-Words
ESIM 88.17 CoAtt Sequential

S-TLSTM 88.10 CoAtt Recursive (syntax)
DIIN 88.10 CoAtt Sequential

DR-BiLSTM 88.28 CoAtt Sequential

Table 1: Summary of the models we evaluate, including their
performance, type, and sentence representation.
‘Enc’ = Sentence Encoder ‘CoAtt’ = Co-Attention Model

attention models with recursive or sequential modeling have
achieved much better performance on popular NLI datasets.
In this paper, we analyze 7 different models spanning both
categories, which are, or were, state-of-the-art in their re-
spective category.3 We give a brief description of each model
below (see Table 1):
RSE Residual Sentence Encoder (Nie and Bansal 2017) is
an encoding-based model that first uses multiple layers of
residually-connected BiLSTM to encode the tokens in a sen-
tence and then obtain the sentence’s fixed-length represen-
tation by max pooling over RNN’s hidden states from all
timesteps. It is one of the top performing sentence encoders
on the Multi-NLI dataset.
G-TLSTM Gumbel-TreeLSTM (Choi, Yoo, and Lee 2017)
is a recursive encoding-based model that learns latent-tree
representations for sentences via reinforcement learning.
DAM Decomposable Attention Model (Parikh et al. 2016)
is a light-weight co-attention model that performs cross-
attention at the word level with decomposable attention ma-
trices.
ESIM Enhanced Sequential Inference Model (Chen et al.
2017) is a strong co-attention model that uses BiLSTM to
encode tokens within each sentence, and perform cross-
attention on these encoded token representations.
S-TLSTM Syntactic TreeLSTM (Chen et al. 2017) is iden-
tical to ESIM except it encodes sentence tokens via a TreeL-
STM based on the dependency parse instead of sequential
BiLSTM. It is the highest performing NLI model with a re-
cursive component.
DIIN Densely Interactive Inference Network (Gong, Luo,
and Zhang 2017) is a novel co-attention model that ex-
tracts phrase-level alignment features using densely con-
nected convolutional layers a word-level interactive matrix.
DR-BiLSTM Dependent Reading Bidirectional LSTM
(Ghaeini et al. 2018) is a model that modifies on ESIM with
a dependent reading mechanism that encodes each sentence
conditioned on the other.

We were able to obtain original implementations for RSE,
G-TLSTM, S-TLSTM and DIIN. We used our own im-
plementation for the other three models and were able to
achieve comparable results on standard evaluation sets.4

3
https://nlp.stanford.edu/projects/snli/

https://repeval2017.github.io/shared/

4We will release our implementations publicly.

Table 1: The NLI models we

analyzed including an encoding-

based models, co-attention
models, sequential models, and

recursive models.

Despite their high

performance, it is

unclear if models
employ semantic
understanding or are
just shallow pattern
matching.

Counterintuitive
designs indicate an
over-focus on lexical

information, which is

different from human
reasoning.

SubObjSwap:

Take a premise with a subject-verb-object structure; Create the
hypothesis by swapping the subject and object.

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

Adv-Evaluation:

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

All models fail to
recognize the effects of
our compositional
manipulations.

Goal:
To show that regular evaluation fails to assess models’ deeper
compositional understanding.

Method:
Train models with compositional structures explicitly removed

and compare their results with those before on regular evaluation.

21

Compositional-Removal Analysis

RNN replacement:
Create strong bag-of-words-like models by replacing RNN layers with fully-connected
layers, and train them on the standard training set.

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell FC FC FC FC

w1 w2 w3 wn w1 w2 w3 wn

22

Compositional-Removal Analysis

Word-Shuffled Training:
We train the NLI models with the words of the two input sentences shuffled, such that
the compositional information is diluted and hard to learn.

Model Model

premise hypothesis shuffled premise shuffled hypothesis

RNN Replacement:

Word Shuffled Training:

Analysis Results:

Removing compositional structures doesn’t induce as much

performance drop as expected.

Perfect Model:

Current Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Sets of lexical features model captured

Sets of compositional features model captured

Bag-of-Words Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Our hypothesis:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

References:

Acknowledgement: This work was supported by faculty research awards from Verisk, Google, and Facebook.

- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning
natural language inference. EMNLP.
- Vicente Ivan Sanchez Carmona, Jeff Mitchell, and Sebastian Riedel. 2018. Behavior analysis of nli models: Uncovering the
influence of three factors on robustness. NAACL.

yixin1@cs.unc.edu yicheng@cs.unc.edu mbansal@cs.unc.edu

Analyzing Compositionality-Sensitivity of NLI
Models

*Yixin Nie *Yicheng Wang Mohit Bansal

Background & Motivation

hypothesis

Semantic-based Adversaries

Limitations of Regular Evaluation

Model SNLI MNLI Matched MNLI MisMatched
Original BoW WS Original BoW WS Original BoW WS

RSE 86.47 85.02 – 72.80 70.02 – 74.00 71.10 –
ESIM 88.17 82.37 86.79 76.16 68.98 73.70 76.22 69.77 74.20
DR-BiLSTM 88.28 82.81 86.90 76.90 70.11 73.27 77.49 70.70 73.25

Table 3: The ‘Original’ columns show results for vanilla models on the resp. validation sets. The ‘BoW’ column show results
for BoW-like variants created replacing their RNNs with fully-connected layers. The ‘WS’ columns show results for models
trained with shuffled input sentences.

SOSWAP ADDAMOD
E/C/N E/C/N

None 96.4/2.1/1.5 85.6/9.6/4.8
SOSWAP 0.9/99.1/0.0 66.7/26.9/6.5
ADDAMOD 73.1/1.0/25.9 0.3/0.1/99.6

Table 4: The percentages of predicting E/C/N by ESIM with
different types of adversarial training, where an underlined
number indicates the accuracy on the correct label.

uation set.4 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information5. The models’
poor performance on these adversarial test sets contrasts
sharply with their high performance on standard evaluation,
raising doubts on the effectiveness and reliability of standard
evaluation. However, adversarial evaluation as done here has
its own issues. We discuss problems with current evaluation
further in the next section.

4 Limitations of Existing Evaluations
In this section, we show that models’ performance on stan-
dard evaluation does not reflect their compositional under-
standing capabilities, which we suspect leads to the lack of
focus on this type of modeling in the current literature.

4.1 Regular Evaluation Limitations
The gap in model performance between standard evaluation
and adversarial evaluation (see Table 2) indicates the limita-
tions of regular evaluation at testing a model’s ability to pro-
cess sentences’ compositional structure. More importantly,
regular evaluation fails to separate or differentiate mod-
els that are relying on lexical pattern-matching from those
with deeper compositional understanding. To further illus-
trate this point, we conduct the following two experiments

4The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

5Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing
the modifier relationship, but we see that it still fails on adversaries
with longer-range dependency requirements such as SOSWAP.

in which we intentionally force the models to be unaware
of compositional information by either removing RNN con-
nections in their architectures or by randomizing word order
during training.
RNN Replacement: We create strong bag-of-words-like
models by replacing RNN layers in RSE, ESIM, and DR-
BiLSTM with fully-connected layers, and train them on the
standard training set.
Word-Shuffled Training: We train the ESIM and DR-
BiLSTM models with the words of the two input sentences
shuffled, such that the compositional information is diluted
and hard to learn.

The results of these models and their corresponding vari-
ants on SNLI, MNLI matched, and MNLI mismatched de-
velopment set are shown in Table 3, where we see that their
performance is not too far from that of their original, recur-
rent counterparts. To be specific, there is roughly 6-7 points
drop in accuracy when RNNs connections are removed and
only 2-3 points drop when words are shuffled during train-
ing. These counter-intuitive findings indicate that even a
model which only considers shallow lexical features is able
to get a decent result on standard evaluation, despite using a
mechanism that is very different from human reasoning.

4.2 Adversarial Evaluation Limitations
Although, rule-based adversaries were able to expose the
models’ lack of knowledge of compositional semantics, they
have their own limitations and do not serve well as a general
analysis tool. Due to the recursive nature of language, there
are infinitely many ways for compositional information to
affect a sentence’s meaning, but each type of rule-based ad-
versary only tests for one specific compositional rule. Thus,
success on one type of adversary only demonstrates knowl-
edge of that single rule, and does not indicate general knowl-
edge of compositionality rules. The easiest way to see this is
via adversarial training and data-augmentation: we trained
the ESIM model with data augmentation from either type
of adversaries,6 and re-evaluated the retrained models on
both SOSWAP and ADDAMOD. As shown in Table 4, while
adversarial data-augmentation leads to improvement on the
same type of adversary, it does not generalize to other types
of adversaries. In fact, we see that focusing on one type of
adversarial performance may lead to over-fitting that par-

6We add 20,000 adversarial examples into training at each
epoch. Adv-Training data was created from SNLI training set while
Adv-Evaluation set was created from SNLI dev set.

Compositionality-Sensitivity Testing

AddAmod:

Take a premise that has at least two different noun entities; Pick an
adjective modifier; Create the premise by adding the modifier to
one of the nouns, and the hypothesis by adding it to the other.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

is that: the more lexically misleading an example is, the more

confident we are that compositional information is required

to solve it. We thus use LMS to select examples from exist-
ing evaluation sets for our evaluation.

5.4 Subsampling and Testing
Given a standard evaluation set and associated ‘ground-
truth’ labels, D = {(xi, ci)}Ni=1, we create CS�, the
compositionality-sensitivity evaluation set of confidence �:

CS� = {(xi, ci) 2 D | fLMS(xi, ci) � �}

The choice of � represents a trade-off between being
confident about the individual examples’ ability to test
compositionality-sensitivity and keeping a decent sample
size of evaluation data. CS0 is equivalent to testing on the en-
tire evaluation dataset, whereas CS0.95 (in a 3-way classifier)
gives us an extremely small evaluation set (e.g. CS0.95 on
SNLI only has 148 examples) with highly misleading lexi-
cal features. Empirically, we found that for SNLI and MNLI,
� = 0.7 gives a good balance between size of the evaluation
set and its ability to test compositionality-sensitivity (e.g.,
CS0.7 on SNLI has 999 examples). Fig. 2 shows examples
of sentence pairs with high LMS from the SNLI validation
set that were in CS0.7 for SNLI.11

5.5 Evaluation of Existing Models on CS�

Table 5 shows the performance of our seven models re-
evaluated with CS� at different � values.
General Trend: We see that in general, model performance
decreases as � increases, whereas human performance12 suf-
fered much less with increasing � values. This is consistent
with our hypothesis that there are significant differences be-
tween human-style deep reasoning (with both lexical and
compositional knowledge) and inference by current models,
which overly relies on lexical information. We also noticed
that for all the models on SNLI, MNLI matched, and MNLI

11We release the LMS values of the SNLI and MNLI develop-
ment set in the supplementary materials.

12We approximate human performance by the mechanism pro-
posed by Gong, Luo, and Zhang (2017): we choose one of the an-
notator labels (out of 5) and compare it against the ground truth.
Due to noisy data collection procedure, the actual ceiling of human
performance should be much higher than this value.

mismatch dev set, there is a big gap between the accuracy on
the whole dev set and those on CS0.7. This demonstrates that
our models have very limited ability to utilize or even recog-
nize compositional information for semantic understanding.
These findings indicate the space and need for further re-
search on structured sentence modeling.
Seqential Model vs. Structured Model: The results on
CS0.7 differentiates models based on their architectures.
More importantly, it explicitly reveals models’ composi-
tional understanding which is otherwise largely hidden on
the standard evaluation. Specifically, the results for ESIM
and S-TLSTM (row 3 and 4) give a clear comparison be-
tween sequential and recursive modeling since the two mod-
els have the same architecture with the exception that ESIM
uses sequential RNN and S-TLSTM uses recursive RNN to
encode the sentences. We see that S-TLSTM is better than
ESIM on CS0.7, despite ESIM getting better results on all
three standard evaluation datasets. This indicates that the re-
cursive model with additional syntactic tree input does in
fact induce more compostional understanding ability, which
is completely invisible if we merely focus on the results
of standard evaluation. Moreover, DIIN (row 5) obtains the
best results on all the CS0.7 subsets, substantially surpass-
ing that of DR-BiLSTM (row 6), the most powerful sequen-
tial model in the table. This is also consistent with the in-
tuition that DIIN’s convolutional network and phrase-level
alignment provide much more compositional information
than simple RNN-based sequential models. Another inter-
esting fact is the difference in performance between a recur-
sive model trained with explicit external linguistic supervi-
sion (S-TLSTM) and one trained via latent tree learning (G-
TLSTM). We see that S-TLSTM is able to capture composi-
tional information more effectively than G-TLSTM (row 2),
which is consistent with findings from diagnostic datasets
regarding recursive modeling (Nangia and Bowman 2018).
Necessity of Compositional Information: In the lower side
of the table (row 9-13), we evaluate models with either sev-
ered RNNs connections or word-shuffled training data. The
results represent models with limited compositional acces-
sibility or awareness. As expected, the results on CS0.7 are
similar to or even below the majority vote even though their
performance on standard evaluation is on the same level as
that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results of
models with limited compositional information are at the bottom of the table.

This motivates our analytic study of models’ compositionality-sensitivity.

Natural Language Inference:

Goal:
To show that models are over-reliant on word-level information
and have limited ability to process compositional structures.

Method:
Created adversaries whose logical relations cannot be extracted

from lexical information alone.

(Premise, Hypothesis) à Label { Entailment, Contradiction, Neutral }

Neural Models:

Neural Network Model

premise

predicted label

Trained on provided training set.

Datasets:

• Stanford Natural Language
Inference (SNLI) 570k pairs
(image caption genre)

• Multi-Genre Natural Language
Inference (MNLI) 433k pairs
(multiple genres e.g. news, fiction)

SNLI Leaderboard:

information.
Hence, in order to analyze a model’s abilities to rea-

son beyond the lexical level and reveal its sensitivity to
compositional differences, we present a ‘compositionality-
sensitivity’ testing setup: we select examples for which a
bag-of-words model is misguided (assigns a high probabil-
ity to one wrong label), this allows us to directly measure
how much compositional information the model takes into
consideration. We hope that this testing setup will encour-
age the development of models that are sensitive to com-
positional clues regarding the pairs’ logical relationships by
effectively punishing models’ over-reliance on lexical fea-
tures and compositionality-unawareness. We also hope that
analysis like ours highlights lexical bias in current datasets,
and encourages more balanced datasets in the future.

We show that although our seven models and their vari-
ants have comparable performance on standard evaluation
(SNLI and MNLI), our new compositionality-sensitivity
testing differentiates them by their capability to capture
compositional information (e.g., bag-of-words-like models
perform worse than sequential models, which in turn per-
form worse than syntactic-tree based models). Unlike adver-
sarial evaluation, this setup uses natural examples that are
not confined to any specific linguistic context or domain by
leveraging existing NLI datasets to the largest extent possi-
ble for compositional testing, which hopefully encourages
future research on the development of compositional-aware
sentence-level modeling.

We end by discussing how our compositionality-
sensitivity evaluation setup complements other recently
proposed evaluation setups. Specifically, while certain
linguistically-driven diagnostic datasets are useful in test-
ing for a model’s performance in a specific realistic setting,
model-driven evaluations such as ours gives insight into why
models succeed and fail in these specific linguistic scenarios.
The main contributions of this paper are three-fold: 1) we in-
troduce two new adversarial setups that expose current state-
of-the-art models’ inability to process simple sentence-level
semantics when lexical features give no information; 2) we
rigorously test and expose the limits of standard and adver-
sarial evaluations; 3) we propose a novel compositionality-
sensitivity test that explicitly analyzes a model’s ability to
recognize compositional semantics beyond the lexical level,
and show its effectiveness in separating models based on ar-
chitecture.

2 Models and Motivation
2.1 NLI Models
Many different models have been proposed for the NLI task;
they all fall under one of two broad categories: sentence
encoding-based (sentence encoders) or co-attention based.
Sentence encoders independently encode each sentence as a
fixed-length vector, and then make a prediction, while co-
attention models make inferences by jointly processing the
premise and hypothesis. The constraint of independent pro-
cessing for sentence encoders was put in place to encourage
the development of effective fixed-length sentence repre-
sentations generalizable to higher-level tasks. However, co-

Model SNLI Type Representation
RSE 86.47 Enc Sequential

G-TLSTM 85.04 Enc Recursive (latent)
DAM 85.88 CoAtt Bag-of-Words
ESIM 88.17 CoAtt Sequential

S-TLSTM 88.10 CoAtt Recursive (syntax)
DIIN 88.10 CoAtt Sequential

DR-BiLSTM 88.28 CoAtt Sequential

Table 1: Summary of the models we evaluate, including their
performance, type, and sentence representation.
‘Enc’ = Sentence Encoder ‘CoAtt’ = Co-Attention Model

attention models with recursive or sequential modeling have
achieved much better performance on popular NLI datasets.
In this paper, we analyze 7 different models spanning both
categories, which are, or were, state-of-the-art in their re-
spective category.3 We give a brief description of each model
below (see Table 1):
RSE Residual Sentence Encoder (Nie and Bansal 2017) is
an encoding-based model that first uses multiple layers of
residually-connected BiLSTM to encode the tokens in a sen-
tence and then obtain the sentence’s fixed-length represen-
tation by max pooling over RNN’s hidden states from all
timesteps. It is one of the top performing sentence encoders
on the Multi-NLI dataset.
G-TLSTM Gumbel-TreeLSTM (Choi, Yoo, and Lee 2017)
is a recursive encoding-based model that learns latent-tree
representations for sentences via reinforcement learning.
DAM Decomposable Attention Model (Parikh et al. 2016)
is a light-weight co-attention model that performs cross-
attention at the word level with decomposable attention ma-
trices.
ESIM Enhanced Sequential Inference Model (Chen et al.
2017) is a strong co-attention model that uses BiLSTM to
encode tokens within each sentence, and perform cross-
attention on these encoded token representations.
S-TLSTM Syntactic TreeLSTM (Chen et al. 2017) is iden-
tical to ESIM except it encodes sentence tokens via a TreeL-
STM based on the dependency parse instead of sequential
BiLSTM. It is the highest performing NLI model with a re-
cursive component.
DIIN Densely Interactive Inference Network (Gong, Luo,
and Zhang 2017) is a novel co-attention model that ex-
tracts phrase-level alignment features using densely con-
nected convolutional layers a word-level interactive matrix.
DR-BiLSTM Dependent Reading Bidirectional LSTM
(Ghaeini et al. 2018) is a model that modifies on ESIM with
a dependent reading mechanism that encodes each sentence
conditioned on the other.

