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Beyond-Vision-Language’s Diverse Requirements 

Commonsense & Auxiliary/
External Knowledge 

Dynamic Video Context, 
not Static Images 

Spatial-Temporal Localization 
& Referring Expressions 
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+Generation for Robotic 
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Room-to-Room Navigation Task

(a) Turn right and (b) go up 
the steps. (c) Walk to the right 
behind the 2 desks. (d) Stop 
when reach the long wooden 
table beside the ping pong 
table. (e)

(a) (b) 

(c) (d) (e) 
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Abstract

We present the task of Spatio-Temporal Video Question
Answering, which requires intelligent systems to simultane-
ously retrieve relevant moments and detect referenced vi-
sual concepts (people and objects) to answer natural lan-
guage questions about videos. We first augment the TVQA
dataset with 310.8k bounding boxes, linking depicted ob-
jects to visual concepts in questions and answers. We name
this augmented version as TVQA+. We then propose Spatio-
Temporal Answerer with Grounded Evidence (STAGE), a
unified framework that grounds evidence in both the spatial
and temporal domains to answer questions about videos.
Comprehensive experiments and analyses demonstrate the
effectiveness of our framework and how the rich annota-
tions in our TVQA+ dataset can contribute to the question
answering task. As a side product, by performing this joint
task, our model is able to produce more insightful interme-
diate results. Dataset1 and code2 are publicly available.

1. Introduction
We have witnessed great progress in recent years on

image-based visual question answering (QA) tasks [2, 43,
48]. One key to this success has been spatial atten-
tion [1, 34, 23], where neural models learn to attend to rel-
evant regions for predicting the correct answer. Compared
to image-based QA, there has been less progress on the per-
formance of video-based QA tasks. One possible reason is
that attention techniques are hard to generalize to the tem-
poral nature of videos. Moreover, due to the high cost of
annotation, most existing video QA datasets only contain
question-answer pairs, without providing labels for the key
moments or regions needed to answer the question. Inspired
by previous work on grounded image and video caption-
ing [24, 47, 46], we propose methods that explicitly local-
ize video moments as well as spatial regions for answering
video-based questions. Such methods are useful in many

1
http://tvqa.cs.unc.edu

2
https://github.com/jayleicn/TVQA-PLUS

Question: What is Sheldon holding when he is talking to Howard about the sword?
Correct Answer: A computer.

00:02.314 → 00:06.732
Howard: Sheldon, he’s got Raj. Use
your sleep spell. Sheldon! Sheldon!

00:06.902 → 00:10.992
Sheldon: I’ve got the Sword of Azeroth.

Question: Who is talking to Howard when he is in the kitchen upset?
Correct Answer: Raj is talking to Howard.

00:17.982 → 00:20.532
Howard: That's really stupid advice.

00:20.534 → 00:22.364
Raj: You know that hurts my feelings.

Figure 1. Sample QA pairs from TVQA+ dataset. Questions are
both temporally localized to clips, and spatially localized with
frame-level bounding box annotations for visual concepts (objects
and people) that appear in questions and correct answers. Colors
indicate corresponding box-object pairs. Text inside red dashed
blocks are subtitles. For brevity, the wrong answers are omitted.

scenarios, such as natural language guided spatio-temporal
localization, and adding explainability to video question an-
swering, which is potentially useful for decision making
and model debugging. To enable this line of research, we
collect new annotations for an existing video QA dataset.

In the past few years, several video QA datasets have
been proposed, e.g., MovieFIB [25], MovieQA [35], TGIF-
QA [14], PororoQA [17], and TVQA [19]. Among them,
TVQA was released most recently, providing a large video
QA dataset built on top of 6 famous TV series. Because
TVQA was collected on television shows, it is built on
natural video content with rich dynamics and realistic so-
cial interactions, where question-answer pairs are written
by people observing both videos and their accompanying
dialogues, encouraging the questions to require both vision
and language understanding to answer. One key property of
TVQA is it provides temporal annotations denoting which
parts of a video clip are necessary for answering a pro-
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Theme 

•  Workshop theme: "work which goes beyond the task-specific integration of language and vision. 
That is, to leverage knowledge from external sources that are either provided by an environment or 
some fixed knowledge” 

•  First we will talk about MTL and RL work that incorporates auxiliary knowledge such as 
entailment, video-generation, and saliency for video captioning style tasks (+AutoSeM) 

•  Next, we will discuss our recent LXMERT framework that brings in external knowledge on both 
text and vision sides (as pretraining tasks) to do visual reasoning as new non-pretraining task 

•  Spatial navigation w/ generalizable knowledge via unseen room+instruction data-augmentation 
•  Commonsense reasoning for executing incomplete/ambiguous robotic instructions 

•  2nd part of the talk will briefly mention dynamic spatio-temporal knowledge for multimodal NLP: 
•  Video- and subtitle-based multimodal QA task with spatial+temporal localization 
•  Video-based dialogue dataset and task 



External Knowledge and Commonsense 



Auxiliary Knowledge via Multi-Task Learning 
•  MTL: Paradigm to improve generalization performance of a task using related tasks. 

•  The multiple tasks are learned in parallel (alternating optimization mini-batches) while 
using certain shared model representations/parameters. 

•  Each task benefits from extra information in the training signals of related tasks.  

 

•  Useful survey+blog by Sebastian Ruder for details of diverse MTL papers! 

[Caruana, 1998; Argyriou et al., 2007; Kumar and Daume, 2012; Luong et al., 2016; Ruder, 2017] 



Auxiliary Knowledge in Video Captioning 
•  Multi-Task & Reinforcement Learning for Entailment+Saliency Knowledge/Control in NLG (Video 

Captioning, Document Summarization, and Sentence Simplification) 

Document: top activists arrested after last month 's anti-
government rioting are in good condition , a red cross 
official said saturday .
Ground-truth: arrested activists in good condition says red 
cross
SotA Baseline: red cross says it is good condition after riots
Our model: red cross says detained activists in good 
condition

Document: canada 's prime minister has dined on seal meat 
in a gesture of support for the sealing industry .
Ground-truth: canadian pm has seal meat
SotA Baseline: canadian pm says seal meat is a matter of 
support
Our model: canada 's prime minister dines with seal meat



Auxiliary Knowledge in Video Captioning 

[Pasunuru and Bansal, ACL 2017 (Outstanding Paper Award)] 

•  Many-to-Many Multi-Task Learning for Video Captioning (with Video and Entailment Generation) 

UNSUPERVISED
VIDEO PREDICTION

VIDEO CAPTIONING
ENTAILMENT
GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM



Results (YouTube2Text) 

* All models (1-to-M, M-to-1 and M-to-M) stat. signif. better than strong SotA baseline. 
8	



Human Evaluation 
•  Pilot human evaluations on 300-sized samples 

•  Multi-task model > strong non-multitask baseline on relevance and 
coherence/fluency (for both video captioning and entailment generation) 

9	



Auxiliary Knowledge via RL 

[Pasunuru and Bansal, EMNLP 2017] 

•  RL Reward = Entailment-corrected phrase-matching metrics such as CIDEr ! CIDEnt 

•  Penalize phrase-matching metric when entailment score is very low 

 

•  Entailment Scorer Details: 

•  SotA decomposable-attention model of Parikh et al. (2016) trained on SNLI corpus (>90% accurate) 
•  Ground-truth as premise and sampled word sequence as hypothesis 
•  Max. of class=entailment probability over multiple ground-truths is used as final entailment score  

MIXER with CIDEnt 
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CIDEnt

RewardXENT RL
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Auxiliary Knowledge in Language Generation 

[Guo, Pasunuru, and Bansal, ACL 2018; Pasunuru and Bansal, NAACL 2018] 

•  Multi-Task & Reinforcement Learning with Entailment+Saliency Knowledge for Summarization 

LSTM SAMPLER ARG-MAX

Reward

Reward

R
L Loss

Figure 1: Our sequence generator with RL training.

the non-differentiable evaluation metric as reward
while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-Reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.
LRL1 = �(r1(w
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4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.

