Knowledgeable and Dynamic Spatio-Temporal Language+Vision+Robotics

Mohit Bansal

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

(Lantern-EMNLP 2019 Workshop)

Beyond-Vision-Language's Diverse Requirements

- Workshop theme: "work which goes beyond the task-specific integration of language and vision. That is, to leverage knowledge from external sources that are either provided by an environment or some fixed knowledge"
 - First we will talk about MTL and RL work that incorporates auxiliary knowledge such as entailment, video-generation, and saliency for video captioning style tasks (+AutoSeM)
 - Next, we will discuss our recent LXMERT framework that brings in external knowledge on both text and vision sides (as pretraining tasks) to do visual reasoning as new non-pretraining task
 - Spatial navigation w/ generalizable knowledge via unseen room+instruction data-augmentation
 - Commonsense reasoning for executing incomplete/ambiguous robotic instructions
 - 2nd part of the talk will briefly mention dynamic spatio-temporal knowledge for multimodal NLP:
 - Video- and subtitle-based multimodal QA task with spatial+temporal localization
 - Video-based dialogue dataset and task

External Knowledge and Commonsense

Auxiliary Knowledge via Multi-Task Learning

- MTL: Paradigm to improve generalization performance of a task using related tasks.
- The multiple tasks are learned in parallel (alternating optimization mini-batches) while using certain shared model representations/parameters.
- Each task benefits from extra information in the training signals of related tasks.
- Useful survey+blog by Sebastian Ruder for details of diverse MTL papers!

Auxiliary Knowledge in Video Captioning

 Multi-Task & Reinforcement Learning for Entailment+Saliency Knowledge/Control in NLG (Video Captioning, Document Summarization, and Sentence Simplification)

Ground truth: A woman is slicing a red pepper.SotA Baseline: A woman is slicing a carrot.Our model: A woman is slicing a pepper.

Ground truth: A group of boys are fighting.SotA Baseline: A group of men are dancing.Our model: Two men are fighting.

Document: top activists arrested after last month 's antigovernment rioting are in good condition, a red cross official said saturday. Ground-truth: arrested activists in good condition says red cross SotA Baseline: red cross says it is good condition after riots Our model: red cross says detained activists in good condition

Document: canada 's prime minister has dined on seal meat in a gesture of support for the sealing industry . Ground-truth: canadian pm has seal meat SotA Baseline: canadian pm says seal meat is a matter of support Our model: canada 's prime minister dines with seal meat

Auxiliary Knowledge in Video Captioning

• Many-to-Many Multi-Task Learning for Video Captioning (with Video and Entailment Generation)

Results (YouTube2Text)

Models	METEOR	CIDEr-D	ROUGE-L	BLEU-4
Previous Wo	RK			
LSTM-YT (Venugopalan et al., 2015b)	26.9	-	-	31.2
S2VT (Venugopalan et al., 2015a)	29.8	-	-	-
Temporal Attention (Yao et al., 2015)	29.6	51.7	-	41.9
LSTM-E (Pan et al., $2016b$)	31.0	_	_	45.3
Glove + DeepFusion (Venugopalan et al., 2016)	31.4	_	-	42.1
p-RNN (Yu et al., 2016)	32.6	65.8	_	49.9
HNRE + Attention (Pan et al., 2016a)	33.9	-	-	46.7
Our Baselin	ES			
Baseline (V)	31.4	63.9	68.0	43.6
Baseline (G)	31.7	64.8	68.6	44.1
Baseline (I)	33.3	75.6	69.7	46.3
Baseline + Attention (V)	32.6	72.2	69.0	47.5
Baseline + Attention (G)	33.0	69.4	68.3	44.9
Baseline + Attention (I)	33.8	77.2	70.3	49.9
Baseline + Attention (I) (E) \otimes	35.0	84.4	71.5	52.6
Our Multi-Task Lear	NING MODEL	S	·	·
\otimes + Video Prediction (1-to-M)	35.6	88.1	72.9	54.1
\otimes + Entailment Generation (M-to-1)	35.9	88.0	72.7	54.4
\otimes + Video Prediction + Entailment Gener (M-to-M)	36.0	92.4	72.8	54.5

* All models (1-to-M, M-to-1 and M-to-M) stat. signif. better than strong SotA baseline.