We were able to obtain original implementations for RSE,
G-TLSTM, S-TLSTM and DIIN. We used our own im-
plementation for the other three models and were able to
achieve comparable results on standard evaluation sets.4

3
https://nlp.stanford.edu/projects/snli/

https://repeval2017.github.io/shared/

4We will release our implementations publicly.

Table 1: The NLI models we

analyzed including an encoding-

based models, co-attention
models, sequential models, and

recursive models.

Despite their high

performance, it is

unclear if models
employ semantic
understanding or are
just shallow pattern
matching.

Counterintuitive
designs indicate an
over-focus on lexical

information, which is

different from human
reasoning.

SubObjSwap:

Take a premise with a subject-verb-object structure; Create the
hypothesis by swapping the subject and object.

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

Adv-Evaluation:

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

All models fail to
recognize the effects of
our compositional
manipulations.

Goal:
To show that regular evaluation fails to assess models’ deeper
compositional understanding.

Method:
Train models with compositional structures explicitly removed

and compare their results with those before on regular evaluation.

21

Compositional-Removal Analysis

RNN replacement:
Create strong bag-of-words-like models by replacing RNN layers with fully-connected
layers, and train them on the standard training set.

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell FC FC FC FC

w1 w2 w3 wn w1 w2 w3 wn

22

Compositional-Removal Analysis

Word-Shuffled Training:
We train the NLI models with the words of the two input sentences shuffled, such that
the compositional information is diluted and hard to learn.

Model Model

premise hypothesis shuffled premise shuffled hypothesis

RNN Replacement:

Word Shuffled Training:

Analysis Results:

Removing compositional structures doesn’t induce as much

performance drop as expected.

Perfect Model:

Current Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Sets of lexical features model captured

Sets of compositional features model captured

Bag-of-Words Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Our hypothesis:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

References:

Acknowledgement: This work was supported by faculty research awards from Verisk, Google, and Facebook.

- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning
natural language inference. EMNLP.
- Vicente Ivan Sanchez Carmona, Jeff Mitchell, and Sebastian Riedel. 2018. Behavior analysis of nli models: Uncovering the
influence of three factors on robustness. NAACL.

yixin1@cs.unc.edu yicheng@cs.unc.edu mbansal@cs.unc.edu

Analyzing Compositionality-Sensitivity of NLI
Models

*Yixin Nie *Yicheng Wang Mohit Bansal

Background & Motivation

hypothesis

Semantic-based Adversaries

Limitations of Regular Evaluation

Model SNLI MNLI Matched MNLI MisMatched
Original BoW WS Original BoW WS Original BoW WS

RSE 86.47 85.02 – 72.80 70.02 – 74.00 71.10 –
ESIM 88.17 82.37 86.79 76.16 68.98 73.70 76.22 69.77 74.20
DR-BiLSTM 88.28 82.81 86.90 76.90 70.11 73.27 77.49 70.70 73.25

Table 3: The ‘Original’ columns show results for vanilla models on the resp. validation sets. The ‘BoW’ column show results
for BoW-like variants created replacing their RNNs with fully-connected layers. The ‘WS’ columns show results for models
trained with shuffled input sentences.

SOSWAP ADDAMOD
E/C/N E/C/N

None 96.4/2.1/1.5 85.6/9.6/4.8
SOSWAP 0.9/99.1/0.0 66.7/26.9/6.5
ADDAMOD 73.1/1.0/25.9 0.3/0.1/99.6

Table 4: The percentages of predicting E/C/N by ESIM with
different types of adversarial training, where an underlined
number indicates the accuracy on the correct label.

uation set.4 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information5. The models’
poor performance on these adversarial test sets contrasts
sharply with their high performance on standard evaluation,
raising doubts on the effectiveness and reliability of standard
evaluation. However, adversarial evaluation as done here has
its own issues. We discuss problems with current evaluation
further in the next section.

4 Limitations of Existing Evaluations
In this section, we show that models’ performance on stan-
dard evaluation does not reflect their compositional under-
standing capabilities, which we suspect leads to the lack of
focus on this type of modeling in the current literature.

4.1 Regular Evaluation Limitations
The gap in model performance between standard evaluation
and adversarial evaluation (see Table 2) indicates the limita-
tions of regular evaluation at testing a model’s ability to pro-
cess sentences’ compositional structure. More importantly,
regular evaluation fails to separate or differentiate mod-
els that are relying on lexical pattern-matching from those
with deeper compositional understanding. To further illus-
trate this point, we conduct the following two experiments

4The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

5Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing
the modifier relationship, but we see that it still fails on adversaries
with longer-range dependency requirements such as SOSWAP.

in which we intentionally force the models to be unaware
of compositional information by either removing RNN con-
nections in their architectures or by randomizing word order
during training.
RNN Replacement: We create strong bag-of-words-like
models by replacing RNN layers in RSE, ESIM, and DR-
BiLSTM with fully-connected layers, and train them on the
standard training set.
Word-Shuffled Training: We train the ESIM and DR-
BiLSTM models with the words of the two input sentences
shuffled, such that the compositional information is diluted
and hard to learn.

The results of these models and their corresponding vari-
ants on SNLI, MNLI matched, and MNLI mismatched de-
velopment set are shown in Table 3, where we see that their
performance is not too far from that of their original, recur-
rent counterparts. To be specific, there is roughly 6-7 points
drop in accuracy when RNNs connections are removed and
only 2-3 points drop when words are shuffled during train-
ing. These counter-intuitive findings indicate that even a
model which only considers shallow lexical features is able
to get a decent result on standard evaluation, despite using a
mechanism that is very different from human reasoning.

4.2 Adversarial Evaluation Limitations
Although, rule-based adversaries were able to expose the
models’ lack of knowledge of compositional semantics, they
have their own limitations and do not serve well as a general
analysis tool. Due to the recursive nature of language, there
are infinitely many ways for compositional information to
affect a sentence’s meaning, but each type of rule-based ad-
versary only tests for one specific compositional rule. Thus,
success on one type of adversary only demonstrates knowl-
edge of that single rule, and does not indicate general knowl-
edge of compositionality rules. The easiest way to see this is
via adversarial training and data-augmentation: we trained
the ESIM model with data augmentation from either type
of adversaries,6 and re-evaluated the retrained models on
both SOSWAP and ADDAMOD. As shown in Table 4, while
adversarial data-augmentation leads to improvement on the
same type of adversary, it does not generalize to other types
of adversaries. In fact, we see that focusing on one type of
adversarial performance may lead to over-fitting that par-

6We add 20,000 adversarial examples into training at each
epoch. Adv-Training data was created from SNLI training set while
Adv-Evaluation set was created from SNLI dev set.

Compositionality-Sensitivity Testing

AddAmod:

Take a premise that has at least two different noun entities; Pick an
adjective modifier; Create the premise by adding the modifier to
one of the nouns, and the hypothesis by adding it to the other.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

is that: the more lexically misleading an example is, the more

confident we are that compositional information is required

to solve it. We thus use LMS to select examples from exist-
ing evaluation sets for our evaluation.

5.4 Subsampling and Testing
Given a standard evaluation set and associated ‘ground-
truth’ labels, D = {(xi, ci)}Ni=1, we create CS�, the
compositionality-sensitivity evaluation set of confidence �:

CS� = {(xi, ci) 2 D | fLMS(xi, ci) � �}

The choice of � represents a trade-off between being
confident about the individual examples’ ability to test
compositionality-sensitivity and keeping a decent sample
size of evaluation data. CS0 is equivalent to testing on the en-
tire evaluation dataset, whereas CS0.95 (in a 3-way classifier)
gives us an extremely small evaluation set (e.g. CS0.95 on
SNLI only has 148 examples) with highly misleading lexi-
cal features. Empirically, we found that for SNLI and MNLI,
� = 0.7 gives a good balance between size of the evaluation
set and its ability to test compositionality-sensitivity (e.g.,
CS0.7 on SNLI has 999 examples). Fig. 2 shows examples
of sentence pairs with high LMS from the SNLI validation
set that were in CS0.7 for SNLI.11

5.5 Evaluation of Existing Models on CS�

Table 5 shows the performance of our seven models re-
evaluated with CS� at different � values.
General Trend: We see that in general, model performance
decreases as � increases, whereas human performance12 suf-
fered much less with increasing � values. This is consistent
with our hypothesis that there are significant differences be-
tween human-style deep reasoning (with both lexical and
compositional knowledge) and inference by current models,
which overly relies on lexical information. We also noticed
that for all the models on SNLI, MNLI matched, and MNLI

11We release the LMS values of the SNLI and MNLI develop-
ment set in the supplementary materials.

12We approximate human performance by the mechanism pro-
posed by Gong, Luo, and Zhang (2017): we choose one of the an-
notator labels (out of 5) and compare it against the ground truth.
Due to noisy data collection procedure, the actual ceiling of human
performance should be much higher than this value.

mismatch dev set, there is a big gap between the accuracy on
the whole dev set and those on CS0.7. This demonstrates that
our models have very limited ability to utilize or even recog-
nize compositional information for semantic understanding.
These findings indicate the space and need for further re-
search on structured sentence modeling.
Seqential Model vs. Structured Model: The results on
CS0.7 differentiates models based on their architectures.
More importantly, it explicitly reveals models’ composi-
tional understanding which is otherwise largely hidden on
the standard evaluation. Specifically, the results for ESIM
and S-TLSTM (row 3 and 4) give a clear comparison be-
tween sequential and recursive modeling since the two mod-
els have the same architecture with the exception that ESIM
uses sequential RNN and S-TLSTM uses recursive RNN to
encode the sentences. We see that S-TLSTM is better than
ESIM on CS0.7, despite ESIM getting better results on all
three standard evaluation datasets. This indicates that the re-
cursive model with additional syntactic tree input does in
fact induce more compostional understanding ability, which
is completely invisible if we merely focus on the results
of standard evaluation. Moreover, DIIN (row 5) obtains the
best results on all the CS0.7 subsets, substantially surpass-
ing that of DR-BiLSTM (row 6), the most powerful sequen-
tial model in the table. This is also consistent with the in-
tuition that DIIN’s convolutional network and phrase-level
alignment provide much more compositional information
than simple RNN-based sequential models. Another inter-
esting fact is the difference in performance between a recur-
sive model trained with explicit external linguistic supervi-
sion (S-TLSTM) and one trained via latent tree learning (G-
TLSTM). We see that S-TLSTM is able to capture composi-
tional information more effectively than G-TLSTM (row 2),
which is consistent with findings from diagnostic datasets
regarding recursive modeling (Nangia and Bowman 2018).
Necessity of Compositional Information: In the lower side
of the table (row 9-13), we evaluate models with either sev-
ered RNNs connections or word-shuffled training data. The
results represent models with limited compositional acces-
sibility or awareness. As expected, the results on CS0.7 are
similar to or even below the majority vote even though their
performance on standard evaluation is on the same level as
that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results of
models with limited compositional information are at the bottom of the table.

This motivates our analytic study of models’ compositionality-sensitivity.

Formally, we define the Lexically-Misleading Score (LMS) of an NLI datapoint (x, c*) as:

where c* is the ground truth label, p(c | x) is the probability generated by our regression
model, and L = {entailment, contradiction, neutral} is the label set.

(correct prediction for this example requires recognizing that ‘not
standing’ and ‘sitting’ are the same state, rather than focusing on
superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’)

(for this example, word-overlap misleads the classifier to predict ‘entailment)

Compositionality-Sensitivity Evaluation Sets

[Nie, Wang, Bansal, AAAI 2019]

Natural Language Inference:

Goal:
To show that models are over-reliant on word-level information
and have limited ability to process compositional structures.

Method:
Created adversaries whose logical relations cannot be extracted

from lexical information alone.

(Premise, Hypothesis) à Label { Entailment, Contradiction, Neutral }

Neural Models:

Neural Network Model

premise

predicted label

Trained on provided training set.

Datasets:

• Stanford Natural Language
Inference (SNLI) 570k pairs
(image caption genre)

• Multi-Genre Natural Language
Inference (MNLI) 433k pairs
(multiple genres e.g. news, fiction)

SNLI Leaderboard:

information.
Hence, in order to analyze a model’s abilities to rea-

son beyond the lexical level and reveal its sensitivity to
compositional differences, we present a ‘compositionality-
sensitivity’ testing setup: we select examples for which a
bag-of-words model is misguided (assigns a high probabil-
ity to one wrong label), this allows us to directly measure
how much compositional information the model takes into
consideration. We hope that this testing setup will encour-
age the development of models that are sensitive to com-
positional clues regarding the pairs’ logical relationships by
effectively punishing models’ over-reliance on lexical fea-
tures and compositionality-unawareness. We also hope that
analysis like ours highlights lexical bias in current datasets,
and encourages more balanced datasets in the future.

We show that although our seven models and their vari-
ants have comparable performance on standard evaluation
(SNLI and MNLI), our new compositionality-sensitivity
testing differentiates them by their capability to capture
compositional information (e.g., bag-of-words-like models
perform worse than sequential models, which in turn per-
form worse than syntactic-tree based models). Unlike adver-
sarial evaluation, this setup uses natural examples that are
not confined to any specific linguistic context or domain by
leveraging existing NLI datasets to the largest extent possi-
ble for compositional testing, which hopefully encourages
future research on the development of compositional-aware
sentence-level modeling.

We end by discussing how our compositionality-
sensitivity evaluation setup complements other recently
proposed evaluation setups. Specifically, while certain
linguistically-driven diagnostic datasets are useful in test-
ing for a model’s performance in a specific realistic setting,
model-driven evaluations such as ours gives insight into why
models succeed and fail in these specific linguistic scenarios.
The main contributions of this paper are three-fold: 1) we in-
troduce two new adversarial setups that expose current state-
of-the-art models’ inability to process simple sentence-level
semantics when lexical features give no information; 2) we
rigorously test and expose the limits of standard and adver-
sarial evaluations; 3) we propose a novel compositionality-
sensitivity test that explicitly analyzes a model’s ability to
recognize compositional semantics beyond the lexical level,
and show its effectiveness in separating models based on ar-
chitecture.

2 Models and Motivation
2.1 NLI Models
Many different models have been proposed for the NLI task;
they all fall under one of two broad categories: sentence
encoding-based (sentence encoders) or co-attention based.
Sentence encoders independently encode each sentence as a
fixed-length vector, and then make a prediction, while co-
attention models make inferences by jointly processing the
premise and hypothesis. The constraint of independent pro-
cessing for sentence encoders was put in place to encourage
the development of effective fixed-length sentence repre-
sentations generalizable to higher-level tasks. However, co-

Model SNLI Type Representation
RSE 86.47 Enc Sequential

G-TLSTM 85.04 Enc Recursive (latent)
DAM 85.88 CoAtt Bag-of-Words
ESIM 88.17 CoAtt Sequential

S-TLSTM 88.10 CoAtt Recursive (syntax)
DIIN 88.10 CoAtt Sequential

DR-BiLSTM 88.28 CoAtt Sequential

Table 1: Summary of the models we evaluate, including their
performance, type, and sentence representation.
‘Enc’ = Sentence Encoder ‘CoAtt’ = Co-Attention Model

attention models with recursive or sequential modeling have
achieved much better performance on popular NLI datasets.
In this paper, we analyze 7 different models spanning both
categories, which are, or were, state-of-the-art in their re-
spective category.3 We give a brief description of each model
below (see Table 1):
RSE Residual Sentence Encoder (Nie and Bansal 2017) is
an encoding-based model that first uses multiple layers of
residually-connected BiLSTM to encode the tokens in a sen-
tence and then obtain the sentence’s fixed-length represen-
tation by max pooling over RNN’s hidden states from all
timesteps. It is one of the top performing sentence encoders
on the Multi-NLI dataset.
G-TLSTM Gumbel-TreeLSTM (Choi, Yoo, and Lee 2017)
is a recursive encoding-based model that learns latent-tree
representations for sentences via reinforcement learning.
DAM Decomposable Attention Model (Parikh et al. 2016)
is a light-weight co-attention model that performs cross-
attention at the word level with decomposable attention ma-
trices.
ESIM Enhanced Sequential Inference Model (Chen et al.
2017) is a strong co-attention model that uses BiLSTM to
encode tokens within each sentence, and perform cross-
attention on these encoded token representations.
S-TLSTM Syntactic TreeLSTM (Chen et al. 2017) is iden-
tical to ESIM except it encodes sentence tokens via a TreeL-
STM based on the dependency parse instead of sequential
BiLSTM. It is the highest performing NLI model with a re-
cursive component.
DIIN Densely Interactive Inference Network (Gong, Luo,
and Zhang 2017) is a novel co-attention model that ex-
tracts phrase-level alignment features using densely con-
nected convolutional layers a word-level interactive matrix.
DR-BiLSTM Dependent Reading Bidirectional LSTM
(Ghaeini et al. 2018) is a model that modifies on ESIM with
a dependent reading mechanism that encodes each sentence
conditioned on the other.