Figure 2: Overview of our saliency predictor model.

Saliency Reward ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Reward A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our

Figure 1: Our sequence generator with RL training.

the non-differentiable evaluation metric as reward
while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-Reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
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ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
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focus on important summarization factors such as
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1For the rest of the paper, we mean ROUGE-L whenever
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Saliency Reward ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Reward A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our

Language Generation 

!   “Multi-Reward Reinforced Summarization 
with Saliency and Entailment”. NAACL 
2018. 

 

!   “Soft Layer-Specific Multi-Task 
Summarization with Entailment and 
Question Generation”. ACL 2018. 
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Saliency Reward ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Reward A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our
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Auxiliary Knowledge in Language Generation 

[Guo, Pasunuru, and Bansal, ACL 2018; Pasunuru and Bansal, NAACL 2018] 

Input Document: celtic have written to the scottish football association in order to gain an ‘understanding’ of the refereeing decisions 
during their scottish cup semi-final defeat by inverness on sunday . the hoops were left outraged by referee steven mclean ’s failure to 
award a penalty or red card for a clear handball in the box by josh meekings to deny leigh griffith ’s goal-bound shot during the first-half . 
caley thistle went on to win the game 3-2 after extra-time and denied rory delia ’s men the chance to secure a domestic treble this season . 
celtic striker leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings . ……after the restart for scything 
down marley watkins in the area . greg tansey duly converted the resulting penalty . edward ofere then put caley thistle ahead , only for 
john guidetti to draw level for the bhoys . with the game seemingly heading for penalties , david raven scored the winner on 117 minutes , 
breaking thousands of celtic hearts . celtic captain scott brown -lrb- left -rrb- protests to referee steven mclean but the handball goes 
unpunished . griffiths shows off his acrobatic skills during celtic ’s eventual surprise defeat by inverness . celtic pair aleksandar tonev -lrb- 
left -rrb- and john guidetti look dejected as their hopes of a domestic treble end .

Ground-truth Summary: celtic were defeated 3-2 after extra-time in the scottish cup semi-final . leigh griffiths had a goal-bound shot 
blocked by a clear handball. however, no action was taken against offender josh meekings. the hoops have written the sfa for an 
‘understanding’ of the decision . 

See et al. (2017): john hartson was once on the end of a major hampden injustice while playing for celtic . but he can not see any point in 
his old club writing to the scottish football association over the latest controversy at the national stadium . hartson had a goal wrongly 
disallowed for offside while celtic were leading 1-0 at the time but went on to lose 3-2 . 

Our Baseline: john hartson scored the late winner in 3-2 win against celtic . celtic were leading 1-0 at the time but went on to lose 3-2 . 
some fans have questioned how referee steven mclean and additional assistant alan muir could have missed the infringement . 

Our Multi-task Summary: celtic have written to the scottish football association in order to gain an ‘ understanding ’ of the refereeing 
decisions . the hoops were left outraged by referee steven mclean ’s failure to award a penalty or red card for a clear handball in the box by 
josh meekings . celtic striker leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings .



Auxiliary Knowledge in Language Generation 

[Guo, Pasunuru, and Bansal, COLING 2018 (Area Chair Favorites)] 

•  Dynamic-Curriculum MTL with Entailment+Paraphrase Knowledge for Sentence Simplification 

Code: https://github.com/HanGuo97/MultitaskSimplification 



AutoSeM: Automatic Auxiliary Task Selection+Mixing 

[Guo, Pasunuru, and Bansal, NAACL 2019] 

Code: https://github.com/HanGuo97/AutoSeM 

Left: the multi-armed bandit controller used for task selection, where each arm represents a candidate auxiliary task. The agent 
iteratively pulls an arm, observes a reward, updates its estimates of the arm parameters, and samples the next arm. Right: the 
Gaussian Process controller used for automatic mixing ratio (MR) learning. The GP controller sequentially makes a choice of mixing 
ratio, observes a reward, updates its estimates, and selects the next mixing ratio to try, based on the full history of past observations. 

Task
Utility

Gaussian Process

MR-1

Multi-Armed
Bandit Controller

Arm1 Arm2 Arm3 Arm4 Arm5 Arm6

Primary
Task

Sampled
Task

MR-2
MR-3

FeedbackSample

Next
Sample

Next
Sample

Mixing Ratios

Figure 2: Overview of our AUTOSEM framework. Left: the multi-armed bandit controller used for task selection,
where each arm represents a candidate auxiliary task. The agent iteratively pulls an arm, observes a reward, updates
its estimates of the arm parameters, and samples the next arm. Right: the Gaussian Process controller used for
automatic mixing ratio (MR) learning. The GP controller sequentially makes a choice of mixing ratio, observes a
reward, updates its estimates, and selects the next mixing ratio to try, based on the full history of past observations.

our single-task learning baseline (see Sec. 3.1)
into multi-task learning model by augmenting the
model with N projection layers while sharing the
rest of the model parameters across these N tasks
(see Fig. 1). We employ MTL training of these
tasks in alternate mini-batches based on a mixing
ratio ⌘1:⌘2:..⌘N , similar to previous work (Luong
et al., 2015), where we optimize ⌘i mini-batches
of task i and go to the next task.

In MTL, choosing the appropriate auxiliary
tasks and properly tuning the mixing ratio can be
important for the performance of multi-task mod-
els. The naive way of trying all combinations of
task selections is hardly tractable. To solve this is-
sue, we propose AUTOSEM, a two-stage pipeline
in the next section. In the first stage, we automat-
ically find the relevant auxiliary tasks (out of the
given N � 1 options) which improve the perfor-
mance of the primary task. After finding the rel-
evant auxiliary tasks, in the second stage, we take
these selected tasks along with the primary task
and automatically learn their training mixing ratio.

3.3 Automatic Task Selection: Multi-Armed
Bandit with Thompson Sampling

Tuning the mixing ratio for N tasks in MTL be-
comes exponentially harder as the number of aux-
iliary tasks grows very large. However, in most
circumstances, only a small number of these aux-
iliary tasks are useful for improving the primary
task at hand. Manually searching for this optimal
choice of relevant tasks is intractable. Hence, in
this work, we present a method for automatic task
selection via multi-armed bandits with Thompson
Sampling (see the left side of Fig. 2).

Let {a1, ..., aN} represent the set of N arms
(corresponding to the set of tasks {D1, ..., DN})
of the bandit controller in our multi-task setting,
where the controller selects a sequence of ac-
tions/arms over the current training trajectory to
maximize the expected future payoff. At each
round tb, the controller selects an arm based on
the noisy value estimates and observes rewards rtb
for the selected arm. Let ✓k 2 [0, 1] be the utility
(usefulness) of task k. Initially, the agent begins
with an independent prior belief over ✓k. We take
these priors to be Beta-distributed with parameters
↵k and �k, and the prior probability density func-
tion of ✓k is:

p(✓k) =
�(↵k + �k)

�(↵k)�(�k)
✓

↵k�1
k (1� ✓k)

�k�1 (2)

where � denotes the gamma function. We for-
mulate the reward rtb 2 {0, 1} at round tb as a
Bernoulli variable, where an action k produces a
reward of 1 with a chance of ✓k and a reward of 0
with a chance of 1� ✓k. The true utility of task k,
i.e., ✓k, is unknown, and may or may not change
over time (based on stationary vs. non-stationary
of task utility). We define the reward as whether
sampling the task k improves (or maintains) the
validation metric of the primary task,

rtb =

(
1, if Rtb � Rtb�1

0, otherwise
(3)

where Rtb represents the validation perfor-
mance of the primary task at time tb. With our
reward setup above, the utility of each task (✓k)
can be intuitively interpreted as the probability



Large-Scale XModal Pretraining MTL Knowledge: LXMERT 

•  LXMERT brings in external knowledge on text, vision and cross-modal matching sides for MTL (as 
pretraining tasks in MTL setup): vision-lang transformers with 3 encoders: (object relations, language, 
cross-modal) & 5 pretraining tasks: masked-LM, masked-Object-Prediction (feature regression+label 
classification), cross-modality matching, image-QA (SotA on several vision-language tasks!) 