Human Evaluation

- Pilot human evaluations on 300-sized samples
- Multi-task model > strong non-multitask baseline on relevance and coherence/fluency (for both video captioning and entailment generation)

	YouTuk	pe2Text	Entai	lment
	Relev.	Coher.	Relev.	Coher.
Not Distinguish.	70.7%	92.6%	84.6%	98.3%
SotA Baseline Wins	12.3%	1.7%	6.7%	0.7%
Multi-Task Wins	17.0%	5.7%	8.7%	1.0%

Auxiliary Knowledge via RL

• RL Reward = Entailment-corrected phrase-matching metrics such as CIDEr → CIDEnt

Ground-truth caption	Generated (sampled) caption	CIDEr	Ent
a man is spreading some butter in a pan	puppies is melting butter on the pan	140.5	0.07
a panda is eating some bamboo	a panda is eating some fried	256.8	0.14
a monkey pulls a dogs tail	a monkey pulls a woman	116.4	0.04
a man is cutting the meat	a man is cutting meat into potato	114.3	0.08
the dog is jumping in the snow	a dog is jumping in cucumbers	126.2	0.03
a man and a woman is swimming in the pool	a man and a whale are swimming in a pool	192.5	0.02

Auxiliary Knowledge in Language Generation

• Multi-Task & Reinforcement Learning with Entailment+Saliency Knowledge for Summarization

[Guo, Pasunuru, and Bansal, ACL 2018; Pasunuru and Bansal, NAACL 2018]

Auxiliary Knowledge in Language Generation

Input Document: celtic have written to the scottish football association in order to gain an 'understanding' of the refereeing decisions during their scottish cup semi-final defeat by inverness on sunday . the hoops were left outraged by referee steven mclean 's failure to award a penalty or red card for a clear handball in the box by josh meekings to deny leigh griffith 's goal-bound shot during the first-half . caley thistle went on to win the game 3-2 after extra-time and denied rory delia 's men the chance to secure a domestic treble this season . celtic striker leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings after the restart for scything down marley watkins in the area . greg tansey duly converted the resulting penalty . edward ofere then put caley thistle ahead , only for john guidetti to draw level for the bhoys . with the game seemingly heading for penalties , david raven scored the winner on 117 minutes , breaking thousands of celtic hearts . celtic captain scott brown -lrb- left -rrb- protests to referee steven mclean but the handball goes unpunished . griffiths shows off his acrobatic skills during celtic 's eventual surprise defeat by inverness . celtic pair aleksandar tonev -lrb-left -rrb- and john guidetti look dejected as their hopes of a domestic treble end .

Ground-truth Summary: celtic were defeated 3-2 after extra-time in the scottish cup semi-final . leigh griffiths had a goal-bound shot blocked by a clear handball. however, no action was taken against offender josh meekings. the hoops have written the sfa for an 'understanding' of the decision .

See et al. (2017): john hartson was once on the end of a major hampden injustice while playing for celtic . but he can not see any point in his old club writing to the scottish football association over the latest controversy at the national stadium . hartson had a goal wrongly disallowed for offside while celtic were leading 1-0 at the time but went on to lose 3-2.

Our Baseline: john hartson scored the late winner in 3-2 win against celtic . celtic were leading 1-0 at the time but went on to lose 3-2 . some fans have questioned how referee steven mclean and additional assistant alan muir could have missed the infringement .

Our Multi-task Summary: celtic have written to the scottish football association in order to gain an 'understanding 'of the refereeing decisions . the hoops were left outraged by referee steven mclean 's failure to award a penalty or red card for a clear handball in the box by josh meekings . celtic striker leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings .

Auxiliary Knowledge in Language Generation

Code: https://github.com/HanGuo97/MultitaskSimplification

AutoSeM: Automatic Auxiliary Task Selection+Mixing

Left: the multi-armed bandit controller used for task selection, where each arm represents a candidate auxiliary task. The agent iteratively pulls an arm, observes a reward, updates its estimates of the arm parameters, and samples the next arm. Right: the Gaussian Process controller used for automatic mixing ratio (MR) learning. The GP controller sequentially makes a choice of mixing ratio, observes a reward, updates its estimates, and selects the next mixing ratio to try, based on the full history of past observations.

Code: https://github.com/HanGuo97/AutoSeM

Large-Scale XModal Pretraining MTL Knowledge: LXMERT

LXMERT brings in external knowledge on text, vision and cross-modal matching sides for MTL (as
pretraining tasks in MTL setup): vision-lang transformers with 3 encoders: (object relations, language,
cross-modal) & 5 pretraining tasks: masked-LM, masked-Object-Prediction (feature regression+label
classification), cross-modality matching, image-QA (SotA on several vision-language tasks!)

Large-Scale XModal Pretraining MTL Knowledge: LXMERT

TO

Overall

-

By Answer Type

Other

Number

Yes/No

NLVR² Leaderboard

NLVR² presents the task of determining whether a natural language sentence is true about a pair of photographs.

	photographs.							MIL@HDU ^[11]	90.33	58.91	65.91	75.26
Rank	Model	Dev.	Test-P	Test-U	Test-U			MSM@MSRA ^[15]	89.74	59.01	65.89	75.01
_		(ACC)	(/(00)	(ACC)	(00113)			LXRT ^[13]	89.33	57.29	65.32	74.38
	Human Performance Cornell University	96.2	96.3	96.1				XFZ ^[23]	87.86	57.87	64.3	73.35
	(Suhr et al. 2019)							AIOZ ^[4]	87.99	56.16	63.93	73.04
1	LXMERT	74.9	74.5	76.2	42.1			ks_vqa ^[32]	87.97	55.17	63.97	72.94
Aug 20, 2019	(Tan and Bansal 2019)							THEQS ^[20]	87.99	54.67	63.87	72.84
2	VisualBERT	67.4	67.0	67.3	26.9			MS D365 AI ^[14]	87.87	56.23	63.08	72.59
Aug 11, 2019	UCLA & AI2 & PKU (Li et al. 2019)							HappyTeam ^[12]	87.95	54.49	62.21	72.03
3	MaxEnt	54.1	54.8	53.5	12.0			BAN ^[5]	86.86	54.92	62.36	71.69
Nov 1, 2018	Cornell University							fm ^[28]	86.44	54.47	62.7	71.62
	(Guilli Brail, 2013)							vna team teuh[36]	86.5	54.2	62.7	71.62
4 Nov 1, 2018	CNN+RNN Cornell University	53.	Viz	Wiz	-	Participant team 👙	yes/no 🗧	¢ number ≑	other 😄	53.7	62.62	71.52
	(Suhr et al. 2019)			1	L	LXMERT (LXR955, No Ensemble)	74.00	24.76	39.00	53.7	62.62	71.51
5 Nov 1, 2018	FiLM MILA, ran by Cornell	5		2		fur yaa	71.19	26.90	27.60	53.6	62.52	71.39
	University			Z		IM_Y4a_	71.10	20.90	37.00	53.52	62.49	71.39
	(Perez et al. 2018)			3		Gail-VisQA-Ultra (B-Ultra)	68.12	28.81	35.41	53.66	62.49	71.37
6 Nov 1, 2018	Image Only (CNN) Cornell University	51.		4		BAN (BAN)	68.12	17.86	31.50	53.51	62.51	71.36
	(Suhr et al. 2019)			E			E9.01	20.24	26.07	54.76	61.63	71.15
7	N2NMN, policy search	51.	-	J		22	58.91	20.24	20.97	52.89	62.12	70.98
Nov 1, 2018	UC Berkeley, ran by			6		hdhs	56.61	22.14	26.83			
	Cornell University (Hu et al. 2017)			7		Colin	59.85	20.24	23.70			

Large-Scale XModal Pretraining MTL Knowledge: LXMERT

ΧQ

Overall

~

By Answer Type

Other

Number

Yes/No

NLVR² Leaderboard

NLVR² presents the task of determining whether a natural language sentence is true about a pair of photographs.