We were able to obtain original implementations for RSE,
G-TLSTM, S-TLSTM and DIIN. We used our own im-
plementation for the other three models and were able to
achieve comparable results on standard evaluation sets.4

3
https://nlp.stanford.edu/projects/snli/

https://repeval2017.github.io/shared/

4We will release our implementations publicly.

Table 1: The NLI models we

analyzed including an encoding-

based models, co-attention
models, sequential models, and

recursive models.

Despite their high

performance, it is

unclear if models
employ semantic
understanding or are
just shallow pattern
matching.

Counterintuitive
designs indicate an
over-focus on lexical

information, which is

different from human
reasoning.

SubObjSwap:

Take a premise with a subject-verb-object structure; Create the
hypothesis by swapping the subject and object.

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

Adv-Evaluation:

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

All models fail to
recognize the effects of
our compositional
manipulations.

Goal:
To show that regular evaluation fails to assess models’ deeper
compositional understanding.

Method:
Train models with compositional structures explicitly removed

and compare their results with those before on regular evaluation.

21

Compositional-Removal Analysis

RNN replacement:
Create strong bag-of-words-like models by replacing RNN layers with fully-connected
layers, and train them on the standard training set.

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell FC FC FC FC

w1 w2 w3 wn w1 w2 w3 wn

22

Compositional-Removal Analysis

Word-Shuffled Training:
We train the NLI models with the words of the two input sentences shuffled, such that
the compositional information is diluted and hard to learn.

Model Model

premise hypothesis shuffled premise shuffled hypothesis

RNN Replacement:

Word Shuffled Training:

Analysis Results:

Removing compositional structures doesn’t induce as much

performance drop as expected.

Perfect Model:

Current Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Sets of lexical features model captured

Sets of compositional features model captured

Bag-of-Words Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Our hypothesis:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

References:

Acknowledgement: This work was supported by faculty research awards from Verisk, Google, and Facebook.

- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning
natural language inference. EMNLP.
- Vicente Ivan Sanchez Carmona, Jeff Mitchell, and Sebastian Riedel. 2018. Behavior analysis of nli models: Uncovering the
influence of three factors on robustness. NAACL.

yixin1@cs.unc.edu yicheng@cs.unc.edu mbansal@cs.unc.edu

Analyzing Compositionality-Sensitivity of NLI
Models

*Yixin Nie *Yicheng Wang Mohit Bansal

Background & Motivation

hypothesis

Semantic-based Adversaries

Limitations of Regular Evaluation

Model SNLI MNLI Matched MNLI MisMatched
Original BoW WS Original BoW WS Original BoW WS

RSE 86.47 85.02 – 72.80 70.02 – 74.00 71.10 –
ESIM 88.17 82.37 86.79 76.16 68.98 73.70 76.22 69.77 74.20
DR-BiLSTM 88.28 82.81 86.90 76.90 70.11 73.27 77.49 70.70 73.25

Table 3: The ‘Original’ columns show results for vanilla models on the resp. validation sets. The ‘BoW’ column show results
for BoW-like variants created replacing their RNNs with fully-connected layers. The ‘WS’ columns show results for models
trained with shuffled input sentences.

SOSWAP ADDAMOD
E/C/N E/C/N

None 96.4/2.1/1.5 85.6/9.6/4.8
SOSWAP 0.9/99.1/0.0 66.7/26.9/6.5
ADDAMOD 73.1/1.0/25.9 0.3/0.1/99.6

Table 4: The percentages of predicting E/C/N by ESIM with
different types of adversarial training, where an underlined
number indicates the accuracy on the correct label.

uation set.4 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information5. The models’
poor performance on these adversarial test sets contrasts
sharply with their high performance on standard evaluation,
raising doubts on the effectiveness and reliability of standard
evaluation. However, adversarial evaluation as done here has
its own issues. We discuss problems with current evaluation
further in the next section.

4 Limitations of Existing Evaluations
In this section, we show that models’ performance on stan-
dard evaluation does not reflect their compositional under-
standing capabilities, which we suspect leads to the lack of
focus on this type of modeling in the current literature.

4.1 Regular Evaluation Limitations
The gap in model performance between standard evaluation
and adversarial evaluation (see Table 2) indicates the limita-
tions of regular evaluation at testing a model’s ability to pro-
cess sentences’ compositional structure. More importantly,
regular evaluation fails to separate or differentiate mod-
els that are relying on lexical pattern-matching from those
with deeper compositional understanding. To further illus-
trate this point, we conduct the following two experiments

4The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

5Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing
the modifier relationship, but we see that it still fails on adversaries
with longer-range dependency requirements such as SOSWAP.

in which we intentionally force the models to be unaware
of compositional information by either removing RNN con-
nections in their architectures or by randomizing word order
during training.
RNN Replacement: We create strong bag-of-words-like
models by replacing RNN layers in RSE, ESIM, and DR-
BiLSTM with fully-connected layers, and train them on the
standard training set.
Word-Shuffled Training: We train the ESIM and DR-
BiLSTM models with the words of the two input sentences
shuffled, such that the compositional information is diluted
and hard to learn.

The results of these models and their corresponding vari-
ants on SNLI, MNLI matched, and MNLI mismatched de-
velopment set are shown in Table 3, where we see that their
performance is not too far from that of their original, recur-
rent counterparts. To be specific, there is roughly 6-7 points
drop in accuracy when RNNs connections are removed and
only 2-3 points drop when words are shuffled during train-
ing. These counter-intuitive findings indicate that even a
model which only considers shallow lexical features is able
to get a decent result on standard evaluation, despite using a
mechanism that is very different from human reasoning.

4.2 Adversarial Evaluation Limitations
Although, rule-based adversaries were able to expose the
models’ lack of knowledge of compositional semantics, they
have their own limitations and do not serve well as a general
analysis tool. Due to the recursive nature of language, there
are infinitely many ways for compositional information to
affect a sentence’s meaning, but each type of rule-based ad-
versary only tests for one specific compositional rule. Thus,
success on one type of adversary only demonstrates knowl-
edge of that single rule, and does not indicate general knowl-
edge of compositionality rules. The easiest way to see this is
via adversarial training and data-augmentation: we trained
the ESIM model with data augmentation from either type
of adversaries,6 and re-evaluated the retrained models on
both SOSWAP and ADDAMOD. As shown in Table 4, while
adversarial data-augmentation leads to improvement on the
same type of adversary, it does not generalize to other types
of adversaries. In fact, we see that focusing on one type of
adversarial performance may lead to over-fitting that par-

6We add 20,000 adversarial examples into training at each
epoch. Adv-Training data was created from SNLI training set while
Adv-Evaluation set was created from SNLI dev set.

Compositionality-Sensitivity Testing

AddAmod:

Take a premise that has at least two different noun entities; Pick an
adjective modifier; Create the premise by adding the modifier to
one of the nouns, and the hypothesis by adding it to the other.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

is that: the more lexically misleading an example is, the more

confident we are that compositional information is required

to solve it. We thus use LMS to select examples from exist-
ing evaluation sets for our evaluation.

5.4 Subsampling and Testing
Given a standard evaluation set and associated ‘ground-
truth’ labels, D = {(xi, ci)}Ni=1, we create CS�, the
compositionality-sensitivity evaluation set of confidence �:

CS� = {(xi, ci) 2 D | fLMS(xi, ci) � �}

The choice of � represents a trade-off between being
confident about the individual examples’ ability to test
compositionality-sensitivity and keeping a decent sample
size of evaluation data. CS0 is equivalent to testing on the en-
tire evaluation dataset, whereas CS0.95 (in a 3-way classifier)
gives us an extremely small evaluation set (e.g. CS0.95 on
SNLI only has 148 examples) with highly misleading lexi-
cal features. Empirically, we found that for SNLI and MNLI,
� = 0.7 gives a good balance between size of the evaluation
set and its ability to test compositionality-sensitivity (e.g.,
CS0.7 on SNLI has 999 examples). Fig. 2 shows examples
of sentence pairs with high LMS from the SNLI validation
set that were in CS0.7 for SNLI.11

5.5 Evaluation of Existing Models on CS�

Table 5 shows the performance of our seven models re-
evaluated with CS� at different � values.
General Trend: We see that in general, model performance
decreases as � increases, whereas human performance12 suf-
fered much less with increasing � values. This is consistent
with our hypothesis that there are significant differences be-
tween human-style deep reasoning (with both lexical and
compositional knowledge) and inference by current models,
which overly relies on lexical information. We also noticed
that for all the models on SNLI, MNLI matched, and MNLI

11We release the LMS values of the SNLI and MNLI develop-
ment set in the supplementary materials.

12We approximate human performance by the mechanism pro-
posed by Gong, Luo, and Zhang (2017): we choose one of the an-
notator labels (out of 5) and compare it against the ground truth.
Due to noisy data collection procedure, the actual ceiling of human
performance should be much higher than this value.

mismatch dev set, there is a big gap between the accuracy on
the whole dev set and those on CS0.7. This demonstrates that
our models have very limited ability to utilize or even recog-
nize compositional information for semantic understanding.
These findings indicate the space and need for further re-
search on structured sentence modeling.
Seqential Model vs. Structured Model: The results on
CS0.7 differentiates models based on their architectures.
More importantly, it explicitly reveals models’ composi-
tional understanding which is otherwise largely hidden on
the standard evaluation. Specifically, the results for ESIM
and S-TLSTM (row 3 and 4) give a clear comparison be-
tween sequential and recursive modeling since the two mod-
els have the same architecture with the exception that ESIM
uses sequential RNN and S-TLSTM uses recursive RNN to
encode the sentences. We see that S-TLSTM is better than
ESIM on CS0.7, despite ESIM getting better results on all
three standard evaluation datasets. This indicates that the re-
cursive model with additional syntactic tree input does in
fact induce more compostional understanding ability, which
is completely invisible if we merely focus on the results
of standard evaluation. Moreover, DIIN (row 5) obtains the
best results on all the CS0.7 subsets, substantially surpass-
ing that of DR-BiLSTM (row 6), the most powerful sequen-
tial model in the table. This is also consistent with the in-
tuition that DIIN’s convolutional network and phrase-level
alignment provide much more compositional information
than simple RNN-based sequential models. Another inter-
esting fact is the difference in performance between a recur-
sive model trained with explicit external linguistic supervi-
sion (S-TLSTM) and one trained via latent tree learning (G-
TLSTM). We see that S-TLSTM is able to capture composi-
tional information more effectively than G-TLSTM (row 2),
which is consistent with findings from diagnostic datasets
regarding recursive modeling (Nangia and Bowman 2018).
Necessity of Compositional Information: In the lower side
of the table (row 9-13), we evaluate models with either sev-
ered RNNs connections or word-shuffled training data. The
results represent models with limited compositional acces-
sibility or awareness. As expected, the results on CS0.7 are
similar to or even below the majority vote even though their
performance on standard evaluation is on the same level as
that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results of
models with limited compositional information are at the bottom of the table.

This motivates our analytic study of models’ compositionality-sensitivity.

Compositionality-Sensitivity Results

Natural Language Inference:

Goal:
To show that models are over-reliant on word-level information
and have limited ability to process compositional structures.

Method:
Created adversaries whose logical relations cannot be extracted

from lexical information alone.

(Premise, Hypothesis) à Label { Entailment, Contradiction, Neutral }

Neural Models:

Neural Network Model

premise

predicted label

Trained on provided training set.

Datasets:

• Stanford Natural Language
Inference (SNLI) 570k pairs
(image caption genre)

• Multi-Genre Natural Language
Inference (MNLI) 433k pairs
(multiple genres e.g. news, fiction)

SNLI Leaderboard:

information.
Hence, in order to analyze a model’s abilities to rea-

son beyond the lexical level and reveal its sensitivity to
compositional differences, we present a ‘compositionality-
sensitivity’ testing setup: we select examples for which a
bag-of-words model is misguided (assigns a high probabil-
ity to one wrong label), this allows us to directly measure
how much compositional information the model takes into
consideration. We hope that this testing setup will encour-
age the development of models that are sensitive to com-
positional clues regarding the pairs’ logical relationships by
effectively punishing models’ over-reliance on lexical fea-
tures and compositionality-unawareness. We also hope that
analysis like ours highlights lexical bias in current datasets,
and encourages more balanced datasets in the future.

We show that although our seven models and their vari-
ants have comparable performance on standard evaluation
(SNLI and MNLI), our new compositionality-sensitivity
testing differentiates them by their capability to capture
compositional information (e.g., bag-of-words-like models
perform worse than sequential models, which in turn per-
form worse than syntactic-tree based models). Unlike adver-
sarial evaluation, this setup uses natural examples that are
not confined to any specific linguistic context or domain by
leveraging existing NLI datasets to the largest extent possi-
ble for compositional testing, which hopefully encourages
future research on the development of compositional-aware
sentence-level modeling.

We end by discussing how our compositionality-
sensitivity evaluation setup complements other recently
proposed evaluation setups. Specifically, while certain
linguistically-driven diagnostic datasets are useful in test-
ing for a model’s performance in a specific realistic setting,
model-driven evaluations such as ours gives insight into why
models succeed and fail in these specific linguistic scenarios.
The main contributions of this paper are three-fold: 1) we in-
troduce two new adversarial setups that expose current state-
of-the-art models’ inability to process simple sentence-level
semantics when lexical features give no information; 2) we
rigorously test and expose the limits of standard and adver-
sarial evaluations; 3) we propose a novel compositionality-
sensitivity test that explicitly analyzes a model’s ability to
recognize compositional semantics beyond the lexical level,
and show its effectiveness in separating models based on ar-
chitecture.

2 Models and Motivation
2.1 NLI Models
Many different models have been proposed for the NLI task;
they all fall under one of two broad categories: sentence
encoding-based (sentence encoders) or co-attention based.
Sentence encoders independently encode each sentence as a
fixed-length vector, and then make a prediction, while co-
attention models make inferences by jointly processing the
premise and hypothesis. The constraint of independent pro-
cessing for sentence encoders was put in place to encourage
the development of effective fixed-length sentence repre-
sentations generalizable to higher-level tasks. However, co-

Model SNLI Type Representation
RSE 86.47 Enc Sequential

G-TLSTM 85.04 Enc Recursive (latent)
DAM 85.88 CoAtt Bag-of-Words
ESIM 88.17 CoAtt Sequential

S-TLSTM 88.10 CoAtt Recursive (syntax)
DIIN 88.10 CoAtt Sequential

DR-BiLSTM 88.28 CoAtt Sequential

Table 1: Summary of the models we evaluate, including their
performance, type, and sentence representation.
‘Enc’ = Sentence Encoder ‘CoAtt’ = Co-Attention Model

attention models with recursive or sequential modeling have
achieved much better performance on popular NLI datasets.
In this paper, we analyze 7 different models spanning both
categories, which are, or were, state-of-the-art in their re-
spective category.3 We give a brief description of each model
below (see Table 1):
RSE Residual Sentence Encoder (Nie and Bansal 2017) is
an encoding-based model that first uses multiple layers of
residually-connected BiLSTM to encode the tokens in a sen-
tence and then obtain the sentence’s fixed-length represen-
tation by max pooling over RNN’s hidden states from all
timesteps. It is one of the top performing sentence encoders
on the Multi-NLI dataset.
G-TLSTM Gumbel-TreeLSTM (Choi, Yoo, and Lee 2017)
is a recursive encoding-based model that learns latent-tree
representations for sentences via reinforcement learning.
DAM Decomposable Attention Model (Parikh et al. 2016)
is a light-weight co-attention model that performs cross-
attention at the word level with decomposable attention ma-
trices.
ESIM Enhanced Sequential Inference Model (Chen et al.
2017) is a strong co-attention model that uses BiLSTM to
encode tokens within each sentence, and perform cross-
attention on these encoded token representations.
S-TLSTM Syntactic TreeLSTM (Chen et al. 2017) is iden-
tical to ESIM except it encodes sentence tokens via a TreeL-
STM based on the dependency parse instead of sequential
BiLSTM. It is the highest performing NLI model with a re-
cursive component.
DIIN Densely Interactive Inference Network (Gong, Luo,
and Zhang 2017) is a novel co-attention model that ex-
tracts phrase-level alignment features using densely con-
nected convolutional layers a word-level interactive matrix.
DR-BiLSTM Dependent Reading Bidirectional LSTM
(Ghaeini et al. 2018) is a model that modifies on ESIM with
a dependent reading mechanism that encodes each sentence
conditioned on the other.

We were able to obtain original implementations for RSE,
G-TLSTM, S-TLSTM and DIIN. We used our own im-
plementation for the other three models and were able to
achieve comparable results on standard evaluation sets.4

3
https://nlp.stanford.edu/projects/snli/

https://repeval2017.github.io/shared/

4We will release our implementations publicly.

Table 1: The NLI models we

analyzed including an encoding-

based models, co-attention
models, sequential models, and

recursive models.

Despite their high

performance, it is

unclear if models
employ semantic
understanding or are
just shallow pattern
matching.

Counterintuitive
designs indicate an
over-focus on lexical

information, which is

different from human
reasoning.

SubObjSwap:

Take a premise with a subject-verb-object structure; Create the
hypothesis by swapping the subject and object.

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

Adv-Evaluation:

A cat sits alone in dry yellow grass.

A yellow cat sits alone in dry grass.A woman is pulling a child on a sled in the snow.

A child is pulling a woman on a sled in the snow.