[Tan and Bansal, EMNLP 2019] 
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Figure 2: Pre-training in LXMERT. The object RoI features and word tokens are masked. Our five pre-training
tasks learn the feature representations based on these masked inputs. Special tokens are in brackets and classifica-
tion labels are in braces.

The cross-attention sub-layer is used to exchange
the information and align the entities between
the two modalities in order to learn joint cross-
modality representations. For further building in-
ternal connections, the self-attention sub-layers
(‘Self’) are then applied to the output of the cross-
attention sub-layer:

˜

h

k
i = SelfAttL!L

⇣
ˆ

h

k
i , {ˆhk1, . . . , ˆhkn}

⌘

ṽ

k
j = SelfAttR!R

⇣
v̂

k
j , {v̂k1 , . . . , v̂km}

⌘

Lastly, the k-th layer output {hki } and {vkj } are
produced by feed-forward sub-layers (‘FF’) on top
of {ˆhki } and {v̂kj }. We also add a residual connec-
tion and layer normalization after each sub-layer,
similar to the single-modality encoders.

2.3 Output Representations
As shown in the right-most part of Fig. 1, our
LXMERT cross-modality model has three outputs
for language, vision, and cross-modality, respec-
tively. The language and vision outputs are the
feature sequences generated by the cross-modality
encoder. For the cross-modality output, follow-
ing the practice in Devlin et al. (2019), we ap-
pend a special token [CLS] (denoted as the top
yellow block in the bottom branch of Fig. 1) before
the sentence words, and the corresponding feature
vector of this special token in language feature se-
quences is used as the cross-modality output.

3 Pre-Training Strategies

In order to learn a better initialization which un-
derstands connections between vision and lan-
guage, we pre-train our model with different
modality pre-training tasks on a large aggregated
dataset.

3.1 Pre-Training Tasks
3.1.1 Language Task: Masked

Cross-Modality LM
On the language side, we take the masked cross-
modality language model (LM) task. As shown
in the bottom branch of Fig. 2, the task setup
is almost same to BERT (Devlin et al., 2019):
words are randomly masked with a probabil-
ity of 0.15 and the model is asked to predict
these masked words. In addition to BERT where
masked words are predicted from the non-masked
words in the language modality, LXMERT, with
its cross-modality model architecture, could pre-
dict masked words from the vision modality as
well, so as to resolve ambiguity. For example, as
shown in Fig. 2, it is hard to determine the masked
word ‘carrot’ from its language context but the
word choice is clear if the visual information is
considered. Hence, it helps building connections
from the vision modality to the language modality,
and we refer to this task as masked cross-modality
LM to emphasize this difference. We also show
that loading BERT parameters into LXMERT will
do harm to the pre-training procedure in Sec. 5.1
since BERT can perform relatively well in the
language modality without learning these cross-
modality connections.

3.1.2 Vision Task: Masked Object Prediction
As shown in the top branch of Fig. 2, we pre-
train the vision side by randomly masking ob-
jects (i.e., masking RoI features with zeros) with
a probability of 0.15 and asking the model to pre-
dict proprieties of these masked objects. Similar
to the language task (i.e., masked cross-modality
LM), the model can infer the masked objects ei-
ther from visible objects or from the language
modality. Inferring the objects from the vision



Large-Scale XModal Pretraining MTL Knowledge: LXMERT 



Large-Scale XModal Pretraining MTL Knowledge: LXMERT 

See Hao’s talk on Nov7 1.30pm! (with several 
visualizations and ablations and challenges)! 



Spatial Navigation w/ Generalizable Knowledge 

[Tan, Yu, Bansal. NAACL 2019] 

Room-to-Room Navigation Task

(a) Turn right and (b) go up 
the steps. (c) Walk to the right 
behind the 2 desks. (d) Stop 
when reach the long wooden 
table beside the ping pong 
table. (e)

(a) (b) 

(c) (d) (e) 
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Figure 3: Comparison of two dropout methods ([ an illustration –HT ] on RGB image).
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Figure 4: Comparison of two dropouts (on image feature).

which navigates inside an environment E, trying
to find the correct route R according to the given
instruction I. The backward model is a speaker
PE,R�I, which generates an instruction I from
a given route R inside an environment E. Our
speaker model is an enhanced version of Fried
et al. (2018), where we use a stacked bidirectional
LSTM-RNN encoder with attention flow.

For back translation, the Room-to-Room
dataset labels around 10% routes {R} in the train-
ing environments 4 , so the rest of the routes {R0}
are unlabeled. Hence, we generate additional in-
structions I0 using PE,R�I (E,R0

), so to obtain
the new triplets (E,R0

, I0). The agent is then
fine-tuned with this new data using the IL+RL
method described in Sec. 3.3. However, note that
the environment E in the new triplet (E,R0

, I0)
for semi-supervised learning is still selected from
the seen training environments. We demonstrate
that the limited amount of environments {E} is
actually the bottleneck of the agent performance
in Sec. 7.2. Thus, we introduce our environmental
dropout method to mimic the “new” environment

4 [ The number of all possible routes (shortest paths)
in the existing 60 training environments is 190K. The
Room-to-Room dataset labeled around 14K routes with
one navigable instruction for each, so the amount of la-
beled routes is less than 10% of 190K. –HT ]

E0, as described next in Sec. 3.4.2.

3.4.2 Environmental Dropout
Failure of Feature Dropout Different from
dropout on neurons to regularize neural networks,
we drop raw feature dimensions (see Fig. 4a) to
mimic the removal of random objects from an
RGB image (see Fig. 3a). The traditional fea-
ture dropout (with dropout rate p) is implemented
as an element-wise multiplication of the feature
f and the dropout mask ⇠

f . Each element ⇠

f
e

in the dropout mask ⇠

f is a sample of a random
variable which obeys an independent and identi-
cal Bernoulli distribution multiplied by 1/(1� p).
And for different features, the distributions of
dropout masks are independent as well.

dropoutp(f) =f � ⇠

f (13)

⇠

f
e ⇠ 1

1� p

Ber(1� p) (14)

Because of this independence among dropout
masks, the traditional feature dropout fails in aug-
menting the existing environments because the
‘removal’ is inconsistent in different views at the
same viewpoint, and in different viewpoints.

To illustrate this idea, we take the four RGB
views in Fig. 3a as an example, where the chairs
are randomly dropped from the views. The re-
moval of the left chair (marked with red polygon)
from view ot,2 is inconsistent because it also ap-
pears in view ot,1. Thus, the speaker could still
refer to it and the agent is aware of the existence
of the chair. Moreover, another chair (marked
with yellow polygon) is completely removed from
viewpoint observation ot, but the views in next
viewpoint ot+1 provides conflicting information

Agent 

Walk past the bedroom,  
go down the stairs and 
go through the door … 

Path 

Env Drop 

“New” Env 

Speaker Path 

Train Env 

Back  
Translation 

Environmental 
Dropout 

Trained with 

Agent Agent Agent 

Teacher Actions 
<BOS> 

Agent Agent Agent 

<BOS> 

Sampling Sampling Mixture of 
IL + RL 

RL: 

IL: 

Walk past 
the shelves 
and out of 
the garage. 
Stop in ... 

Rewards 

Figure 2: Left: IL+RL supervised learning (stage 1). Right: Semi-supervised learning with back translation and environmental
dropout (stage 2).