ROOT
subj obj

ROOT
amod

amod

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Model SNLI Acc. Type Sentence Representation
RSE 86.47 Sent. Encoder Sequential

G-TLSTM 85.04 Sent. Encoder Tree (learned)
DAM 85.88 Co-Attention Bag-of-Words
ESIM 88.17 Co-Attention Sequential

S-TLSTM 88.10 Co-Attention Tree (syntax)
DIIN 88.10 Co-Attention Sequential

DR-BiLSTM 88.28 Co-Attention Sequential

Table 1: Summary of the models we use, including their performance, type, and sentence representation

p: People are throwing tomatoes at each other.
p�: Tomatoes are throwing people at each
other.

p� : A young small woman is singing into a mi-
crophone.
h : A young woman is singing into a small mi-
crophone.

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the
SOSWAP adversary, where the swapped subject and object are marked in red in p

�. On the right, we have
an example of the ADDAMOD adversary, where the added adjective modifier is marked in red.

ited ability to process even the simplest of compo-
sitional structure, we created adversarial test sets
composed of pairs of sentences whose logical re-
lations cannot be extracted from lexical informa-
tion alone. Specifically, we create the following
two evaluation setups:

SOSWAP Adversaries In this setup, we take a
premise from the SNLI dataset, p, that has the
subject-verb-object sentence structure, and create
the hypothesis p

� by swapping the subject and ob-
ject. This results in a contradictory pair as the se-
mantic roles of the premise are swapped in the hy-
pothesis. An example of this is shown on the left
side of Fig. 1. We were able to create 971 exam-
ples of this type.

ADDAMOD Adversaries In this setup, we take
a premise from the SNLI dataset, p, that has at
least two different noun entities. We then pick a
modifier from the SNLI dataset that has been used
to describe both nouns, and create the premise p

�

by adding the modifier to one of the nouns and
create the hypothesis h by adding it to the other
noun. This results in a neutral pair as the hypoth-
esis contains more information and is neither im-
plied or refuted by the premise. An example of
this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

Although both of the above strategies generate
pairs that exhibits non-entailment relations, they
are difficult to solve for models that ignore com-

positional structure, as the premise and hypothesis
are composed of the exact same words.

To create the data that meet the above require-
ments, we use the Stanford Parser (Chen and Man-
ning, 2014) from CoreNLP 3.8.0 to get the de-
pendency parse of the sentences, decomposing the
sentences into small semantic units and then rear-
range them using the following two strategies.

3.2 Evaluation

We trained the aforementioned models on the
SNLI training set and tested them on the adver-
sarial test sets, the results are shown in Table 2.
To ensure that the intuitions behind our adversar-
ial creation algorithms are correct, we conducted
human evaluation with a sampling of 100 exam-
ples for each evaluation set. On both experiments,
despite majority of the examples being marked
as non-entail by our human evaluators, the mod-
els classified them overwhelmingly as entailment.
More interestingly, the models we use involve both
tree based and sequential sentence encoder and co-
attention models. And despite the varied architec-
ture, they all perform similarly on these adversar-
ial test sets, indicating that they might be using
similar patterns for inference (e.g., word overlap
suggests entailment).

The models’ poor performance on these ad-
versarial test sets constants sharply with their
high performance on standard evaluation, raising
doubts on its effectiveness and reliability. How-

h :

<latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit><latexit sha1_base64="18TYQ2FFW5esQka7TqsevXuNqJs=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWehhd98sVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5tfOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2dtkIDRnKCeWUKaFvZWwEdWUoQ2nZEPwll9eJa2LqudWvfvLSv0mj6MIJ3AK5+BBDepwBw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifP0s8jTA=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

p :

<latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit><latexit sha1_base64="6Y83u1x92A1Y43EPV/WHC1PYB+8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqevFYxX5AG8pmu2mXbjZhdyKU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekiu++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn80vnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTsiF4yy+vktZF1XOr3v1lpX6Tx1GEEziFc/CgBnW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH1dkjTg=</latexit>

p

0
:

<latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit><latexit sha1_base64="wHM2oKdLWPTqAo3K5loY8hZ0M5U=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8hV0RFE9BLx4jmAds1jA7mU2GzGOZ6RXCks/w4kERr36NN//GSbIHTSxoKKq66e6KU8Et+P63t7K6tr6xWdoqb+/s7u1XDg5bVmeGsibVQptOTCwTXLEmcBCskxpGZCxYOx7dTv32EzOWa/UA45RFkgwUTzgl4KQwfcy7qeGSTa57lapf82fAyyQoSBUVaPQqX92+pplkCqgg1oaBn0KUEwOcCjYpdzPLUkJHZMBCRxWRzEb57OQJPnVKHyfauFKAZ+rviZxIa8cydp2SwNAuelPxPy/MILmKcq7SDJii80VJJjBoPP0f97lhFMTYEUINd7diOiSGUHAplV0IweLLy6R1Xgv8WnB/Ua3fFHGU0DE6QWcoQJeoju5QAzURRRo9o1f05oH34r17H/PWFa+YOUJ/4H3+AICNkWE=</latexit>

Figure 1: Examples of adversaries generated for our experiments. On the left, we have an example of the SOSWAP adversary,
where the swapped subject and object are marked in yellow in p

0. On the right, we have an example of the ADDAMOD adversary,
where the added adjective modifier is marked in yellow.

SNLI SOSWAP ADDAMOD
Model dev E C N E C N
RSE 86.5 92.5 2.1 5.5 95.2 0.2 4.6

G-TLSTM 85.9 97.2 1.2 1.5 95.9 1.2 2.9
DAM 85.0 99.7 0.3 0.0 99.9 0.0 0.1
ESIM 88.2 96.4 2.1 1.5 85.6 9.6 4.8

S-TLSTM 88.1 92.1 4.4 3.5 90.4 1.1 8.5
DIIN 88.1 84.9 4.5 10.6 55.0 0.4 44.6

DR-BiLSTM 88.3 89.7 5.5 4.8 82.1 8.9 9.0
Human - 2 84 14 10 2 88

Table 2: Model performance on SNLI and % of predictions
on the adversarial test sets. E, C, N indicate the classifica-
tion where E is entailment, C is contradiction and N is neu-
tral. (Note that SOSWAP mostly creates contradictory pairs,
while ADDAMOD mostly creates neutral pairs).

2.2 Motivation
Many top-performing sentence encoders (such as RSE) use
max-pooling as the final layer to encode the sentences (Nan-
gia et al. 2017a), and except DIIN, most top-performing co-
attention models calculate cross-alignment on the RNN hid-
den state of each token. These design trends are counterin-
tuitive because max-pooling and attention mechanisms are
communicative operations which are not affected by word
order, making the RNN layers the only way for the models to
capture the compositional structure of sentences. However,
past studies have shown that RNNs (especially sequential
RNNs) are insufficient for effectively capturing logical com-
positional structure that is often present in NLI (Evans et al.
2018; Nangia and Bowman 2018). These designs and find-
ings indicate an over-focus on lexical information in neural
NLI approaches which is very different from how humans
approach the task. To test this hypothesis, we conduct a se-
ries of investigative adversarial evaluations.

3 Adversarial Evaluation
3.1 Adversarial Examples
To test our hypothesis that models are over-reliant on word-
level information and have limited ability to process com-
positional structures, we created adversarial test sets com-
posed of pairs of sentences whose logical relations cannot
be extracted from lexical information alone. Specifically, we
conduct experiments with the following two types of adver-
sarial data in which we change the semantics of the sentence

by only modifying its compositional structure:
SOSWAP Adversaries We take a premise from the SNLI
dataset, p, that contains a subject-verb-object structure, and
create the hypothesis p

0 by swapping the subject and object.
This results in a contradictory pair as the semantic roles of
the premise are swapped in the hypothesis. An example is
shown on the left side of Fig. 1. We were able to create 971
examples of this type.
ADDAMOD Adversaries In this setup, we take a premise
from the SNLI dataset, p, that has at least two different noun
entities. We then pick an adjective modifier from the SNLI
dataset that has been used to describe both nouns, and create
the premise p

0 by adding the modifier to one of the nouns,
and the hypothesis h by adding it to the other. This results
in a neutral pair as the hypothesis contains additional infor-
mation and is neither implied nor refuted by the premise. An
example of this is shown on the right side of Fig. 1. We were
able to create 1783 examples of this type.

The intuition behind both of the adversaries described
above is that, while the semantic difference resulting from
compositional change is obvious for humans, the two input
sentences will be almost identical for models that take no
compositional information into consideration.5

3.2 Adversarial Evaluation Results
We trained our 7 models on the SNLI training set and tested
them on the adversarial test sets – the results are shown
in Table 2. To ensure that the intuitions behind our adver-
sarial generation algorithms were correct, we conducted hu-
man evaluation for a sample of 100 examples for each eval-
uation set.6 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information7. The models’

5To create the data that meets the above requirements, we use
the Stanford Parser (Chen and Manning 2014) from CoreNLP 3.8.0
to get the dependency parse of the sentences, decomposing the sen-
tences into small semantic units and then rearranging them using
the above two strategies.

6The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

7Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing

All models fail to
recognize the effects of
our compositional
manipulations.

Goal:
To show that regular evaluation fails to assess models’ deeper
compositional understanding.

Method:
Train models with compositional structures explicitly removed

and compare their results with those before on regular evaluation.

21

Compositional-Removal Analysis

RNN replacement:
Create strong bag-of-words-like models by replacing RNN layers with fully-connected
layers, and train them on the standard training set.

RNN
Cell

RNN
Cell

RNN
Cell

RNN
Cell FC FC FC FC

w1 w2 w3 wn w1 w2 w3 wn

22

Compositional-Removal Analysis

Word-Shuffled Training:
We train the NLI models with the words of the two input sentences shuffled, such that
the compositional information is diluted and hard to learn.

Model Model

premise hypothesis shuffled premise shuffled hypothesis

RNN Replacement:

Word Shuffled Training:

Analysis Results:

Removing compositional structures doesn’t induce as much

performance drop as expected.

Perfect Model:

Current Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Sets of lexical features model captured

Sets of compositional features model captured

Bag-of-Words Model:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Our hypothesis:

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

adversarial evaluation is still far from validating its general
compositional ability.

Thus, we propose an alternative evaluation strategy that
leverages existing data to evaluate a model’s general com-
positional understanding capabilities.

5 Compositionality-Sensitivity Testing
5.1 Problem Formulation
NLI is a complex task with many variables – almost all pre-
vious approaches model the task as the distribution p(y | x)

of the logical relation y conditioned on the pair of input sen-
tences x = (P, H), where y 2 {entailment, contradiction,
neutral} and P, H are the premise and hypothesis, respec-
tively. This conditional distribution is often parameterized
by some neural models and trained end-to-end by maximiz-
ing the probability of ‘ground-truth’ label. For the sake of
studying models’ insensitivity to compositional information,
we consider a factorization of the two input sentences as tu-
ples (Sp, ⇧h) and (Sh, ⇧h), where Sp and Sh are the sets
of tokens that make up the premise P and hypothesis H as
lexical factors, and ⇧p and ⇧h are the sets of compositional
rules that combine those tokens into meaningful sentences
as compositional factors.10 A perfect modeling of NLI that
is capable of taking all lexical and compositional informa-
tion into account is formalized as Eqn. 1, whereas a entirely
bag-of-words (BoW) model is formalized as Eqn. 2.

p(y | x) = f✓(Sp, Sh, ⇧p, ⇧h) (1)
p(y | x) = g✓(Sp, Sh) (2)

The models we discuss are neither perfect models nor en-
tirely BoW models, but rather a combination of both, where
they are able to detect and use some lexical features and
some semantic rules:

p(y | x) =

ˆ

f✓(
˜

Sp,
˜

Sh,

˜

⇧p,
˜

⇧h) (3)

where ˜

Sp ✓ Sp and ˜

Sh ✓ Sh are the sets of lexical fea-
tures of the sentences that the model is capable of using, and
similarly ˜

⇧p ✓ ⇧p and ˜

⇧h ✓ ⇧h are sets of compositional
rules that the model is capable of using. The issue we ex-
plored in previous sections is that current models are overly
relying on Sp and Sh, but have limited ability to detect and
use ⇧p and ⇧h. In other words, ˜

⇧p ⌧ ⇧p and ˜

⇧h ⌧ ⇧h.
For instance, the adversaries we created Sec. 3.2 have sen-
tence pairs which have the same lexical elements but differ-
ent compositional structures, i.e., Sp = Sh but ⇧p 6= ⇧h.
To an entirely BoW model (Eqn. 2), this looks identical
to the scenario where the same sentence is repeated twice.
Thus in those cases, inferences necessarily require knowl-
edge of compositional information. This provides intuition

Enumerating rule-based adversaries to cover all frequently-used
compositional structural changes in a language is prohibitively
costly, as generating high-quality (natural and grammatical) data
following a single rule already takes tons of time and resources.

10Due to the complexity of language, lexical elements are often
intertwined with compositional rules and this factorization of p as
(Sp,⇧p) will make ⇧p intractable in practice. However, we isolate
compositional factors from lexical factors in order to analysis of
model behavior.

into our new evaluation setup: In order to evaluate models’

compositionality-sensitivity, we need to evaluate their per-

formance on data which can not be solved by lexical fea-

tures alone, i.e., cannot be solved by an entirely BoW model.

We thus seek to evaluate models on a subset of the standard
evaluation set that fits this criterion.

5.2 Approximating BoW Model
To obtain such a subset, we must first approximate an en-
tirely BoW model. Specifically, we use a softmax regression
classifier that takes in only lexical features for prediction.
More formally,

v = h(x) (4)

p(c | x) =

exp(w

>
c v)P

c02L exp(w

>
c0v)

(5)

where h is a function that maps the raw input pair x to its
lexical feature vector v 2 Rd, p(c|x) is the probability given
to label c by the softmax regression classifier. The lexical
feature vector v is an indicator vector that contains the fol-
lowing lexical features from the input pair:
• Unigrams appearance within the premise.
• Unigrams appearance within the hypothesis.
• Word pairs (cross-unigrams) where one appears in the

premise and the other in the hypothesis.
For unigram and cross-unigram features, we only pick words
that are nouns, verbs, adjectives or adverbs to reduce spar-
sity. We train the regression model on both SNLI and MNLI
and use it to approximate an entirely BoW model.

5.3 Lexically-Misleading Score
Since the softmax regression classifier we used is not an en-
tirely BoW model, i.e., it does not capture and use all aspects
of lexical semantics. Examples that it predicted incorrectly
might still be solvable with the correct lexical information.
Thus, to preserve the integrity of our evaluation, we fur-
ther remove examples that the softmax regression classifier
is ambivalent about, and only look at examples where the
regression model was confidently wrong, i.e., cases where
they were ‘misled’ by lexical features. We do so because
in cases where the regression has insufficient lexical knowl-
edge (e.g., rare/unseen words), it is likely going to give a
less confident prediction, whereas in cases where the model
was misled, it had the lexical knowledge to make a decision,
and hence a wrong prediction indicates the need for compo-
sitional knowledge.

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c

⇤
) as:

fLMS(x, c

⇤
) = max

c2L\{c⇤}
p(c | x) (6)

where c

⇤ is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =

{entailment, contradiction, neutral} is the label set. In other
words, fLMS of a data point is the maximum probability the
regression gave on an incorrect label. The idea behind LMS

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

References:

Acknowledgement: This work was supported by faculty research awards from Verisk, Google, and Facebook.

- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning
natural language inference. EMNLP.
- Vicente Ivan Sanchez Carmona, Jeff Mitchell, and Sebastian Riedel. 2018. Behavior analysis of nli models: Uncovering the
influence of three factors on robustness. NAACL.

yixin1@cs.unc.edu yicheng@cs.unc.edu mbansal@cs.unc.edu

Analyzing Compositionality-Sensitivity of NLI
Models

*Yixin Nie *Yicheng Wang Mohit Bansal

Background & Motivation

hypothesis

Semantic-based Adversaries

Limitations of Regular Evaluation

Model SNLI MNLI Matched MNLI MisMatched
Original BoW WS Original BoW WS Original BoW WS

RSE 86.47 85.02 – 72.80 70.02 – 74.00 71.10 –
ESIM 88.17 82.37 86.79 76.16 68.98 73.70 76.22 69.77 74.20
DR-BiLSTM 88.28 82.81 86.90 76.90 70.11 73.27 77.49 70.70 73.25

Table 3: The ‘Original’ columns show results for vanilla models on the resp. validation sets. The ‘BoW’ column show results
for BoW-like variants created replacing their RNNs with fully-connected layers. The ‘WS’ columns show results for models
trained with shuffled input sentences.

SOSWAP ADDAMOD
E/C/N E/C/N

None 96.4/2.1/1.5 85.6/9.6/4.8
SOSWAP 0.9/99.1/0.0 66.7/26.9/6.5
ADDAMOD 73.1/1.0/25.9 0.3/0.1/99.6

Table 4: The percentages of predicting E/C/N by ESIM with
different types of adversarial training, where an underlined
number indicates the accuracy on the correct label.

uation set.4 On both experiments, despite a majority of the
examples being marked as non-entail by our human eval-
uators, the models classified them overwhelmingly as en-
tailment, indicating the models’ inability to recognize or
process compositional semantic information5. The models’
poor performance on these adversarial test sets contrasts
sharply with their high performance on standard evaluation,
raising doubts on the effectiveness and reliability of standard
evaluation. However, adversarial evaluation as done here has
its own issues. We discuss problems with current evaluation
further in the next section.

4 Limitations of Existing Evaluations
In this section, we show that models’ performance on stan-
dard evaluation does not reflect their compositional under-
standing capabilities, which we suspect leads to the lack of
focus on this type of modeling in the current literature.

4.1 Regular Evaluation Limitations
The gap in model performance between standard evaluation
and adversarial evaluation (see Table 2) indicates the limita-
tions of regular evaluation at testing a model’s ability to pro-
cess sentences’ compositional structure. More importantly,
regular evaluation fails to separate or differentiate mod-
els that are relying on lexical pattern-matching from those
with deeper compositional understanding. To further illus-
trate this point, we conduct the following two experiments

4The adversaries are intended to use to highlight models’ com-
positional unawareness and motivate further analysis rather than to
be a general-purpose evaluation set. Human evaluation results in-
dicates that the the majority of the data are correct.

5Note that DIIN’s relatively high performance on ADDAMOD
is likely due to its convolutional structure successfully capturing
the modifier relationship, but we see that it still fails on adversaries
with longer-range dependency requirements such as SOSWAP.

in which we intentionally force the models to be unaware
of compositional information by either removing RNN con-
nections in their architectures or by randomizing word order
during training.
RNN Replacement: We create strong bag-of-words-like
models by replacing RNN layers in RSE, ESIM, and DR-
BiLSTM with fully-connected layers, and train them on the
standard training set.
Word-Shuffled Training: We train the ESIM and DR-
BiLSTM models with the words of the two input sentences
shuffled, such that the compositional information is diluted
and hard to learn.

The results of these models and their corresponding vari-
ants on SNLI, MNLI matched, and MNLI mismatched de-
velopment set are shown in Table 3, where we see that their
performance is not too far from that of their original, recur-
rent counterparts. To be specific, there is roughly 6-7 points
drop in accuracy when RNNs connections are removed and
only 2-3 points drop when words are shuffled during train-
ing. These counter-intuitive findings indicate that even a
model which only considers shallow lexical features is able
to get a decent result on standard evaluation, despite using a
mechanism that is very different from human reasoning.

4.2 Adversarial Evaluation Limitations
Although, rule-based adversaries were able to expose the
models’ lack of knowledge of compositional semantics, they
have their own limitations and do not serve well as a general
analysis tool. Due to the recursive nature of language, there
are infinitely many ways for compositional information to
affect a sentence’s meaning, but each type of rule-based ad-
versary only tests for one specific compositional rule. Thus,
success on one type of adversary only demonstrates knowl-
edge of that single rule, and does not indicate general knowl-
edge of compositionality rules. The easiest way to see this is
via adversarial training and data-augmentation: we trained
the ESIM model with data augmentation from either type
of adversaries,6 and re-evaluated the retrained models on
both SOSWAP and ADDAMOD. As shown in Table 4, while
adversarial data-augmentation leads to improvement on the
same type of adversary, it does not generalize to other types
of adversaries. In fact, we see that focusing on one type of
adversarial performance may lead to over-fitting that par-

6We add 20,000 adversarial examples into training at each
epoch. Adv-Training data was created from SNLI training set while
Adv-Evaluation set was created from SNLI dev set.

Compositionality-Sensitivity Testing

AddAmod:

Take a premise that has at least two different noun entities; Pick an
adjective modifier; Create the premise by adding the modifier to
one of the nouns, and the hypothesis by adding it to the other.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

is that: the more lexically misleading an example is, the more

confident we are that compositional information is required

to solve it. We thus use LMS to select examples from exist-
ing evaluation sets for our evaluation.

5.4 Subsampling and Testing
Given a standard evaluation set and associated ‘ground-
truth’ labels, D = {(xi, ci)}Ni=1, we create CS�, the
compositionality-sensitivity evaluation set of confidence �:

CS� = {(xi, ci) 2 D | fLMS(xi, ci) � �}

The choice of � represents a trade-off between being
confident about the individual examples’ ability to test
compositionality-sensitivity and keeping a decent sample
size of evaluation data. CS0 is equivalent to testing on the en-
tire evaluation dataset, whereas CS0.95 (in a 3-way classifier)
gives us an extremely small evaluation set (e.g. CS0.95 on
SNLI only has 148 examples) with highly misleading lexi-
cal features. Empirically, we found that for SNLI and MNLI,
� = 0.7 gives a good balance between size of the evaluation
set and its ability to test compositionality-sensitivity (e.g.,
CS0.7 on SNLI has 999 examples). Fig. 2 shows examples
of sentence pairs with high LMS from the SNLI validation
set that were in CS0.7 for SNLI.11

5.5 Evaluation of Existing Models on CS�

Table 5 shows the performance of our seven models re-
evaluated with CS� at different � values.
General Trend: We see that in general, model performance
decreases as � increases, whereas human performance12 suf-
fered much less with increasing � values. This is consistent
with our hypothesis that there are significant differences be-
tween human-style deep reasoning (with both lexical and
compositional knowledge) and inference by current models,
which overly relies on lexical information. We also noticed
that for all the models on SNLI, MNLI matched, and MNLI

11We release the LMS values of the SNLI and MNLI develop-
ment set in the supplementary materials.

12We approximate human performance by the mechanism pro-
posed by Gong, Luo, and Zhang (2017): we choose one of the an-
notator labels (out of 5) and compare it against the ground truth.
Due to noisy data collection procedure, the actual ceiling of human
performance should be much higher than this value.

mismatch dev set, there is a big gap between the accuracy on
the whole dev set and those on CS0.7. This demonstrates that
our models have very limited ability to utilize or even recog-
nize compositional information for semantic understanding.
These findings indicate the space and need for further re-
search on structured sentence modeling.
Seqential Model vs. Structured Model: The results on
CS0.7 differentiates models based on their architectures.
More importantly, it explicitly reveals models’ composi-
tional understanding which is otherwise largely hidden on
the standard evaluation. Specifically, the results for ESIM
and S-TLSTM (row 3 and 4) give a clear comparison be-
tween sequential and recursive modeling since the two mod-
els have the same architecture with the exception that ESIM
uses sequential RNN and S-TLSTM uses recursive RNN to
encode the sentences. We see that S-TLSTM is better than
ESIM on CS0.7, despite ESIM getting better results on all
three standard evaluation datasets. This indicates that the re-
cursive model with additional syntactic tree input does in
fact induce more compostional understanding ability, which
is completely invisible if we merely focus on the results
of standard evaluation. Moreover, DIIN (row 5) obtains the
best results on all the CS0.7 subsets, substantially surpass-
ing that of DR-BiLSTM (row 6), the most powerful sequen-
tial model in the table. This is also consistent with the in-
tuition that DIIN’s convolutional network and phrase-level
alignment provide much more compositional information
than simple RNN-based sequential models. Another inter-
esting fact is the difference in performance between a recur-
sive model trained with explicit external linguistic supervi-
sion (S-TLSTM) and one trained via latent tree learning (G-
TLSTM). We see that S-TLSTM is able to capture composi-
tional information more effectively than G-TLSTM (row 2),
which is consistent with findings from diagnostic datasets
regarding recursive modeling (Nangia and Bowman 2018).
Necessity of Compositional Information: In the lower side
of the table (row 9-13), we evaluate models with either sev-
ered RNNs connections or word-shuffled training data. The
results represent models with limited compositional acces-
sibility or awareness. As expected, the results on CS0.7 are
similar to or even below the majority vote even though their
performance on standard evaluation is on the same level as
that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.
True Label: entailment
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(sitting, standing)

not

standing

LMS: 0.9632 (to contradiction)

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.
True Label: neutral
Lexical Linear Model Prediction:

entailment

contradiction

neutral

Top 3 misleading features
(hot, hot)

there

(balloons, balloons)

LMS: 0.8643 (to entailment)

Figure 2: Two examples with high LMS. Correct prediction for the 1st example requires recognizing that ‘not standing’ and
‘sitting’ are the same state, rather than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’,
‘standing’) that both mislead to ‘contradiction’. For the 2nd example, word-overlap misleads the classifier to predict ‘entailment’.

Model
SNLI MNLI (Matched) MNLI (MisMatched)

Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7 Whole Dev CS0.5 CS0.6 CS0.7

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 45.32 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04

7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45

8 Majority Vote 33.82 42.13 42.96 43.27 35.45 36.23 35.04 35.20 35.22 34.22 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 47.93 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 33.44 30.34 69.77 41.00 35.93 32.32
11 DR-BiLSTM (BoW) 82.81 48.97 44.33 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 44.20 41.20 41.09 74.20 49.39 45.39 41.77
13 DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 45.77 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.

that of the original models, indicating that compositionality
understanding is required to obtain a good result on CS0.7.

6 Related Work and Discussion
Over-Stability: Jia and Liang (2017) used adversarial eval-
uation to show that models trained on the Stanford QA
Dataset (Rajpurkar et al. 2016) were reliant on syntactic
similarity for answering, revealing the over-stability of QA
models. With similar motivation, we study the task of NLI
by showing that models are overly focused on lexical fea-
tures and have limited ability of compositionality.
Existing Analysis on NLI: Previous work on analyzing NLI
models (Glockner, Shwartz, and Goldberg 2018; Carmona,
Mitchell, and Riedel 2018) has focused on models’ lim-
ited ability in identifying lexical semantics that were rare
or unseen during training. Our work complements theirs by
demonstrating models’ limited understanding of composi-
tionality encoded in the sentences. Gururangan et al. (2018),
Poliak et al. (2018b) and Tsuchiya (2018) concurrently
showed hypothesis bias in NLI and RTE datasets. In par-
ticular, Gururangan et al. (2018) also proposed to evaluate
models on a harder and better subset of standard evaluation.
We instead focus on exposing models’ compositionality-
insensitivity by selecting our evaluation dataset based on

LMS (lexically-misleading score).
Compositionality: Nangia and Bowman (2018) introduce a
dataset to study the ability of latent tree models. Evans et al.
(2018) introduce a dataset of logical entailments for mea-
suring models’ ability to capture the structure of logical ex-
pressions against an entailment prediction task. Dasgupta et
al. (2018) study the inference behavior of models using sen-
tence embedding on a compositional comparisons dataset.
However, we conduct a rigorous study on compositionality-
sensitivity, covering a broader range of NLI models and
show how to use a filtered subset of existing NLI datasets
to test models’ compositional ability.
Linguistic Diagnostic Evaluation: Multiple linguistic di-
agnostic datasets have been published to test NLI mod-
els’ ability to process certain linguistic phenomena such as
coreference, double negation, etc. (Williams, Nangia, and
Bowman 2018; Nangia et al. 2017; Poliak et al. 2018a;
Wang et al. 2018). These datasets are helpful in that they ex-
plore the potential usefulness of existing models by demon-
strating their abilities in specific scenarios. However, the
way models approach language might not have any linguis-
tic grounding. Consider an example where the premise is
‘We can’t not go to sleep.’ and hypothesis is ‘We have to
go to sleep.’ Understanding the first sentence should need

Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results of
models with limited compositional information are at the bottom of the table.

This motivates our analytic study of models’ compositionality-sensitivity.

Results of models, human, and majority-vote baseline on different levels of compositionality-
sensitivity testing. Results of models with limited compositional information are in the bottom:

[Nie, Wang, Bansal, AAAI 2019]

Next Steps / Food for Thought
•  How far can adversarial training go in bringing back robustness?

•  What types of direct model enhancements and better evaluations are needed for robust
representation learning?

•  We might have made the model robust to one kind of attack but there might be others?

•  How do we ensure robustness to other adversaries we haven’t thought of?

•  Should we focus on automated adversary generation or on linguistically-motivated probes?

•  Important: Generalizing to other domains and languages

Part 2:
Knowledge-Rich Model Representations

Motivation and Topics
•  How can we make neural models’ representations more knowledge-rich, e.g., via weak

relational supervision, or via multi-task and reinforcement learning methods?

•  What kinds of knowledge sources and auxiliary skills are useful?

•  How can we automate inductive bias and hand-designed decisions in multi-task learning?

Our Past Embeddings Work: Motivation
"   Vector space representations learned on unlabeled linear context: distributional

semantics (Harris, 1954; Firth, 1957)
"   Various drawbacks:

"   capture a very generic similarity (usually topical)
"   may help one task but harm another
"   mix synonyms and antonyms, senses, similarity/relatedness (e.g., hypernymy)

"   Use weak relational supervision/labels, e.g., lexicon/KB, multilingual, or task-
specific (e.g., syntactic dependencies):
"   Paraphrase relation (monolingual alignments)
"   Translation relation (multilingual alignments)
"   Syntactic relation (dependency context)

[Wieting et al., TACL 2015; Bansal et al., ACL 2014; Lu et al., NAACL 2015]

Paraphrastic Embeddings

[Wieting et al., TACL 2015; ICLR 2016]

Paraphrase Model

!   Loss: +ve pairs closer than -ve pairs with margin δ

Positive training pairs	 Negative training pairs	

Regularization terms 	

min
W,b,Ww

1

|X|

X

hx1,x2i2X

max(0, � � g(x1) · g(x2) + g(x1) · g(t1))

+max(0, � � g(x1) · g(x2) + g(x2) · g(t2))
◆

+�

W

(kWk2 + kbk2) + �

Ww kW
winitial �W

w

k2

1

Paraphrase Model

!   2 parse-based RvNNs with a hinge-based loss function

1 2 3

4

5

6

7

3 4

5

1 2
cats catch miceThe Cats eat mice

Figure 1: An overview of our paraphrase model. The recursive autoencoder learns phrase features
for each node in a parse tree. The distances between all nodes then fill a similarity matrix whose
size depends on the length of the sentences. Using a novel dynamic pooling layer we can compare
the variable-sized sentences and classify pairs as being paraphrases or not.

2 Recursive Autoencoders
In this section we describe two variants of unsupervised recursive autoencoders which can be used
to learn features from parse trees. The RAE aims to find vector representations for variable-sized
phrases spanned by each node of a parse tree. These representations can then be used for subsequent
supervised tasks. Before describing the RAE, we briefly review neural language models which
compute word representations that we give as input to our algorithm.

2.1 Neural Language Models

The idea of neural language models as introduced by Bengio et al. [5] is to jointly learn an em-
bedding of words into an n-dimensional vector space and to use these vectors to predict how likely
a word is given its context. Collobert and Weston [6] introduced a new neural network model to
compute such an embedding. When these networks are optimized via gradient ascent the derivatives
modify the word embedding matrix L 2 Rn⇥|V |, where |V | is the size of the vocabulary. The word
vectors inside the embedding matrix capture distributional syntactic and semantic information via
the word’s co-occurrence statistics. For further details and evaluations of these embeddings, see
[5, 6, 7, 8].

Once this matrix is learned on an unlabeled corpus, we can use it for subsequent tasks by using each
word’s vector (a column in L) to represent that word. In the remainder of this paper, we represent a
sentence (or any n-gram) as an ordered list of these vectors (x1, . . . , xm). This word representation
is better suited for autoencoders than the binary number representations used in previous related
autoencoder models such as the recursive autoassociative memory (RAAM) model of Pollack [9, 10]
or recurrent neural networks [11] since the activations are inherently continuous.

2.2 Recursive Autoencoder

Fig. 2 (left) shows an instance of a recursive autoencoder (RAE) applied to a given parse tree as
introduced by [12]. Unlike in that work, here we assume that such a tree is given for each sentence by
a parser. Initial experiments showed that having a syntactically plausible tree structure is important
for paraphrase detection. Assume we are given a list of word vectors x = (x1, . . . , xm) as described
in the previous section. The binary parse tree for this input is in the form of branching triplets of
parents with children: (p ! c1c2). The trees are given by a syntactic parser. Each child can be
either an input word vector xi or a nonterminal node in the tree. For both examples in Fig. 2, we
have the following triplets: ((y1 ! x2x3), (y2 ! x1y1)), 8x, y 2 Rn.

Given this tree structure, we can now compute the parent representations. The first parent vector
p = y1 is computed from the children (c1, c2) = (x2, x3) by one standard neural network layer:

p = f(We[c1; c2] + b), (1)

where [c1; c2] is simply the concatenation of the two children, f an element-wise activation function
such as tanh and We 2 Rn⇥2n the encoding matrix that we want to learn. One way of assessing
how well this n-dimensional vector represents its direct children is to decode their vectors in a

2

notion of similarity more related to association than
paraphrase.

4 Paraphrase Models

We now present our parametric paraphrase model
and discuss training. The goal is to embed phrases
into a low-dimensional space such that cosine simi-
larity in the space corresponds to the strength of the
paraphrase relationship between phrases.

Our model is a recursive neural network (RNN),
similar to that used by Socher et al. (2014). We first
use a constituent parser to obtain a binarized parse of
a phrase. For phrase x, we compute its vector g(x)
through recursive computation on the parse. That is,
if phrase p is the yield of a parent node in a parse
tree, and phrases c1 and c2 are the yields of its two
child nodes, we define g(p) recursively as follows:

g(p) = f(W [g(c1); g(c2)] + b)

where f is an element-wise activation function
(tanh), [g(c1); g(c2)] 2 R2n is the concatenation
of the child vectors, W 2 Rn⇥2n is the composi-
tion matrix, b 2 Rn is the offset, and n is the di-
mensionality of the word embeddings. If node p

has no children (i.e., it is a single token), we define
g(p) = W

(p)
w

, where W

w

is the word embedding
matrix in which particular word vectors are indexed
using superscripts. The trainable parameters of the
model are W , b, and W

w

.

4.1 Objective Functions

We now present objective functions for training on
pairs extracted from PPDB. We note that we use our
new Annotated-PPDB dataset only for tuning hyper-
parameters and final testing. The training data con-
sists of (possibly noisy) pairs taken directly from the
original PPDB. In subsequent sections, we discuss
how we extract training pairs for particular tasks.