3.3 Supervised Learning: Mixture of
Imitation+Reinforcement Learning

[ We discuss our supervised learning method in this sec-
tion. As an opposite to the semi-supervised method in
Sec. 3.4, we call both the reinforcement learning and imi-
tation learning as supervised learning. –HT ]

Imitation Learning (IL) In IL, an agent learns
to imitate the behavior of a teacher. The teacher
demonstrates a teacher action a

⇤
t at each time step

t. In the task of navigation, a teacher action a

⇤
t

selects the next navigable viewpoint which is on
the shortest route from the current viewpoint to the
target T. The off-policy2 agent learns from this
weak supervision by minimizing the negative log
probability of the teacher’s action a

⇤
t . The loss of

IL is as follows:

LIL
=

X

t

LIL
t =

X

t

- log pt(a⇤t ) (11)

For exploration, we follow the IL method of Be-
havioral Cloning (Bojarski et al., 2016), where
the agent moves to the viewpoint following the
teacher’s action a

⇤
t at time step t.

Reinforcement Learning (RL) Although the
route induced by the teacher’s actions in IL is the
shortest, this selected route is not guaranteed to
satisfy the instruction. Thus, the agent using IL
is biased towards the teacher’s actions instead of
finding the correct route indicated by the instruc-
tion. To overcome these misleading actions, the
on-policy reinforcement learning method Advan-
tage Actor-Critic (Mnih et al., 2016) is applied,
where the agent takes a sampled action from the
distribution {pt(at,k)} and learns from rewards. If

2According to Poole and Mackworth (2010), an off-policy
learner learns the agent policy independently of the agent’s
navigational actions. An on-policy learner learns the policy
from the agent’s behavior including the exploration steps.

the agent stops within 3m around the target view-
point T, a positive reward +3 is assigned at the
final step. Otherwise, a negative reward �3 is as-
signed. We also apply reward shaping (Wu et al.,
2018): the direct reward at each non-stop step t is
the change of the distance to the target viewpoint.

IL+RL Mixture To take the advantage of both
off-policy and on-policy learners, we use a method
to mix IL and RL. The IL and RL agents share
weights, take actions separately, and navigate two
independent routes (see Fig. 2). The mixed loss is
the weighted sum of LIL and LRL:

LMIX
= LRL

+ �ILLIL (12)

IL can be viewed as a language model on action
sequences, which regularizes the RL training.3

3.4 Semi-Supervised Learning: Back
Translation with Environmental Dropout

3.4.1 Back Translation
Suppose the primary task is to learn the mapping
of X � Y with paired data {(X,Y)} and un-
paired data {Y0}. In this case, the back transla-
tion method first trains a forward model PX�Y

and a backward model PY�X, using paired data
{(X,Y)}. Next, it generates additional datum X0

from the unpaired Y0 using the backward model
PY�X. Finally, (X0

,Y0
) are paired to further

fine-tune the forward model PX�Y as additional
training data (also known as ‘data augmentation’).

Back translation was introduced to the task of
navigation in Fried et al. (2018). The forward
model is a navigational agent PE,I�R (Sec. 3.2),

3This approach is similar to the method ML+RL in Paulus
et al. (2018) for summarization. Recently, Wang et al.
(2018a) combines pure supervised learning and RL training
however, they use a different algorithm named MIXER (Ran-
zato et al., 2015), which computes cross entropy (XE) losses
for the first k actions and RL losses for the remaining.

•  Learning to Navigate Unseen Environments: Back Translation with Environmental Dropout (to 
create new rooms with view and viewpoint consistency; generate instructions for new rooms; use 
generated room-instruction data in semi-supervised setup) 
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Figure 3: Comparison of the two dropout methods (based on an illustration on an RGB image).
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Figure 4: Comparison of the two dropout methods (based on
image features).

fine-tune the forward model PX�Y as additional
training data (also known as ‘data augmentation’).

Back translation was introduced to the task of
navigation in Fried et al. (2018). The forward
model is a navigational agent PE,I�R (Sec. 3.2),
which navigates inside an environment E, trying
to find the correct route R according to the given
instruction I. The backward model is a speaker
PE,R�I, which generates an instruction I from
a given route R inside an environment E. Our
speaker model (details in Sec. 3.4.3) is an en-
hanced version of Fried et al. (2018), where we
use a stacked bidirectional LSTM-RNN encoder
with attention flow.

For back translation, the Room-to-Room
dataset labels around 7% routes {R} in the train-
ing environments6, so the rest of the routes {R0}
are unlabeled. Hence, we generate additional in-
structions I0 using PE,R�I (E,R0

), so to obtain
the new triplets (E,R0

, I0). The agent is then fine-
tuned with this new data using the IL+RL method

6The number of all possible routes (shortest paths) in
the 60 existing training environments is 190K. Of these,
the Room-to-Room dataset labeled around 14K routes with
one navigable instruction for each, so the amount of labeled
routes is around 7% of 190K.

described in Sec. 3.3. However, note that the envi-
ronment E in the new triplet (E,R0

, I0) for semi-
supervised learning is still selected from the seen
training environments. We demonstrate that the
limited amount of environments {E} is actually
the bottleneck of the agent performance in Sec. 7.1
and Sec. 7.2. Thus, we introduce our environmen-
tal dropout method to mimic the “new” environ-
ment E0, as described next in Sec. 3.4.2.

3.4.2 Environmental Dropout
Failure of Feature Dropout Different from
dropout on neurons to regularize neural networks,
we drop raw feature dimensions (see Fig. 4a) to
mimic the removal of random objects from an
RGB image (see Fig. 3a). This traditional fea-
ture dropout (with dropout rate p) is implemented
as an element-wise multiplication of the feature
f and the dropout mask ⇠

f . Each element ⇠

f
e

in the dropout mask ⇠

f is a sample of a random
variable which obeys an independent and identi-
cal Bernoulli distribution multiplied by 1/(1� p).
And for different features, the distributions of
dropout masks are independent as well.

dropoutp(f) =f � ⇠

f (13)

⇠

f
e ⇠ 1

1� p

Ber(1� p) (14)

Because of this independence among dropout
masks, the traditional feature dropout fails in aug-
menting the existing environments because the
‘removal’ is inconsistent in different views at the
same viewpoint, and in different viewpoints.

To illustrate this idea, we take the four RGB
views in Fig. 3a as an example, where the chairs
are randomly dropped from the views. The re-
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Figure 4: Comparison of the two dropout methods (based on
image features).

fine-tune the forward model PX�Y as additional
training data (also known as ‘data augmentation’).

Back translation was introduced to the task of
navigation in Fried et al. (2018). The forward
model is a navigational agent PE,I�R (Sec. 3.2),
which navigates inside an environment E, trying
to find the correct route R according to the given
instruction I. The backward model is a speaker
PE,R�I, which generates an instruction I from
a given route R inside an environment E. Our
speaker model (details in Sec. 3.4.3) is an en-
hanced version of Fried et al. (2018), where we
use a stacked bidirectional LSTM-RNN encoder
with attention flow.

For back translation, the Room-to-Room
dataset labels around 7% routes {R} in the train-
ing environments6, so the rest of the routes {R0}
are unlabeled. Hence, we generate additional in-
structions I0 using PE,R�I (E,R0

), so to obtain
the new triplets (E,R0

, I0). The agent is then fine-
tuned with this new data using the IL+RL method

6The number of all possible routes (shortest paths) in
the 60 existing training environments is 190K. Of these,
the Room-to-Room dataset labeled around 14K routes with
one navigable instruction for each, so the amount of labeled
routes is around 7% of 190K.

described in Sec. 3.3. However, note that the envi-
ronment E in the new triplet (E,R0

, I0) for semi-
supervised learning is still selected from the seen
training environments. We demonstrate that the
limited amount of environments {E} is actually
the bottleneck of the agent performance in Sec. 7.1
and Sec. 7.2. Thus, we introduce our environmen-
tal dropout method to mimic the “new” environ-
ment E0, as described next in Sec. 3.4.2.

3.4.2 Environmental Dropout
Failure of Feature Dropout Different from
dropout on neurons to regularize neural networks,
we drop raw feature dimensions (see Fig. 4a) to
mimic the removal of random objects from an
RGB image (see Fig. 3a). This traditional fea-
ture dropout (with dropout rate p) is implemented
as an element-wise multiplication of the feature
f and the dropout mask ⇠

f . Each element ⇠

f
e

in the dropout mask ⇠

f is a sample of a random
variable which obeys an independent and identi-
cal Bernoulli distribution multiplied by 1/(1� p).
And for different features, the distributions of
dropout masks are independent as well.

dropoutp(f) =f � ⇠

f (13)

⇠

f
e ⇠ 1

1� p

Ber(1� p) (14)

Because of this independence among dropout
masks, the traditional feature dropout fails in aug-
menting the existing environments because the
‘removal’ is inconsistent in different views at the
same viewpoint, and in different viewpoints.

To illustrate this idea, we take the four RGB
views in Fig. 3a as an example, where the chairs
are randomly dropped from the views. The re-



Spatial Navigation w/ Generalizable Knowledge 

Still several challenges/ long way to go, e.g., 
better object detectors, diverse language, etc.! 



Pour me some water 

From where? 
To where? 

     From bottle 
  To cup 

1. Understanding language
2. Observing environment

3. Inferencing with common sense

4. Conducting the action

Commonsense in Robotic Instructions 

[Chen et al., 2019] 
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Commonsense in Robotic Instructions 

[Chen et al., 2019] 



Commonsense in Robotic Instructions 
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[Chen et al., 2019] 



Commonsense in Robotic Instructions 

https://drive.google.com/file/d/1C9xsuyW1bVBzLimvVFbBfOcKCzV5ueHs/view 

[Chen et al., 2019] 



Commonsense in Robotic Instructions 

https://drive.google.com/file/d/1C9xsuyW1bVBzLimvVFbBfOcKCzV5ueHs/view 

[Chen et al., 2019] 

Still several challenges/ long way to go, 
e.g., longer ambiguities and more 
structured knowledge for robotic tasks! 



Video-based Dynamic Context and 
Spatial-Temporal Localization 



TVQA DATASET 
 

A Localized, Compositional Video Question Answering Dataset 

Large-Scale Compositional Localized Fun! 

tvqa.cs.unc.edu 

TVQA (videos with audio and subtitles) 



TVQA (videos with audio and subtitles) 

•  Largest video-QA dataset with 6 video categories/genres, videos+subtitles QA, 
compositional, spatio-temporal localization (timestamps + bounding boxes) 

[Lei et al., EMNLP 2018, ArXiv 2019] 

What is on the couch behind Joey when he is at the 
counter?

A A chick
B A soccer ball
C A duck
D A pillow
E Janice's coat

What is Janice holding on to after Chandler sends 
Joey to his room?

A Chandler's tie
B Chandler's hands
C Her Breakfast
D Her coat
E Chandler's coffee cup.

00:00

Why does Joey want Chandler to kiss Janice when they are 
in the kitchen?

A Because Joey is glad that Chandler is happy
B Because Joey likes to watch people kiss
C    Because then she will leave  
D Because Joey thinks Janice is hot
E   Because then Chandler will move away from the toast.

00:00.755 --> 00:02.655  
(Chandler:) Go to your room!
00:06.961 --> 00:08.622 
(Janice:) I gotta go, I gotta go.

00:08.829 --> 00:10.057 
(Janice:) Not without a kiss.
00:10.264 --> 00:12.391 
(Chandler:) Maybe I won't kiss you so you'll stay.

00:12.600 --> 00:14.761 
(Joey:) Kiss her. Kiss her!
00:16.771 --> 00:19.137 
(Janice:) I‘ll see you later, sweetie. Bye, Joey.

00:39.327 --> 00:40.760 
(Chandler:) She makes me happy. 
00:41.596 --> 00:44.087 
(Joey:) Okay. All right.

…

00:1000:06 00:17 00:39 00:45 01:04

…

Figure 1: Examples from the TVQA dataset. All questions and answers are attached to 60-90 seconds long clips.
For visualization purposes, we only show a few of the most relevant frames here. As illustrated above, some
questions can be answered using subtitles or videos alone, while some require information from both modalities.

of two parts, a main question part, e.g. “What
are Leonard and Sheldon arguing about” and a
grounding part, e.g. “when they are sitting on the
couch”. This also leads to an interesting secondary
task of QA temporal localization.

Our contribution is the TVQA dataset, built on
6 popular TV shows spanning 3 genres: medical
dramas, sitcoms, and crime shows. On this data,
we collected 152.5K human-written QA pairs (ex-
amples shown in Fig.1). There are 4 salient ad-
vantages of our dataset. First, it is large-scale and
natural, containing 21,793 video clips from 925
episodes. On average, each show has 7.3 sea-
sons, providing long range character interactions
and evolving relationships. Each video clip is as-
sociated with 7 questions, with 5 answers (1 cor-
rect) for each question. Second, our video clips are
relatively long (60-90 seconds), thereby contain-
ing more social interactions and activities, mak-
ing video understanding more challenging. Third,
we provide the dialogue (character name + subti-
tle) for each QA video clip. Understanding the re-
lationship between the provided dialogue and the
question-answer pairs is crucial for correctly an-
swering many of the collected questions. Fourth,
our questions are compositional, requiring algo-
rithms to localize relevant moments (START and
END points are provided for each question).

With the above rich annotation, our dataset
supports three tasks: QA on the grounded clip,
question-driven moment localization, and QA on
the full video clip. We provide baseline experi-
ments on both QA tasks and introduce a state-of-
the-art language and vision-based model (leaving
moment localization for future work).

2 Related Work

Visual Question Answering: Several image-
based VQA datasets have recently been con-
structed, e.g., DAQUAR (Malinowski and Fritz,
2014), VQA (Antol et al., 2015), COCO-Q (Ren
et al., 2015a), FM-IQA (Gao et al., 2015), Vi-
sual Madlibs (Yu et al., 2015), Visual7W (Zhu
et al., 2016), CLEVR (Johnson et al., 2017),
etc. Additionally, several video-based QA datasets
have also been proposed, e.g. TGIF-QA (Jang
et al., 2017), MovieFIB (Maharaj et al., 2017b),
VideoQA (Zhu et al., 2017), LSMDC (Rohrbach
et al., 2015), TRECVID (Over et al., 2014),
MovieQA (Tapaswi et al., 2016), PororoQA (Kim
et al., 2017) and MarioQA (Mun et al., 2017).
However, none of these datasets provides a truly
realistic, multimodal QA scenario where both vi-
sual and language understanding are required to
answer a large portion of questions, either due to
unrealistic video sources (PororoQA, MarioQA)
or data collection strategy being more focused on
either visual (MovieFIB, VideoQA, TGIF-QA) or
language (MovieQA) sources. In comparison, our
TVQA collection strategy takes a directly multi-
modal approach to construct a large-scale, real-
video dataset by letting humans ask and answer
questions while watching TV-show videos with as-
sociated dialogues.
Text Question Answering: The related task of
text-based question answering has been exten-
sively explored (Richardson et al., 2013; Weston
et al., 2015; Rajpurkar et al., 2016; Hermann et al.,
2015; Hill et al., 2015). Richardson et al. (2013)
collected MCTest, a multiple choice QA dataset
intended for open-domain reading comprehension.



Write a question: 

[What/Why/...] ___ [when/before/after] ___ 

Question Localization + 

What is Sheldon holding when  
he is talking to Howard about swords? 

| 
0s 
|	

62s	

TVQA Compositionality (Localization + VQA) 



A computer 

1) A comic book 
2) A sword 
3) A toy train 
4) A drink 

What is Sheldon holding when  
he is talking to Howard about swords? 