We assume our training data consists of a set X of
phrase pairs hx1, x2i, where x1 and x2 are assumed
to be paraphrases. To learn the model parame-
ters (W, b,W

w

), we minimize our objective function
over the data using AdaGrad (Duchi et al., 2011)

with mini-batches. The objective function follows:

min
W,b,Ww

1

|X|

X

hx1,x2i2X

max(0, ��g(x1) ·g(x2)+

g(x1)·g(t1))+max(0, ��g(x1)·g(x2)+g(x2)·g(t2))
◆

+ �

W

(kWk2 + kbk2) + �

Ww kW
winitial �W

w

k2
(1)

where �

W

and �

Ww are regularization parameters,
W

winitial is the initial word embedding matrix, � is
the margin (set to 1 in all of our experiments), and
t1 and t2 are carefully-selected negative examples
taken from a mini-batch during optimization.

The intuition for this objective is that we want
the two phrases to be more similar to each other
(g(x1) · g(x2)) than either is to their respective neg-
ative examples t1 and t2, by a margin of at least �.
For more efficient training, we used the dot product
in the objective rather than cosine similarity.

Selecting Negative Examples To select t1 and t2

in Eq. 1, we simply chose the most similar phrase in
the mini-batch (other than those in the given phrase
pair). E.g., for choosing t1 for a given hx1, x2i:

t1 = argmax

t:ht,·i2Xb\{hx1,x2i}
g(x1) · g(t)

where X

b

✓ X is the current mini-batch. That is,
we want to choose a negative example t

i

that is sim-
ilar to x

i

according to the current model parameters.
The downside of this approach is that we may oc-
casionally choose a phrase t

i

that is actually a true
paraphrase of x

i

. We also tried a strategy in which
we selected the least similar phrase that would trig-
ger an update (i.e., g(t

i

) ·g(x
i

) > g(x1) ·g(x2)��),
but we found the simpler strategy above to work bet-
ter and used it for all experiments reported below.

Discussion The objective in Eq. 1 is similar to one
used by Socher et al. (2014), but with several differ-
ences. Their objective compared text and projected
images. They also did not update the underlying
word embeddings; we do so here, and in a way such
that they are penalized from deviating from their ini-
tialization. Also, they do not select a single t1 and t2

as we do, but use the entire training set, which can
be very expensive with large training data.

Loss	

[Socher et al., 2011]

Composition = 	

Multilingual Deep-CCA Embeddings

[Faruqui & Dyer, EACL 2014; Lu et al., NAACL 2015]

Deep-CCA

word�vector�2
English German

word�vector�1

View 1

V
ie

w
2

u v

f g

foul
foul

awful

ugly

pretty

charming

cute

gorgeous

marvelous

magnificent

elegant

splendidhidous

beastly
grotesque

horrid

schrecklichen

hässliche

ziemlich

bezaubernder

clever
blondenwunderbaren

großartige
elegante

hervorragende

abscheulichen

gebot
grotesk

aufzuklären

Figure 1: Illustration of deep CCA.

transformations of each view via deep networks.

2.1 Canonical Correlation Analysis

A popular method for multi-view representation

learning is canonical correlation analysis (CCA;

Hotelling, 1936). Its objective is to find two vec-

tors u ∈ RDx and v ∈ RDy such that projections

of the two views onto these vectors are maximally

(linearly) correlated:

max
u∈RDx ,v∈RDy

E
[

(u⊤x)(v⊤y)
]

√

E [(u⊤x)2]
√

E [(v⊤y)2]

=
u⊤Σxyv

√

u⊤Σxxu
√

v⊤Σyyv
(1)

where Σxy and Σxx are the cross-view and within-

view covariance matrices. (1) is extended to learn-

ing multi-dimensional projections by optimizing the

sum of correlations in all dimensions, subject to

different projected dimensions being uncorrelated.

Given sample pairs {(xi,yi)}Ni=1
, the empirical es-

timates of the covariance matrices are Σ̂xx =
1

N

∑N
i=1

xix
⊤
i + rxI, Σ̂yy = 1

N

∑N
i=1

yiy
⊤
i + ryI

and Σ̂xy = 1

N

∑N
i=1

xiy
⊤
i where (rx, ry) > 0 are

regularization parameters (Hardoon et al., 2004;

De Bie and De Moor, 2003). Then the optimal k-

dimensional projection mappings are given in closed

form via the rank-k singular value decomposition

(SVD) of the Dx×Dy matrix Σ̂
−1/2
xx Σ̂xyΣ̂

−1/2
yy . In a

latent variable model interpretation of CCA, the pro-

jections reconstruct the latent variables that generate

both views (Bach and Jordan, 2005).

2.2 Deep Canonical Correlation Analysis

A linear feature mapping is often not sufficiently

powerful to faithfully capture the hidden, non-linear

relationships within the data. Recently, Andrew et

al. (2013) proposed a nonlinear extension of CCA

using deep neural networks, dubbed deep canonical

correlation analysis (DCCA) and illustrated in Fig-

ure 1. In this model, two (possibly deep) neural

networks f and g are used to extract features from

each view, and trained to maximize the correlations

between outputs in the two views, measured by a

linear CCA step with projection mappings (u,v).
The neural network weights and the linear projec-

tions are optimized together using the objective

max
Wf ,Wg,u,v

u⊤Σfgv
√

u⊤Σffu
√

v⊤Σggv
, (2)

where Wf and Wg denote the weight parameters of

the two networks, and where Σfg , Σff and Σgg are

covariance matrices computed for {f(xi),g(yi)}Ni=1

in the same way as CCA. The final feature transfor-

mation is the composition of the neural network and

CCA projection, e.g., u⊤f(x) for the first view. Al-

though DCCA does not have a closed-form solution

like linear CCA, the parameters can be learned via

gradient-based optimization, whether with batch al-

gorithms like L-BFGS as in Andrew et al. (2013)

or with a stochastic gradient descent-like approach

as we do here. In each step of our SGD-like ap-

proach, we randomly select a large subset of input

samples (mini-batch), feed them forward through

the networks, and estimate the covariance matrices

and (u,v) based on these samples, so as to obtain

a stochastic version of the gradient. We then use

these stochastic gradients to update the neural net-

work weights via backpropagation.

An alternative nonlinear extension of CCA is ker-

nel CCA (KCCA) (Lai and Fyfe, 2000; Vinokourov

et al., 2003), which introduces nonlinearity through

kernels rather than neural networks. DCCA scales

better with data size, as KCCA requires computing

the SVD of a N × N matrix, and Andrew et al.

(2013) showed that DCCA achieves better total cor-

relation on held-out data than CCA or KCCA.

3 Experiments

We use English and German as the two languages.

The monolingual input word vectors are the same

as those of (Faruqui and Dyer, 2014).1 These in-

1Thanks to Faruqui and Dyer for sharing their data.

Analysis

!   DCCA more cleanly separates synonym-antonym lists

Original CCA-1 DCCA-1 (MostBeat)

Figure 2: t-SNE visualization of synonyms (green) and antonyms (red, capitalized) of dangerous.

δd(w) − (δc(w) + δo(w)). If ∆(w) < 0, then

word pair w was closer to the human ranking using

DCCA. Table 3 shows word pairs from SimLex-999

with high human similarity ratings (≥ 7 out of 10);

column 1 shows pairs with smallest ∆ values, and

column 2 shows pairs with largest ∆ values.

Among pairs in column 1, many contain words

with several senses. Using bilingual information is

likely to focus on the most frequent sense in the bi-

text, due to our use of the most frequently-aligned

German word in each training pair. By contrast,

using only monolingual context is expected to find

an embedding that blends the contextual information

across all word senses.

Several pairs from column 2 show hypernym

rather than paraphrase relationships, e.g., author-

creator and leader-manager. Though these pairs are

rated as highly similar by annotators, linear CCA

made them less similar than the original vectors, and

DCCA made them less similar still. This matches

our intuition that bilingual information should en-

courage paraphrase-like similarity and thereby dis-

courage the similarity of hypernym-hyponym pairs.

Visualizations We visualized several synonym-

antonym word lists and often found that DCCA

more cleanly separated synonyms from antonyms

than CCA or the original vectors. An example of

the clearest improvement is shown in Fig. 2.

5 Related work

Previous work has successfully used translational

context for word representations (Diab and Resnik,

2002; Zhao et al., 2005; Täckström et al., 2012;

Bansal et al., 2012; Faruqui and Dyer, 2014), includ-

ing via hand-designed vector space models (Peirs-

man and Padó, 2010; Sumita, 2000) or via unsuper-

vised LDA and LSA (Boyd-Graber and Blei, 2009;

Zhao and Xing, 2006).

There have been other recent deep learning ap-

proaches to bilingual representations, e.g., based on

a joint monolingual and bilingual objective (Zou

et al., 2013). There has also been recent interest

in learning bilingual representations without using

word alignments (Chandar et al., 2014; Gouws et al.,

2014; Kočiskỳ et al., 2014; Vulic and Moens, 2013).

This research is also related to early examples of

learning bilingual lexicons using monolingual cor-

pora (Koehn and Knight, 2002; Haghighi et al.,

2008); the latter used CCA to find matched word

pairs. Irvine and Callison-Burch (2013) used a su-

pervised learning method with multiple monolingual

signals. Finally, other work on CCA and spectral

methods has been used in the context of other types

of views (Collobert and Weston, 2008; Dhillon et al.,

2011; Klementiev et al., 2012; Chang et al., 2013).

6 Conclusion

We have demonstrated how bilingual information

can be incorporated into word embeddings via deep

canonical correlation analysis (DCCA). The DCCA

embeddings consistently outperform linear CCA

embeddings on word and bigram similarity tasks.

Future work could compare DCCA to other non-

linear approaches discussed in §5, compare differ-

ent languages as multiview context, and extend to

aligned phrase pairs, and to unaligned data.

Acknowledgments

We are grateful to Manaal Faruqui for sharing re-

sources, and to Chris Dyer, David Sontag, Lyle Un-

gar, and anonymous reviewers for helpful input.

Deep-CCA

!   2 DNNs f, g extract features from the 2 input views x and y

!   DNNs are trained to maximize output linear correlation of 2 views

!   DNN weights and linear projections optimized together:

!   Covariance matrices computed for , as in CCA

!   Mini-batch SGD: Feed-forward a sample to estimate (u, v) and

gradient and then update NN weights via back-propagation

word�vector�2
English German

word�vector�1

View 1

V
ie

w
2

u v

f g

foul
foul

awful

ugly

pretty

charming

cute

gorgeous

marvelous

magnificent

elegant

splendidhidous

beastly
grotesque

horrid

schrecklichen

hässliche

ziemlich

bezaubernder

clever
blondenwunderbaren

großartige
elegante

hervorragende

abscheulichen

gebot
grotesk

aufzuklären

Figure 1: Illustration of deep CCA.

transformations of each view via deep networks.

2.1 Canonical Correlation Analysis

A popular method for multi-view representation

learning is canonical correlation analysis (CCA;

Hotelling, 1936). Its objective is to find two vec-

tors u ∈ RDx and v ∈ RDy such that projections

of the two views onto these vectors are maximally

(linearly) correlated:

max
u∈RDx ,v∈RDy

E
[

(u⊤x)(v⊤y)
]

√

E [(u⊤x)2]
√

E [(v⊤y)2]

=
u⊤Σxyv

√

u⊤Σxxu
√

v⊤Σyyv
(1)

where Σxy and Σxx are the cross-view and within-

view covariance matrices. (1) is extended to learn-

ing multi-dimensional projections by optimizing the

sum of correlations in all dimensions, subject to

different projected dimensions being uncorrelated.

Given sample pairs {(xi,yi)}Ni=1
, the empirical es-

timates of the covariance matrices are Σ̂xx =
1

N

∑N
i=1

xix
⊤
i + rxI, Σ̂yy = 1

N

∑N
i=1

yiy
⊤
i + ryI

and Σ̂xy = 1

N

∑N
i=1

xiy
⊤
i where (rx, ry) > 0 are

regularization parameters (Hardoon et al., 2004;

De Bie and De Moor, 2003). Then the optimal k-

dimensional projection mappings are given in closed

form via the rank-k singular value decomposition

(SVD) of the Dx×Dy matrix Σ̂
−1/2
xx Σ̂xyΣ̂

−1/2
yy . In a

latent variable model interpretation of CCA, the pro-

jections reconstruct the latent variables that generate

both views (Bach and Jordan, 2005).

2.2 Deep Canonical Correlation Analysis

A linear feature mapping is often not sufficiently

powerful to faithfully capture the hidden, non-linear

relationships within the data. Recently, Andrew et

al. (2013) proposed a nonlinear extension of CCA

using deep neural networks, dubbed deep canonical

correlation analysis (DCCA) and illustrated in Fig-

ure 1. In this model, two (possibly deep) neural

networks f and g are used to extract features from

each view, and trained to maximize the correlations

between outputs in the two views, measured by a

linear CCA step with projection mappings (u,v).
The neural network weights and the linear projec-

tions are optimized together using the objective

max
Wf ,Wg,u,v

u⊤Σfgv
√

u⊤Σffu
√

v⊤Σggv
, (2)

where Wf and Wg denote the weight parameters of

the two networks, and where Σfg , Σff and Σgg are

covariance matrices computed for {f(xi),g(yi)}Ni=1

in the same way as CCA. The final feature transfor-

mation is the composition of the neural network and

CCA projection, e.g., u⊤f(x) for the first view. Al-

though DCCA does not have a closed-form solution

like linear CCA, the parameters can be learned via

gradient-based optimization, whether with batch al-

gorithms like L-BFGS as in Andrew et al. (2013)

or with a stochastic gradient descent-like approach

as we do here. In each step of our SGD-like ap-

proach, we randomly select a large subset of input

samples (mini-batch), feed them forward through

the networks, and estimate the covariance matrices

and (u,v) based on these samples, so as to obtain

a stochastic version of the gradient. We then use

these stochastic gradients to update the neural net-

work weights via backpropagation.

An alternative nonlinear extension of CCA is ker-

nel CCA (KCCA) (Lai and Fyfe, 2000; Vinokourov

et al., 2003), which introduces nonlinearity through

kernels rather than neural networks. DCCA scales

better with data size, as KCCA requires computing

the SVD of a N × N matrix, and Andrew et al.

(2013) showed that DCCA achieves better total cor-

relation on held-out data than CCA or KCCA.

3 Experiments

We use English and German as the two languages.

The monolingual input word vectors are the same

as those of (Faruqui and Dyer, 2014).1 These in-

1Thanks to Faruqui and Dyer for sharing their data.

[Andrew et al., 2013]

word�vector�2
English German

word�vector�1

View 1

V
ie

w
2

u v

f g

foul
foul

awful

ugly

pretty

charming

cute

gorgeous

marvelous

magnificent

elegant

splendidhidous

beastly
grotesque

horrid

schrecklichen

hässliche

ziemlich

bezaubernder

clever
blondenwunderbaren

großartige
elegante

hervorragende

abscheulichen

gebot
grotesk

aufzuklären

Figure 1: Illustration of deep CCA.

transformations of each view via deep networks.

2.1 Canonical Correlation Analysis

A popular method for multi-view representation

learning is canonical correlation analysis (CCA;

Hotelling, 1936). Its objective is to find two vec-

tors u ∈ RDx and v ∈ RDy such that projections

of the two views onto these vectors are maximally

(linearly) correlated:

max
u∈RDx ,v∈RDy

E
[

(u⊤x)(v⊤y)
]

√

E [(u⊤x)2]
√

E [(v⊤y)2]

=
u⊤Σxyv

√

u⊤Σxxu
√

v⊤Σyyv
(1)

where Σxy and Σxx are the cross-view and within-

view covariance matrices. (1) is extended to learn-

ing multi-dimensional projections by optimizing the

sum of correlations in all dimensions, subject to

different projected dimensions being uncorrelated.

Given sample pairs {(xi,yi)}Ni=1
, the empirical es-

timates of the covariance matrices are Σ̂xx =
1

N

∑N
i=1

xix
⊤
i + rxI, Σ̂yy = 1

N

∑N
i=1

yiy
⊤
i + ryI

and Σ̂xy = 1

N

∑N
i=1

xiy
⊤
i where (rx, ry) > 0 are

regularization parameters (Hardoon et al., 2004;

De Bie and De Moor, 2003). Then the optimal k-

dimensional projection mappings are given in closed

form via the rank-k singular value decomposition

(SVD) of the Dx×Dy matrix Σ̂
−1/2
xx Σ̂xyΣ̂

−1/2
yy . In a

latent variable model interpretation of CCA, the pro-

jections reconstruct the latent variables that generate

both views (Bach and Jordan, 2005).

2.2 Deep Canonical Correlation Analysis

A linear feature mapping is often not sufficiently

powerful to faithfully capture the hidden, non-linear

relationships within the data. Recently, Andrew et

al. (2013) proposed a nonlinear extension of CCA

using deep neural networks, dubbed deep canonical

correlation analysis (DCCA) and illustrated in Fig-

ure 1. In this model, two (possibly deep) neural

networks f and g are used to extract features from

each view, and trained to maximize the correlations

between outputs in the two views, measured by a

linear CCA step with projection mappings (u,v).
The neural network weights and the linear projec-

tions are optimized together using the objective

max
Wf ,Wg,u,v

u⊤Σfgv
√

u⊤Σffu
√

v⊤Σggv
, (2)

where Wf and Wg denote the weight parameters of

the two networks, and where Σfg , Σff and Σgg are

covariance matrices computed for {f(xi),g(yi)}Ni=1

in the same way as CCA. The final feature transfor-

mation is the composition of the neural network and

CCA projection, e.g., u⊤f(x) for the first view. Al-

though DCCA does not have a closed-form solution

like linear CCA, the parameters can be learned via

gradient-based optimization, whether with batch al-

gorithms like L-BFGS as in Andrew et al. (2013)

or with a stochastic gradient descent-like approach

as we do here. In each step of our SGD-like ap-

proach, we randomly select a large subset of input

samples (mini-batch), feed them forward through

the networks, and estimate the covariance matrices

and (u,v) based on these samples, so as to obtain

a stochastic version of the gradient. We then use

these stochastic gradients to update the neural net-

work weights via backpropagation.