Mark the START and END timestamps: 

| 10s 2s | 
START END 

TVQA Data Collection 



Show Genre #Sea. #Epi. #Clip #QA

BBT sitcom 10 220 4,198 29,384
Friends sitcom 10 226 5,337 37,357
HIMYM sitcom 5 72 1,512 10,584
Grey medical 3 58 1,427 9,989
House medical 8 176 4,621 32,345
Castle crime 8 173 4,698 32,886

Total — 44 925 21,793 152,545

Table 1: Data Statistics for each TV show. BBT = The Big Bang Theory,
HIMYM = How I Met You Mother, Grey = Grey’s Anatomy, House = House
M.D., Epi = Episode, Sea. = Season

1

TVQA Data Statistics 

Location (where)

Reasoning (why)

Person (who)

Action (what)
Object (what)

Abstract (what)

Others
Method (how)

10%

8.5%

6.5%
6%

21.5%

17.5% 15%

15%

Dataset V. Src. QType #Clips / #QAs
Avg. Total Q. Src. Timestamp
Len.(s) Len.(h) text video annotation

MovieFIB Movie OE 118.5k / 349k 4.1 135 X - -
Movie-QA Movie MC 6.8k / 6.5k 202.7 381 X - X
TGIF-QA Tumblr OE&MC 71.7k / 165.2k 3.1 61.8 X X -
Pororo-QA Cartoon MC 16.1k / 8.9k 1.4 6.3 X X -
TVQA (our) TV show MC 21.8k / 152.5k 76.2 461.2 X X X

Table 5: Comparison of TVQA to various existing video QA datasets. OE = open-
ended, MC = multiple-choices. Q. Src. = Question Sources, it indicates where the
questions are raised from. TVQA dataset is unique since its questions are based on
both text and video, with additional timestamp annotation for each of them. It is also
significantly larger than previous datasets in terms of total length of videos.

1



TVQA Models 

Question

+ Predicted
Answer ScoreSo

ftm
ax

LSTM

LSTM

Context
Matching

Context
Matching

LSTMFusion MaxPoolingRCNN

LSTM

a0 He tore up the folder 
…
a4 He pulled out a cell phone

FC

What did Sheldon do after 
Leonard said the name Maggie 
McGarry ?

Word
Embedding

Word
Embedding

FC

00:50.590 --> 00:53.090
(Leonard:) "Sincerely, Maggie 
McGarry."?
…
00:54:380 --> 00:59.300
(Sheldon:) actually call that number, they 
will hear this.

LSTM

LSTM

Context
Matching

Context
Matching

LSTMFusion MaxPooling

LSTM

a0 He tore up the folder 
…
a4 He pulled out a cell phone

What did Sheldon do after 
Leonard said the name Maggie 
McGarry ?

Word
Embedding

Word
Embedding

FCWord
Embedding

a4 He pulled out a cell phone

argmaxAnswers

Subtitle

Question

Answers

Video

Multiple streams (video, subtitle), each stream deals with different contextual input 



Video Test Accuracy
Method Feature w/o ts w/ ts

0 Random - 20.00 20.00
1 Longest Answer - 30.41 30.41
2 Retrieval-Glove - 22.48 22.48
3 Retrieval-SkipThought - 24.24 24.24
4 Retrieval-TFIDF - 20.88 20.88
5 NNS-Glove Q - 22.40 22.40
6 NNS-SkipThought Q - 23.79 23.79
7 NNS-TFIDF Q - 20.33 20.33
8 NNS-Glove S - 23.73 29.66
9 NNS-SkipThought S - 26.81 37.87
10 NNS-TFIDF S - 49.94 51.23

11 Our Q - 43.34 43.34
12 Our V+Q img 42.67 43.69
13 Our V+Q reg 42.75 44.85
14 Our V+Q cpt 43.38 45.41
15 Our S+Q - 63.14 66.23
16 Our S+V+Q img 63.57 66.97
17 Our S+V+Q reg 63.19 67.82
18 Our S+V+Q cpt 65.46 68.60

Accuracy for di↵erent methods on TVQA test set. Q = Question, S = Subtitle,
V = Video, img = ImageNet features, reg = regional visual features, cpt =
visual concept features, ts = timestamp annotation.

1

Accuracy for different methods on TVQA 
test set. Q = Question, S = Subtitle, V = 
Video, img = ImageNet features, reg = 
regional visual features, cpt = visual 
concept features, ts = timestamp annotation. 

Add Video 
Add Subtitle 

Add Video, Subtitle 

Question only Both visual and textual 
information are important! 

TVQA Results 



Video Test Accuracy
Method Feature w/o ts w/ ts

0 Random - 20.00 20.00
1 Longest Answer - 30.41 30.41
2 Retrieval-Glove - 22.48 22.48
3 Retrieval-SkipThought - 24.24 24.24
4 Retrieval-TFIDF - 20.88 20.88
5 NNS-Glove Q - 22.40 22.40
6 NNS-SkipThought Q - 23.79 23.79
7 NNS-TFIDF Q - 20.33 20.33
8 NNS-Glove S - 23.73 29.66
9 NNS-SkipThought S - 26.81 37.87
10 NNS-TFIDF S - 49.94 51.23

11 Our Q - 43.34 43.34
12 Our V+Q img 42.67 43.69
13 Our V+Q reg 42.75 44.85
14 Our V+Q cpt 43.38 45.41
15 Our S+Q - 63.14 66.23
16 Our S+V+Q img 63.57 66.97
17 Our S+V+Q reg 63.19 67.82
18 Our S+V+Q cpt 65.46 68.60

Accuracy for di↵erent methods on TVQA test set. Q = Question, S = Subtitle,
V = Video, img = ImageNet features, reg = regional visual features, cpt =
visual concept features, ts = timestamp annotation.

1

Accuracy for different methods on TVQA 
test set. Q = Question, S = Subtitle, V = 
Video, img = ImageNet features, reg = 
regional visual features, cpt = visual 
concept features, ts = timestamp annotation. 

Timestamp information is helpful! 
But still several challenges/ long way 
to go from human performance 90%! 

TVQA Results 



tvqa.cs.unc.edu/leaderboard 

TVQA Leaderboard 



TVQA+ (spatial localization: bounding box annotations) 

TVQA+: Spatio-Temporal Grounding for Video Question Answering

Jie Lei Licheng Yu Tamara L. Berg Mohit Bansal
Department of Computer Science

University of North Carolina at Chapel Hill
{jielei, licheng, tlberg, mbansal}@cs.unc.edu

Abstract

We present the task of Spatio-Temporal Video Question
Answering, which requires intelligent systems to simultane-
ously retrieve relevant moments and detect referenced vi-
sual concepts (people and objects) to answer natural lan-
guage questions about videos. We first augment the TVQA
dataset with 310.8k bounding boxes, linking depicted ob-
jects to visual concepts in questions and answers. We name
this augmented version as TVQA+. We then propose Spatio-
Temporal Answerer with Grounded Evidence (STAGE), a
unified framework that grounds evidence in both the spatial
and temporal domains to answer questions about videos.
Comprehensive experiments and analyses demonstrate the
effectiveness of our framework and how the rich annota-
tions in our TVQA+ dataset can contribute to the question
answering task. As a side product, by performing this joint
task, our model is able to produce more insightful interme-
diate results. Dataset1 and code2 are publicly available.

1. Introduction
We have witnessed great progress in recent years on

image-based visual question answering (QA) tasks [2, 43,
48]. One key to this success has been spatial atten-
tion [1, 34, 23], where neural models learn to attend to rel-
evant regions for predicting the correct answer. Compared
to image-based QA, there has been less progress on the per-
formance of video-based QA tasks. One possible reason is
that attention techniques are hard to generalize to the tem-
poral nature of videos. Moreover, due to the high cost of
annotation, most existing video QA datasets only contain
question-answer pairs, without providing labels for the key
moments or regions needed to answer the question. Inspired
by previous work on grounded image and video caption-
ing [24, 47, 46], we propose methods that explicitly local-
ize video moments as well as spatial regions for answering
video-based questions. Such methods are useful in many

1
http://tvqa.cs.unc.edu

2
https://github.com/jayleicn/TVQA-PLUS

Question: What is Sheldon holding when he is talking to Howard about the sword?
Correct Answer: A computer.

00:02.314 → 00:06.732
Howard: Sheldon, he’s got Raj. Use
your sleep spell. Sheldon! Sheldon!

00:06.902 → 00:10.992
Sheldon: I’ve got the Sword of Azeroth.

Question: Who is talking to Howard when he is in the kitchen upset?
Correct Answer: Raj is talking to Howard.

00:17.982 → 00:20.532
Howard: That's really stupid advice.

00:20.534 → 00:22.364
Raj: You know that hurts my feelings.

Figure 1. Sample QA pairs from TVQA+ dataset. Questions are
both temporally localized to clips, and spatially localized with
frame-level bounding box annotations for visual concepts (objects
and people) that appear in questions and correct answers. Colors
indicate corresponding box-object pairs. Text inside red dashed
blocks are subtitles. For brevity, the wrong answers are omitted.

scenarios, such as natural language guided spatio-temporal
localization, and adding explainability to video question an-
swering, which is potentially useful for decision making
and model debugging. To enable this line of research, we
collect new annotations for an existing video QA dataset.

In the past few years, several video QA datasets have
been proposed, e.g., MovieFIB [25], MovieQA [35], TGIF-
QA [14], PororoQA [17], and TVQA [19]. Among them,
TVQA was released most recently, providing a large video
QA dataset built on top of 6 famous TV series. Because
TVQA was collected on television shows, it is built on
natural video content with rich dynamics and realistic so-
cial interactions, where question-answer pairs are written
by people observing both videos and their accompanying
dialogues, encouraging the questions to require both vision
and language understanding to answer. One key property of
TVQA is it provides temporal annotations denoting which
parts of a video clip are necessary for answering a pro-
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Video-based Dialogue 

[Pasunuru and Bansal, EMNLP 2018] 

Game-Based Video-Context Dialogue R. Pasunuru & M. Bansal

Our Twitch-FIFA Dataset

9

Video	+	Chat	based	Context Multiple	speakers

Game-Based Video-Context Dialogue R. Pasunuru & M. Bansal

Task

10

S1: what an offside trap 
OMEGALUL
 

S2: Lol that finish bro
 

S3: suprised you didn't 
do the extra pass
 

S4: @S10 a drunk bet? 
 

S5: @S11 thanks mate
 

S6: could have passed 
one more
 

S7: Pass that
 

S1: record now!
 

S8: !record 

S9: done a nother pass there

The task is to predict the response (bottom-
right) using the video context (left) and the 
chat context (top-right) 

Game-Based Video-Context Dialogue R. Pasunuru & M. Bansal

Generative Model

19

chat-to-video
 attention

video-to-chat
 attention

Our BiDAF-Generative model with bidirectional attention flow 
between video context and chat context during response 
generation 

[Seo et al., 2017; Luong et al., 2015]

•  Generating chat responses given both video and previous dialogue history: 
•  Unique Twitch language:  

•  Time-constrained, not just space 
•  Lots of special vocab, symbols, emoticons 
•  Multi-user with several interleaving turns 
•  Multi-lingual 



Multilingual Video Summary/Highlight Prediction 

[Fu, Lee, Bansal, Berg, EMNLP 2017] 

•  Sports video portals offer an exciting domain for research on multimodal, multilingual analysis. 
•  Automatic video highlight prediction based on joint video and textual chat features from the real-

world audience discourse with complex slang, in both English and Chinese.  

Video Highlight Prediction Using Audience Chat Reactions

Cheng-Yang Fu, Joon Lee, Mohit Bansal, Alexander C. Berg
UNC Chapel Hill

{cyfu, joonlee, mbansal, aberg}@cs.unc.edu

Abstract

Sports channel video portals offer an ex-
citing domain for research on multimodal,
multilingual analysis. We present meth-
ods addressing the problem of automatic
video highlight prediction based on joint
visual features and textual analysis of the
real-world audience discourse with com-
plex slang, in both English and tradi-
tional Chinese. We present a novel dataset
based on League of Legends champi-
onships recorded from North American
and Taiwanese Twitch.tv channels (will be
released for further research), and demon-
strate strong results on these using multi-
modal, character-level CNN-RNN model
architectures.

1 Introduction

On-line eSports events provide a new setting for
observing large-scale social interaction focused on
a visual story that evolves over time—a video
game. While watching sporting competitions has
been a major source of entertainment for millen-
nia, and is a significant part of today’s culture, eS-
ports brings this to a new level on several fronts.
One is the global reach, the same games are played
around the world and across cultures by speak-
ers of several languages. Another is the scale of
on-line text-based discourse during matches that is
public and amendable to analysis. One of the most
popular games, League of Legends, drew 43 mil-
lion views for the 2016 world series final matches
(broadcast in 18 languages) and a peak concurrent
viewership of 14.7 million1. Finally, players in-
teract through what they see on screen while fans
(and researchers) can see exactly the same views.

1
http://www.lolesports.com/en_US/articles/

2016-league-legends-world-championship-numbers

(a) Twitch

(b) Youtube

(c) Facebook

Figure 1: Pictures of Broadcasting platforms:(a)
Twitch: League of Legends Tournament
Broadcasting, (b) Youtube: News Channel,
(c)Facebook: Personal live sharing

This paper builds on the wealth of interaction
around eSports to develop predictive models for
match video highlights based on the audience’s
online chat discourse as well as the visual record-
ings of matches themselves. ESports journal-
ists and fans create highlight videos of impor-
tant moments in matches. Using these as ground
truth, we explore automatic prediction of high-
lights via multimodal CNN+RNN models for mul-
tiple languages. Appealingly this task is natural,
as the community already produces the ground
truth and is global, allowing multilingual multi-
modal grounding.

Highlight prediction is about capturing the ex-
citing moments in a specific video (a game match
in this case), and depends on the context, the state
of play, and the players. This task of predicting
the exciting moments is hence different from sum-
marizing the entire match into a story summary.
Hence, highlight prediction can benefit from the
available real-time text commentary from fans,
which is valuable in exposing more abstract back-
ground context, that may not be accessible with
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Video 

Prediction 

…… 
ResNet-34 ResNet-34 

Prediction 

(a) V-CNN

Video 
Image Window Size 

Prediction 

… 

LSTM LSTM … LSTM 

ResNet-34 ResNet-34 ResNet-34 

(b) V-CNN-LSTM

Video 

Concatenated Chat String 

Text Window Size 

Prediction 

Chat 

LSTM LSTM LSTM LSTM 

… 

… 

T H	 E	 S	 E	 C	 O	 O	 L	 !	… 

1-hot 1-hot 1-hot 1-hot 

(c) L-Char-LSTM

Video 

LSTM LSTM LSTM 

… 

… 

ResNet-34 … 

LSTM 

MLP 

Prediction 

… 

Concatenated Chat String Chat 
T H	 E	 O	 O	 L	 !	… C	

1-hot 1-hot 1-hot 

ResNet-34 

LSTM 

ResNet-34 

LSTM 

(d) Full model : lv-LSTM

Figure 3: Network architecture of proposed models.

of predicted frames with a positive label as Spred.
Following (Gygli et al., 2014; Song et al., 2015),
we use the harmonic mean F-score in Eq.2 widely
used in video summarization task for evaluation:

P =
Sgt \ Spred

|Spred|
, R =

Sgt \ Spred

|Sgt|
(1)

F =
2PR

P +R

⇥ 100% (2)

V-CNN We use the ResNet-34 model (He et al.,
2016) to represent frames, motivated by its strong
results on the ImageNet Challenge (Russakovsky
et al., 2015). Our naive V-CNN model (Fig-
ure 3a) uses features from the pre-trained version
of this network 6 directly to make prediction at
each frame (which are resized to 224x224).