An alternative nonlinear extension of CCA is ker-

nel CCA (KCCA) (Lai and Fyfe, 2000; Vinokourov

et al., 2003), which introduces nonlinearity through

kernels rather than neural networks. DCCA scales

better with data size, as KCCA requires computing

the SVD of a N × N matrix, and Andrew et al.

(2013) showed that DCCA achieves better total cor-

relation on held-out data than CCA or KCCA.

3 Experiments

We use English and German as the two languages.

The monolingual input word vectors are the same

as those of (Faruqui and Dyer, 2014).1 These in-

1Thanks to Faruqui and Dyer for sharing their data.

Syntactic Dependency Embeddings

[Bansal et al., ACL 2014; Levy & Goldberg, ACL 2014]

Syntactically-tailored Embeddings

!   Syntactic context (SKIPDEP)

!   Condition on dependency context instead of linear

!   First parse a large corpus with baseline parser:

… said that the regulation of the internet is …

NMOD! PMOD!

(child)!(parent)!(grandparent)!

(dep label)!
Syntactically-tailored Embeddings

dep label! dep label!grandparent! parent! child!

[PMOD<L> regulation<G> of internet PMOD<L>]

context windows

!   Syntactic context (SKIPDEP)

!   Condition on dependency context instead of linear

!   Then convert each dependency to a tuple:

Auxiliary Knowledge via Multi-Task Learning
•  MTL: Paradigm to improve generalization performance of a task using related tasks.

•  The multiple tasks are learned in parallel (alternating optimization mini-batches) while
using shared model representations/parameters.

•  Each task benefits from extra information in the training signals of related tasks.

•  Useful survey+blog by Sebastian Ruder for details of diverse MTL papers!

[Caruana, 1998; Argyriou et al., 2007; Kumar and Daume, 2012; Luong et al., 2016; Ruder, 2017]

Auxiliary Knowledge in Language Generation
•  Multi-Task & Reinforcement Learning for Entailment+Saliency Knowledge/Control in NLG (Video

Captioning, Document Summarization, and Sentence Simplification)

Document: top activists arrested after last month 's anti-
government rioting are in good condition , a red cross
official said saturday .	
Ground-truth: arrested activists in good condition says red
cross	
SotA Baseline: red cross says it is good condition after riots	
Our model: red cross says detained activists in good
condition	

Document: canada 's prime minister has dined on seal meat
in a gesture of support for the sealing industry .	
Ground-truth: canadian pm has seal meat	
SotA Baseline: canadian pm says seal meat is a matter of
support	
Our model: canada 's prime minister dines with seal meat	

Auxiliary Knowledge in Language Generation

[Pasunuru and Bansal, ACL 2017 (Outstanding Paper Award)]

•  Many-to-Many Multi-Task Learning for Video Captioning (with Video and Entailment Generation)

UNSUPERVISED
VIDEO PREDICTION

VIDEO CAPTIONING
ENTAILMENT
GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Auxiliary Knowledge in Language Generation
•  Reverse Multi-Task Benefits: Improved Entailment Generation

(a) (b) (c)

Figure 5: Examples of generated video captions on the YouTube2Text dataset: (a) complex examples where the multi-task
model performs better than the baseline; (b) ambiguous examples (i.e., ground truth itself confusing) where multi-task model
still correctly predicts one of the possible categories (c) complex examples where both models perform poorly.

Relevance Coherence
Not Distinguishable 70.7% 92.6%
SotA Baseline Wins 12.3% 1.7%
Multi-Task Wins (M-to-M) 17.0% 5.7%

Table 5: Human evaluation on YouTube2Text video caption-
ing.

Relevance Coherence
Not Distinguishable 84.6% 98.3%
SotA Baseline Wins 6.7% 0.7%
Multi-Task Wins (M-to-1) 8.7% 1.0%

Table 6: Human evaluation on entailment generation.

the multi-task models are always better than the
strongest baseline for both video captioning and
entailment generation, on both relevance and co-
herence, and with similar improvements (2-7%) as
the automatic metrics (shown in Table 1).

5.5 Analysis

Fig. 5 shows video captioning generation re-
sults on the YouTube2Text dataset where our fi-
nal M-to-M multi-task model is compared with
our strongest attention-based baseline model for
three categories of videos: (a) complex examples
where the multi-task model performs better than

Given Premise Generated
Entailment

a man on stilts is playing a tuba for
money on the boardwalk

a man is playing
an instrument

a child that is dressed as spiderman
is ringing the doorbell

a child is dressed
as a superhero

several young people sit at a table
playing poker

people are play-
ing a game

a woman in a dress with two chil-
dren

a woman is wear-
ing a dress

a blue and silver monster truck mak-
ing a huge jump over crushed cars

a truck is being
driven

Table 7: Examples of our multi-task model’s generated en-
tailment hypotheses given a premise.

the baseline; (b) ambiguous examples (i.e., ground
truth itself confusing) where multi-task model still
correctly predicts one of the possible categories
(c) complex examples where both models perform
poorly. Overall, we find that the multi-task model
generates captions that are better at both temporal
action prediction and logical entailment (i.e., cor-
rect subset of full video premise) w.r.t. the ground
truth captions. The supplementary also provides
ablation examples of improvements by the 1-to-M
video prediction based multi-task model alone, as
well as by the M-to-1 entailment based multi-task
model alone (over the baseline).

On analyzing the cases where the baseline is
better than the final M-to-M multi-task model, we
find that these are often scenarios where the multi-
task model’s caption is also correct but the base-
line caption is a bit more specific, e.g., “a man is
holding a gun” vs “a man is shooting a gun”.

Finally, Table 7 presents output examples of our
entailment generation multi-task model (Sec. 5.3),
showing how the model accurately learns to pro-
duce logically implied subsets of the premise.

6 Conclusion

We presented a multimodal, multi-task learning
approach to improve video captioning by incor-
porating temporally and logically directed knowl-
edge via video prediction and entailment genera-
tion tasks. We achieve the best reported results
(and rank) on three datasets, based on multiple au-
tomatic and human evaluations. We also show mu-
tual multi-task improvements on the new entail-
ment generation task. In future work, we are ap-
plying our entailment-based multi-task paradigm

[Pasunuru and Bansal, ACL 2017 (Outstanding Paper Award)]

Auxiliary Knowledge in Language Generation

[Pasunuru and Bansal, EMNLP 2017]

•  RL Reward = Entailment-corrected phrase-matching metrics such as CIDEr ! CIDEnt

•  Penalize phrase-matching metric when entailment score is very low

•  Entailment Scorer Details:

•  SotA decomposable-attention model of Parikh et al. (2016) trained on SNLI corpus (>90% accurate)
•  Ground-truth as premise and sampled word sequence as hypothesis
•  Max. of class=entailment probability over multiple ground-truths is used as final entailment score

MIXER with CIDEnt

Ent

CIDEr

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

...

... ...

...

CIDEnt

RewardXENT RL

42	

•  Penalize phrase-matching metric when entailment score is very low

•  Entailment Scorer Details:

•  SotA decomposable-attention model of Parikh et al. (2016) trained on SNLI corpus (>90% accurate)
•  Ground-truth as premise and sampled word sequence as hypothesis
•  Max. of class=entailment probability over multiple ground-truths is used as final entailment score

MIXER with CIDEnt

Ent

CIDEr

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

...

... ...

...

CIDEnt

RewardXENT RL

42	

Auxiliary Knowledge in Language Generation

[Guo, Pasunuru, and Bansal, ACL 2018; Pasunuru and Bansal, NAACL 2018]

•  Multi-Task & Reinforcement Learning with Entailment+Saliency Knowledge for Summarization

Figure 1: Our sequence generator with RL training.

the non-differentiable evaluation metric as reward
while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-Reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.
LRL1 = �(r1(w

s
)� r1(w

a
))r✓ log p✓(w

s
)

LRL2 = �(r2(w
s
)� r2(w

a
))r✓ log p✓(w

s
)

(2)

4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.

John is playing with a dog

1

0

0

1

1

0

0

1

0

1

1

0

Figure 2: Overview of our saliency predictor model.

Saliency Reward ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Reward A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our

LSTM SAMPLER ARG-MAX

Reward

Reward

R
L Loss

Figure 1: Our sequence generator with RL training.

the non-differentiable evaluation metric as reward
while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-Reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.
LRL1 = �(r1(w

s
)� r1(w

a
))r✓ log p✓(w

s
)

LRL2 = �(r2(w
s
)� r2(w

a
))r✓ log p✓(w

s
)

(2)

4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.

Figure 2: Overview of our saliency predictor model.

Saliency Reward ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Reward A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our

Auxiliary Knowledge in Language Generation

[Guo, Pasunuru, and Bansal, ACL 2018; Pasunuru and Bansal, NAACL 2018]

Input Document: celtic have written to the scottish football association in order to gain an ‘understanding’ of the refereeing decisions
during their scottish cup semi-final defeat by inverness on sunday . the hoops were left outraged by referee steven mclean ’s failure to
award a penalty or red card for a clear handball in the box by josh meekings to deny leigh griffith ’s goal-bound shot during the first-half .
caley thistle went on to win the game 3-2 after extra-time and denied rory delia ’s men the chance to secure a domestic treble this season .
celtic striker leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings . ……after the restart for scything
down marley watkins in the area . greg tansey duly converted the resulting penalty . edward ofere then put caley thistle ahead , only for
john guidetti to draw level for the bhoys . with the game seemingly heading for penalties , david raven scored the winner on 117 minutes ,
breaking thousands of celtic hearts . celtic captain scott brown -lrb- left -rrb- protests to referee steven mclean but the handball goes
unpunished . griffiths shows off his acrobatic skills during celtic ’s eventual surprise defeat by inverness . celtic pair aleksandar tonev -lrb-
left -rrb- and john guidetti look dejected as their hopes of a domestic treble end .	
	

Ground-truth Summary: celtic were defeated 3-2 after extra-time in the scottish cup semi-final . leigh griffiths had a goal-bound shot
blocked by a clear handball. however, no action was taken against offender josh meekings. the hoops have written the sfa for an
‘understanding’ of the decision . 	
	

See et al. (2017): john hartson was once on the end of a major hampden injustice while playing for celtic . but he can not see any point in
his old club writing to the scottish football association over the latest controversy at the national stadium . hartson had a goal wrongly
disallowed for offside while celtic were leading 1-0 at the time but went on to lose 3-2 . 	
	

Our Baseline: john hartson scored the late winner in 3-2 win against celtic . celtic were leading 1-0 at the time but went on to lose 3-2 .
some fans have questioned how referee steven mclean and additional assistant alan muir could have missed the infringement . 	
	

Our Multi-task Summary: celtic have written to the scottish football association in order to gain an ‘ understanding ’ of the refereeing
decisions . the hoops were left outraged by referee steven mclean ’s failure to award a penalty or red card for a clear handball in the box by
josh meekings . celtic striker leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings .	

Auxiliary Knowledge in Language Generation

[Guo, Pasunuru, and Bansal, COLING 2018 (Area Chair Favorites)]

•  Dynamic-Curriculum MTL with Entailment+Paraphrase Knowledge for Sentence Simplification

Code: https://github.com/HanGuo97/MultitaskSimplification 	

AutoSeM: Automatic Auxiliary Task Selection+Mixing

[Guo, Pasunuru, and Bansal, NAACL 2019]

Code: https://github.com/HanGuo97/AutoSeM 	

Left: the multi-armed bandit controller used for task selection, where each arm represents a candidate auxiliary task. The agent
iteratively pulls an arm, observes a reward, updates its estimates of the arm parameters, and samples the next arm. Right: the
Gaussian Process controller used for automatic mixing ratio (MR) learning. The GP controller sequentially makes a choice of mixing
ratio, observes a reward, updates its estimates, and selects the next mixing ratio to try, based on the full history of past observations.

Task
Utility

Gaussian Process

MR-1

Multi-Armed
Bandit Controller

Arm1 Arm2 Arm3 Arm4 Arm5 Arm6

Primary
Task

Sampled
Task

MR-2
MR-3

FeedbackSample

Next
Sample

Next
Sample

Mixing Ratios

Figure 2: Overview of our AUTOSEM framework. Left: the multi-armed bandit controller used for task selection,
where each arm represents a candidate auxiliary task. The agent iteratively pulls an arm, observes a reward, updates
its estimates of the arm parameters, and samples the next arm. Right: the Gaussian Process controller used for
automatic mixing ratio (MR) learning. The GP controller sequentially makes a choice of mixing ratio, observes a
reward, updates its estimates, and selects the next mixing ratio to try, based on the full history of past observations.

our single-task learning baseline (see Sec. 3.1)
into multi-task learning model by augmenting the
model with N projection layers while sharing the
rest of the model parameters across these N tasks
(see Fig. 1). We employ MTL training of these
tasks in alternate mini-batches based on a mixing
ratio ⌘1:⌘2:..⌘N , similar to previous work (Luong
et al., 2015), where we optimize ⌘i mini-batches
of task i and go to the next task.

In MTL, choosing the appropriate auxiliary
tasks and properly tuning the mixing ratio can be
important for the performance of multi-task mod-
els. The naive way of trying all combinations of
task selections is hardly tractable. To solve this is-
sue, we propose AUTOSEM, a two-stage pipeline
in the next section. In the first stage, we automat-
ically find the relevant auxiliary tasks (out of the
given N � 1 options) which improve the perfor-
mance of the primary task. After finding the rel-
evant auxiliary tasks, in the second stage, we take
these selected tasks along with the primary task
and automatically learn their training mixing ratio.

3.3 Automatic Task Selection: Multi-Armed
Bandit with Thompson Sampling

Tuning the mixing ratio for N tasks in MTL be-
comes exponentially harder as the number of aux-
iliary tasks grows very large. However, in most
circumstances, only a small number of these aux-
iliary tasks are useful for improving the primary
task at hand. Manually searching for this optimal
choice of relevant tasks is intractable. Hence, in
this work, we present a method for automatic task
selection via multi-armed bandits with Thompson
Sampling (see the left side of Fig. 2).

Let {a1, ..., aN} represent the set of N arms
(corresponding to the set of tasks {D1, ..., DN})
of the bandit controller in our multi-task setting,
where the controller selects a sequence of ac-
tions/arms over the current training trajectory to
maximize the expected future payoff. At each
round tb, the controller selects an arm based on
the noisy value estimates and observes rewards rtb
for the selected arm. Let ✓k 2 [0, 1] be the utility
(usefulness) of task k. Initially, the agent begins
with an independent prior belief over ✓k. We take
these priors to be Beta-distributed with parameters
↵k and �k, and the prior probability density func-
tion of ✓k is:

p(✓k) =
�(↵k + �k)

�(↵k)�(�k)
✓

↵k�1
k (1� ✓k)

�k�1 (2)

where � denotes the gamma function. We for-
mulate the reward rtb 2 {0, 1} at round tb as a
Bernoulli variable, where an action k produces a
reward of 1 with a chance of ✓k and a reward of 0
with a chance of 1� ✓k. The true utility of task k,
i.e., ✓k, is unknown, and may or may not change
over time (based on stationary vs. non-stationary
of task utility). We define the reward as whether
sampling the task k improves (or maintains) the
validation metric of the primary task,

rtb =

(
1, if Rtb � Rtb�1

0, otherwise
(3)

where Rtb represents the validation perfor-
mance of the primary task at time tb. With our
reward setup above, the utility of each task (✓k)
can be intuitively interpreted as the probability

Automatic Auxiliary Task Selection

[Chapelle & Li, 2011; Russo et al., 2018; Guo, Pasunuru, and Bansal, NAACL 2019] !17 Russo et al., 2018; Chapelle and Li, 2011

Auxiliary Task Selection

Prior Knowledge

Action

Observation

Beta
Distribution

Bernoulli Variable

Thompson Sampling

Bayesian Update

Train

Automatic Auxiliary Task Selection

[Chapelle & Li, 2011; Russo et al., 2018; Guo, Pasunuru, and Bansal, NAACL 2019]
!20

Task
Utility

Gaussian Process

MR-1

Multi-Armed
Bandit Controller

Arm1 Arm2 Arm3 Arm4 Arm5 Arm6

Primary
Task

Sampled
Task

MR-2
MR-3

FeedbackSample

Next
Sample

Next
Sample

Mixing Ratios

Russo et al., 2018; Chapelle and Li, 2011

Reward history

Auxiliary Task Selection

Automatic Mixing Ratio Curriculum Learning

[Rasmussen, 2004; Snoek et al., 2012; Shahriari et al., 2016; Guo, Pasunuru, and Bansal, NAACL 2019] !24

Task
Utility

Gaussian Process

MR-1

Multi-Armed
Bandit Controller

Arm1 Arm2 Arm3 Arm4 Arm5 Arm6

Primary
Task

Sampled
Task

MR-2
MR-3

FeedbackSample

Next
Sample

Next
Sample

Mixing Ratios

Rasmussen, 2004; Snoek et al., 2012; Shahriari et al., 2016

Mixing Ratio Learning

along with the primary task.2 Manual tuning
of this mixing ratio via a large grid search over
the hyperparameter values is very time and com-
pute expensive (even when the number of selected
auxiliary tasks is small, e.g., 2 or 3). Thus,
in our second stage, we instead apply a non-
parametric Bayesian approach to search for the
approximately-optimal mixing ratio. In particular,
we use a ‘Gaussian Process’ to sequentially search
for the mixing ratio by trading off exploitation and
exploration automatically. Next, we describe our
Gaussian Process approach in detail.