V-CNN-LSTM In order to exploit visual video
information sequentially over time, we use a
memory-based LSTM-RNN on top of the image
features, so as to model long-term dependencies.
All of our videos are 30FPS. As the difference be-
tween consecutive frames is usually minor, we run
prediction every 10th frame during evaluation and
interpolate predictions between these frames. Dur-
ing training, due to the GPU memory constraints,
we unfold the LSTM cell 16 times. Therefore the
image window size is around 5-seconds (16 sam-
ples every 10th frame from 30fps video). The hid-
den state from the last cell is used as the V-CNN-
LSTM feature. This process is shown in Figure 3b.

L-Word-LSTM and L-Char-LSTM Next, we
discuss our language-based models using the
audience chat text. Word-level LSTM-RNN
models (Sutskever et al., 2014) are a common
approach to embedding sentences. Unfortu-
nately, this does not fit our Internet-slang style
language with irregularities, “mispelled” words
(hapy, happppppy), emojis (ˆ ˆ), abbreviations
(LOL), marks (?!?!?!?!), or onomatopoeic cases

6
https://github.com/pytorch/pytorch

(e.g., 4 which sounds like yes in traditional Chi-
nese). People may type variant length of 4, e.g.,,
4444444 to express their remarks.

Therefore, alternatively, we model the audience
chat with a character-level LSTM-RNN model
(Graves, 2013). Characters of the language, Chi-
nese, English, or Emojis, are expanded to multiple
ASCII characters according to the two-character
Unicode or other representations used on the chat
servers. We encode a 1-hot vector for each ASCII
input character. For each frame we use all chats
that occur in the next Wt seconds which are called
text window size to form the input for L-Char-
LSTM. We concatenate all the chats in a window,
separating them by a special stop character, and
then fed to a 3-layer L-Char-LSTM model.7 This
model is shown in Figure 3c. Following the setting
in Sec. 5, we evaluate the text window size from 5
seconds to 9 seconds, and got the following accu-
racies:32.1%, 29.6%, 41.5%, 28.2%, 34.4%. We
achieved best results with text window size as 7
seconds, and used this in rest of the experiments.

Joint lv-LSTM Model Our final lv-LSTM
model combines the best vision and language
models: V-CNN-LSTM and L-Char-LSTM. For
the vision and language models, we can extract
features Fv and Fl from V-CNN-LSTN and L-
Char-LSTM, respectively. Then we concatenate
Fv and Fl, and feed it into a 2-layer MLP. The
completed model is shown in Figure 3d. We ex-
pect there is room to improve this approach, by
using more involved representations, e.g., Bilinear
Pooling (Fukui et al., 2016), Memory Networks
(Xiong et al., 2016), and Attention Models (Lu
et al., 2016); this is future work.

7The number of these stop characters is then an encod-
ing of the number of chats in the window. Therefore, the
L-Char-LSTM could learn to use this #chats information, if
it is a useful feature. Also, some content has been deleted by
Twitch.tv or the channel itself due to the usage of improper
words. We use symbol ”\n” to replace such cases.

Method Data UF P R F
L-Char-LSTM C 100% 0.11 0.99 19.6
L-Char-LSTM C last 25% 0.35 0.51 41.5
L-Word-LSTM C last 25% 0.10 0.99 19.2
V-CNN V 100% 0.40 0.93 56.2
V-CNN V last 25% 0.57 0.74 64.0
V-CNN-LSTM V last 25% 0.58 0.82 68.3
lv-LSTM C+V last 25% 0.77 0.72 74.8

Table 2: Ablation Study: Effects of various mod-
els. C:Chat, V:Video, UF: % of frames Used in
highlight clips as positive training examples; P:
Precision, R: Recall, F: F-score.

5 Experiments and Results

Training Details In development and ablation
studies, we use train and val splits of the data from
NALCS to evaluate models in Section 3. For the
final results, models are retrained on the combina-
tion of train and val data (following major vision
benchmarks e.g. PASCAL-VOC and COCO), and
performance is measured on the test set. We sepa-
rate the highlight prediction to three different tasks
based on using different input data: videos, chats,
and videos+chats. The details of dataset split are
in Section 3. Our code is implemented in PyTorch.

To deal with the large number of frames total,
we sample only 5k positive and 5k negative exam-
ples in each epoch. We use batch size of 32 and
run 60 epochs in all experiments. Weight decay is
10�4 and learning rate is set as 10�2 in the first 20
epochs and 10�3 after that. Cross entropy loss is
used. Highlights are generated by fans and consist
of clips. We match each clip to when it happened
in the full match and call this the highlight clip
(non-overlapping). The action of interest (kill, ob-
jective control, etc.) often happens in the later part
of a highlight clip, while the clip contains some
additional context before that action that may help
set the stage. For some of our experimental set-
tings (Table 2), we used a heuristic of only includ-
ing the last 25% frames in every highlight clip as
positive training examples. During evaluation, we
used all frames in the highlight clip.

Ablation Study Table 2 shows the performance
of each module separately on the dev set. For
the basic L-Char-LSTM and V-CNN models, us-
ing only the last 25% of frames in highlight clips
in training works best. In order to evaluate the per-
formance of L-Char-LSTM model, we also train a
Word-LSTM model by tokenizing all the chats and

Method Data NALCS LMS
L-Char-LSTM chat 43.2 39.7
V-CNN-LSTM video 72.2 69.2
lv-LSTM chat+video 74.7 70.0

Table 3: Test Results on the NALCS (English) and
LMS (Traditional Chinese) datasets.

only considering the words that appeared more
than 10 times, which results in 10019 words. We
use this vocabulary to encode the words to 1-hot
vectors. The L-Char-LSTM outperforms L-Word-
LSTM by 22.3%.

Test Results Test results are shown in Table 3.
Somewhat surprisingly, the vision only model is
more accurate than the language only model, de-
spite the real-time nature of the comment stream.
This is perhaps due to the visual form of the game,
where highlight events may have similar anima-
tions. However, including language with vision in
the lv-LSTM model significantly improves over
vision alone, as the comments may exhibit addi-
tional contextual information. Comparing results
between ablation and the final test, it seems more
data contributes to higher accuracy. This effect is
more apparent in the vision models, perhaps due
to complexity. Moreover, L-Char-LSTM performs
better in English compared to traditional Chinese.
From the numbers given in Section 3, variation in
the number of chats in NALCS was much higher
than LMS, which one may expect to have a critical
effect in the language model. However, our results
seem to suggest that the L-Char-LSTM model can
pickup other factors of the chat data (e.g. content)
instead of just counting the number of chats. We
expect a different language model more suitable
for the traditional Chinese language should be able
to improve the results for the LMS data.

6 Conclusion

We presented a new dataset and multimodal meth-
ods for highlight prediction, based on visual cues
and textual audience chat reactions in multiple lan-
guages. We hope our new dataset can encourage
further multilingual, multimodal research.
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Thoughts/Challenges/Future Work 
•  Longer ambiguities and more structured knowledge for robotic tasks 
•  Strengths vs limitations of large-scale BERT/LXMERT pretraining 
•  Contrasting structured knowledge versus large-scale BERT/LXMERT pretraining?  
•  Multilingual extensions of TVQA and Video-Dialogue 
•  Multilingual+Multimodal LXMERT 
•  Adding other modalities such as speech and non-verbal cues 
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