A Gaussian Process (Rasmussen, 2004; Snoek
et al., 2012; Shahriari et al., 2016), GP(µ0, k),
is a non-parametric model that is fully charac-
terized by a mean function µ0 : X 7! R and
a positive-definite kernel or covariance function
k : X ⇥ X 7! R. Let x1,x2, ...,xn denote any
finite collections of n points, where each xi rep-
resents a choice of the mixing ratio (i.e., the ra-
tio ⌘1:⌘2:..⌘N described in Sec. 3.2), and fi =

f(xi) is the (unknown) function values evaluated
at xi (true performance of the model given the se-
lected mixing ratio). Let y1, y2, ..., yn be the cor-
responding noisy observations (the validation per-
formance at the end of training). In the context
of GP Regression (GPR), f = {f1, ..., fn} are as-
sumed to be jointly Gaussian (Rasmussen, 2004),
i.e., f |X ⇠ N (m,K), where, mi = µ0(xi)

is the mean vector, and Ki,j = k(xi,xj) is the
covariance matrix. Then the noisy observations
y = y1, ..., yn are normally distributed around f

as follows: y|f ⇠ N (f ,�

2
I).

Given D = (x1, y1), ..., (xn0 , yn0), the set of
random initial observations, where xi represents a
mixing ratio and yi represents the corresponding
model’s validation performance. Next, we model
the GP based on these initial observations as de-
scribed above. We sample a next point xn0+1 (a
mixing ratio in our case) from this GP and get its
corresponding model performance yn0+1, and up-
date the GP again by now considering the n0 + 1

points (Rasmussen, 2004). We continue this pro-
cess for a fixed number of steps. Next, we will
discuss how we perform the sampling (based on
acquisition functions) and the kernels used for cal-

2Note that ideally Gaussian Process can also learn to set
the mixing ratio of less important tasks to zero, hence allow-
ing it to essentially also perform the task selection step. How-
ever, in practice, first applying our task selection Thompson-
Sampling model (Sec. 3.3) allows GP to more efficiently
search the mixing ratio space for the small number of filtered
auxiliary tasks, as shown in results of Sec. 6.1.

culating the covariance.

Acquisition Functions Here, we describe the
acquisition functions for deciding where to sam-
ple next. While one could select the points that
maximize the mean function, this does not al-
ways lead to the best outcome (Hoffman et al.,
2011). Since we also have the variance of the
estimates along with the mean value of each
point xi, we can incorporate this information
into the optimization. In this work, we use
the GP-Hedge approach (Hoffman et al., 2011;
Auer et al., 1995), which probabilistically chooses
one of three acquisition functions: probability
of improvement, expected improvement, and up-
per confidence bound. Probability of improve-
ment acquisition functions measure the probabil-
ity that the sampled mixing ratio xi leads to an
improvement upon the best observed value so far
(⌧), P(f(xi) > ⌧). Expected improvement addi-
tionally incorporates the amount of improvement,
E[(f(xi) � ⌧)I(f(xi) > ⌧)]. The Gaussian Pro-
cess upper confidence bound (GP-UCB) algorithm
measures the optimistic performance upper bound
of the sampled mixing ratio (Srinivas et al., 2009),
µi(xi) + ��i(xi), for some hyper-parameter �.

Matern Kernel The covariance function (or ker-
nel) defines the nearness or similarity of two points
in the Gaussian Process. Here, we use the auto-
matic relevance determination (ARD) Matern ker-
nel (Rasmussen, 2004), which is parameterized by
⌫ > 0 that controls the level of smoothness. In
particular, samples from a GP with such a kernel
are differentiable b⌫ � 1c times. When ⌫ is half-
integer (i.e. ⌫ = p+ 1/2 for non-negative integer
p), the covariance function is a product of an expo-
nential and a polynomial of order p. In the context
of machine learning, usual choices of ⌫ include
3/2 and 5/2 (Shahriari et al., 2016).

4 Experiment Setup

Datasets: We evaluate our models on several
datasets from the GLUE benchmark (Wang et al.,
2018): RTE, QNLI, MRPC, SST-2, and CoLA.
For all these datasets, we use the standard splits
provided by Wang et al. (2018). For dataset de-
tails, we refer the reader to the GLUE paper.3

3We did not include the remaining tasks as primary tasks,
because STS-B is a regression task; MNLI is a very large
dataset and does not benefit much from MTL with other tasks
in the GLUE benchmark; and QQP and WNLI have dev/test
discrepancies and adversarial label issues as per the GLUE

along with the primary task.2 Manual tuning
of this mixing ratio via a large grid search over
the hyperparameter values is very time and com-
pute expensive (even when the number of selected
auxiliary tasks is small, e.g., 2 or 3). Thus,
in our second stage, we instead apply a non-
parametric Bayesian approach to search for the
approximately-optimal mixing ratio. In particular,
we use a ‘Gaussian Process’ to sequentially search
for the mixing ratio by trading off exploitation and
exploration automatically. Next, we describe our
Gaussian Process approach in detail.

A Gaussian Process (Rasmussen, 2004; Snoek
et al., 2012; Shahriari et al., 2016), GP(µ0, k),
is a non-parametric model that is fully charac-
terized by a mean function µ0 : X 7! R and
a positive-definite kernel or covariance function
k : X ⇥ X 7! R. Let x1,x2, ...,xn denote any
finite collections of n points, where each xi rep-
resents a choice of the mixing ratio (i.e., the ra-
tio ⌘1:⌘2:..⌘N described in Sec. 3.2), and fi =

f(xi) is the (unknown) function values evaluated
at xi (true performance of the model given the se-
lected mixing ratio). Let y1, y2, ..., yn be the cor-
responding noisy observations (the validation per-
formance at the end of training). In the context
of GP Regression (GPR), f = {f1, ..., fn} are as-
sumed to be jointly Gaussian (Rasmussen, 2004),
i.e., f |X ⇠ N (m,K), where, mi = µ0(xi)

is the mean vector, and Ki,j = k(xi,xj) is the
covariance matrix. Then the noisy observations
y = y1, ..., yn are normally distributed around f

as follows: y|f ⇠ N (f ,�

2
I).

Given D = (x1, y1), ..., (xn0 , yn0), the set of
random initial observations, where xi represents a
mixing ratio and yi represents the corresponding
model’s validation performance. Next, we model
the GP based on these initial observations as de-
scribed above. We sample a next point xn0+1 (a
mixing ratio in our case) from this GP and get its
corresponding model performance yn0+1, and up-
date the GP again by now considering the n0 + 1

points (Rasmussen, 2004). We continue this pro-
cess for a fixed number of steps. Next, we will
discuss how we perform the sampling (based on
acquisition functions) and the kernels used for cal-

2Note that ideally Gaussian Process can also learn to set
the mixing ratio of less important tasks to zero, hence allow-
ing it to essentially also perform the task selection step. How-
ever, in practice, first applying our task selection Thompson-
Sampling model (Sec. 3.3) allows GP to more efficiently
search the mixing ratio space for the small number of filtered
auxiliary tasks, as shown in results of Sec. 6.1.

culating the covariance.

Acquisition Functions Here, we describe the
acquisition functions for deciding where to sam-
ple next. While one could select the points that
maximize the mean function, this does not al-
ways lead to the best outcome (Hoffman et al.,
2011). Since we also have the variance of the
estimates along with the mean value of each
point xi, we can incorporate this information
into the optimization. In this work, we use
the GP-Hedge approach (Hoffman et al., 2011;
Auer et al., 1995), which probabilistically chooses
one of three acquisition functions: probability
of improvement, expected improvement, and up-
per confidence bound. Probability of improve-
ment acquisition functions measure the probabil-
ity that the sampled mixing ratio xi leads to an
improvement upon the best observed value so far
(⌧), P(f(xi) > ⌧). Expected improvement addi-
tionally incorporates the amount of improvement,
E[(f(xi) � ⌧)I(f(xi) > ⌧)]. The Gaussian Pro-
cess upper confidence bound (GP-UCB) algorithm
measures the optimistic performance upper bound
of the sampled mixing ratio (Srinivas et al., 2009),
µi(xi) + ��i(xi), for some hyper-parameter �.

Matern Kernel The covariance function (or ker-
nel) defines the nearness or similarity of two points
in the Gaussian Process. Here, we use the auto-
matic relevance determination (ARD) Matern ker-
nel (Rasmussen, 2004), which is parameterized by
⌫ > 0 that controls the level of smoothness. In
particular, samples from a GP with such a kernel
are differentiable b⌫ � 1c times. When ⌫ is half-
integer (i.e. ⌫ = p+ 1/2 for non-negative integer
p), the covariance function is a product of an expo-
nential and a polynomial of order p. In the context
of machine learning, usual choices of ⌫ include
3/2 and 5/2 (Shahriari et al., 2016).

4 Experiment Setup

Datasets: We evaluate our models on several
datasets from the GLUE benchmark (Wang et al.,
2018): RTE, QNLI, MRPC, SST-2, and CoLA.
For all these datasets, we use the standard splits
provided by Wang et al. (2018). For dataset de-
tails, we refer the reader to the GLUE paper.3

3We did not include the remaining tasks as primary tasks,
because STS-B is a regression task; MNLI is a very large
dataset and does not benefit much from MTL with other tasks
in the GLUE benchmark; and QQP and WNLI have dev/test
discrepancies and adversarial label issues as per the GLUE

Kernel: Matern Kernel
Acquisition Function: Hedge

Mixing Ratio

Performance

Multi-Task
Model

Visualization of Stage-1 Task Selection

[Guo, Pasunuru, and Bansal, NAACL 2019]

Visualization of Stage-1

!36

Visualization of task utility
estimates from the multi-
armed bandit controller on
SST-2 (primary task). The x-
axis represents the task utility,
and the y- axis represents the
corresponding probability
density. Each curve
corresponds to a task and the
bar corresponds to their
confidence interval.

Commonsense in Generative Q&A Reasoning

[Bauer, Wang, and Bansal, EMNLP 2018]

"What is the connection
between Esther and Lady
Dedlock?"

"Mother and daughter."

"Sir Leicester Dedlock and his
wife Lady Honoria live on his
estate at Chesney Wold.."

"..Unknown to Sir Leicester,
Lady Dedlock had a lover ..
before she married and had a
daughter with him.."

"..Lady Dedlock believes her
daughter is dead. The
daughter, Esther, is in fact
alive.."

"..Esther sees Lady Dedlock at
church and talks with her later
at Chesney Wod though neither
woman recognizes their
connection.."

2c

lady

1c 3c 4c 5c1r 2r 3r 4r

Context

AnswersQuestion

ConceptNet

wife marry

mother daughter child

church house child their

person lover

"Mother and illegitimate
child."

Figure 2: Commonsense selection approach.

↵̂
i

=

exp(↵
i

)P
n

j=1 exp(↵j

)

a

t

=

nX

i=1

↵̂
i

c

i

We utilize a pointer mechanism that allows the
decoder to directly copy tokens from the context
based on ↵̂

i

. We calculate a selection distribution
p

sel 2 R2, where psel1 is the probability of gener-
ating a token from P

gen

and psel2 is the probability
of copying a word from the context:

o = �(W
a

a

t

+W
x

x

t

+W
s

s

t

+ b
ptr

)

p

sel

= softmax(o)

Our final output distribution at timestep t is a
weighted sum of the generative distribution and
the copy distribution:

P
t

(w) = psel1 P
gen

(w) + psel2

X

i:wC
i =w

↵̂
i

3.2 Commonsense Selection and
Representation

In QA tasks that require multiple hops of reason-
ing, the model often needs knowledge of relations
not directly stated in the context to reach the cor-
rect conclusion. In the datasets we consider, man-
ual analysis shows that external knowledge is fre-
quently needed for inference (see Table 1).

Even with a large amount of training data, it
is very unlikely that a model is able to learn ev-
ery nuanced relation between concepts and ap-
ply the correct ones (as in Fig. 2) when reasoning

Dataset Outside Knowledge Required

WikiHop 11%
NarrativeQA 42%

Table 1: Qualitative analysis of commonsense require-
ments. WikiHop results are from Welbl et al. (2018);
NarrativeQA results are from our manual analysis (on
the validation set).

about a question. We remedy this issue by intro-
ducing grounded commonsense (background) in-
formation using relations between concepts from
ConceptNet (Speer and Havasi, 2012)1 that help
inference by introducing useful connections be-
tween concepts in the context and question.

Due to the size of the semantic network and
the large amount of unnecessary information, we
need an effective way of selecting relations which
provides novel information while being grounded
by the context-query pair. Our commonsense se-
lection strategy is twofold: (1) collect potentially
relevant concepts via a tree construction method
aimed at selecting with high recall candidate rea-
soning paths, and (2) rank and filter these paths to
ensure both the quality and variety of added infor-
mation via a 3-step scoring strategy (initial node
scoring, cumulative node scoring, and path selec-
tion). We will refer to Fig. 2 as a running example
throughout this section.2

3.2.1 Tree Construction
Given context C and question Q, we want to con-
struct paths grounded in the pair that emulate rea-
soning steps required to answer the question. In
this section, we build ‘prototype’ paths by con-
structing trees rooted in concepts in the query with
the following branching steps3 to emulate multi-
hop reasoning process. For each concept c1 in the
question, we do:
Direct Interaction: In the first level, we select re-
lations r1 from ConceptNet that directly link c1
to a concept within the context, c2 2 C, e.g., in
Fig. 2, we have lady ! church, lady ! mother,
lady ! person.
Multi-Hop: We then select relations in Concept-
Net r2 that link c2 to another concept in the con-
text, c3 2 C. This emulates a potential reason-

1A semantic network where the nodes are individual con-
cepts (words or phrases) and the edges describe directed re-
lations between them (e.g., hisland, UsedFor, vacationi).

2We release all our commonsense extraction code and
the extracted commonsense data at: https://github.com/
yicheng-w/CommonSenseMultiHopQA

3If we are unable to find a relation that satisfies the condi-
tion, we keep the steps up to and including the node.

reasoning operator can be derived by stacking multiple reasoning units in a sequence or a tree form
depending on the nature of the reasoning operator. In particular, we can apply ideas from LSTMs
or tree-LSTMs to model layers of reasoning units. With a tree structure, we can form general
reasoning operators.

3.2.2 A Unified Text-based Reasoning Engine with Multi-hop Inferences

Another crucial component of MCS is multi-hop reasoning, i.e., compositional and complex rea-
soning against commonsense knowledge. We will leverage techniques from the PIs’ previous
work including gated-bypass-attention cells for generative QA [8], textbook QA [34], multimodal
physics based reasoning and prediction [50], interaction based multi-hop reasoning in actionable
photo realistic environments [89, 90, 83], and interactive QA [18]. The main steps of our proposed
multi-hop reasoning include 1) query decomposition and 2) commonsense composition.

Query Decomposition We propose a model that answers complex questions by decomposing
them into sequences of simple queries, which can be answered with simple question answering
techniques. Our model will sequentially generate simple queries, using attention both between
the original question and the context, as well as between the original question and all previously
generated queries in the sequence to determine which aspect of the original question to focus on
for each query. We will use meta learning approaches to generate category-aware simple ques-
tions with encoder-decoder models. We then compute an attention mask between the previously
generated queries and the original question. We propose to use reinforcement learning for training.

Commonsense Composition Answering a complex query requires composing commonsense
knowledge with learned reasoning operators. We will build on our recent novel work [8] and
use ‘bypass-attention’ mechanism to reason jointly on both internal context and external knowl-
edge/commonsense, and essentially learn when to fill ‘gaps’ of reasoning and with what informa-
tion (as shown in Figure 8).

MHPGM + NOIC

52

�

;

BiDAF Attention

Bi-LSTM

; ;

NOIC Reasoning Cell

C
ontext

Bi-LSTM

Commonsense Relations

 Query

w1
CS, ..., wl

CSw2
CS,

Reasoning Layer

C
ontext

Q
uery

C
om

m
onsensse

Bypass

Figure 8: Our bypass-attention reasoning cell to incorporate hops from
multiple resources and modalities.

We will use inference
with attention to select
relevant reasoning opera-
tors and facts to answer
queries. As described in
Section 3.2.1, we assume
that all facts from the
input (structured or un-
structured) and reasoning
operations are all repre-
sented with a dense vector.
Once the facts and reason-
ing operators are selected, we learn a new macro on how to compose them. We will build a flexible
and adaptive reasoning system that can decide on the fly which information type to employ to
continue the current reasoning chain.

9

•  We use ‘bypass-attention’ mechanism to reason jointly on both internal context and external
commonsense, and essentially learn when to fill ‘gaps’ of reasoning and with what information

Next Steps / Food for Thought
•  Use of such auxiliary skill enhances MTL models for better generalization? (e.g., our MTL

models transfer well to DUC test-only summarization setup in Guo et al., ACL 2018).

•  Strongly promote evaluations on completely unseen and out-of-domain evaluation setups?

•  Human inductive bias vs. everything learned from data?: we interpreted the learned decisions
from AutoSeM (Guo et al., NAACL2019) and sometimes results do no match human intuition
(e.g., the selected auxiliary tasks are not always the ones closest to the primary task), which
might be due to subtle dataset noise/distribution reasons that are hard to see manually.

Students:

Thank you!

Webpage: http://www.cs.unc.edu/~mbansal/

Email: mbansal@cs.unc.edu

UNC-NLP Lab: http://nlp.cs.unc.edu/

Postdoc Openings!!: ~mbansal/postdoc-advt-unc-nlp.pdf