	photographs.							MIL@HDU ^[11]	90.33	58.91	65.91	75.26
Rank	Model	Dev.	Test-P	Test-U	Test-U			MSM@MSRA ^[15]	89.74	59.01	65.89	75.01
		(ACC)	(ACC)	(////	(00113)			LXRT ^[13]	89.33	57.29	65.32	74.38
	Human Performance Cornell University	96.2	96.3	96.1	•			XFZ ^[23]	87.86	57.87	64.3	73.35
	(Suhr et al. 2019)							AIOZ ^[4]	87.99	56.16	63.93	73.04
1 Aug 20, 2019	LXMERT	74.9	74.5	76.2	42.1			ks_vqa ^[32]	87.97	55.17	63.97	72.94
Hug 20, 2010	(Tan and Bansal 2019)							THEQS ^[20]	87.99	54.67	63.87	72.84
2	VisualBERT	67.4	67.0	67.3	26.9			MS D365 AI ^[14]	87.87	56.23	63.08	72.59
Aug 11, 2019	UCLA & AI2 & PKU (Li et al. 2019)							HappyTeam ^[12]	87.95	54.49	62.21	72.03
3	MaxEnt	54.1	54.8	53.5	12.0			BAN ^[5]	86.86	54.92	62.36	71.69
Nov 1, 2018	Cornell University (Subriet al. 2019)							fm ^[28]	86.44	54.47	62.7	71.62
	0111101111		• •					voa team teub[36]	86.5	54.2	62.7	71.62
4 Nov 1, 2018	Conn+RNN Cornell University	53.	Viz	ŴĬz	_	Participant team 👙	yes/no 🗧	¢ number ≎	other 🌲	53.7	62.62	71.52
	(Suhr et al. 2019)			1		LXMERT (LXR955, No Ensem	ble) 74.00	24.76	39.00	53.7	62.62	71.51
5 Nov 1, 2018	FiLM MILA, ran by Cornell	5		2		fw yaa	71.19	26.90	37.60	53.6	62.52	71.39
100 1, 2010	University		_	2		Tw_vqa_	71.10	20.90	37.00	53.52	62.49	71.39
	(Perez et al. 2018)			3		Gail-VisQA-Ultra (B-Ultra)	68.12	28.81	35.41	53.66	62.49	71.37
6 Nov 1, 2018	Image Only (CNN) Cornell University (Suhr et al. 2019)	51.		4		BAN (BAN)	68.12	17.86	31.50	53.51	62.51	71.36
7	N2NMN, policy search	51.		5		SS	See Hao's	s talk on N	ov713	Onm! (with s	everal
Nov 1, 2018	from scratch UC Berkeley, ran by			6		hdhs	vigualizat	ions and a	blations	and ch	allanc	
	Cornell University (Hu et al. 2017)			7		Colin	visualizat	ions and a	viations	and Ch	anch	300)!

Spatial Navigation w/ Generalizable Knowledge

 Learning to Navigate Unseen Environments: Back Translation with Environmental Dropout (to create new rooms with view and viewpoint consistency; generate instructions for new rooms; use generated room-instruction data in semi-supervised setup)

Spatial Navigation w/ Generalizable Knowledge

ank 🝦	Participant team 🝦	length 👙	error 🌲	oracle success 👙	SUCCESS 👙	spl 🍦	Last submission at $_{\oplus}$
1	human	11.85	1.61	0.90	0.86	0.76	1 year ago
2	Back Translation with Environmental Dropout (with Beam Search) (null)	686.82	3.26	0.99	0.69	0.01	10 months ago
3	vBot (Greedy)	10.24	3.76	0.71	0.65	0.62	3 months ago
4	Back Translation with Environmental Dropout (exploring unseen environments before testing)	9.79	3.97	0.70	0.64	0.61	10 months ago
5	Reinforced Cross-Modal Matching (optimized for SR; with beam search)	357.62	4.03	0.96	0.63	0.02	10 months ago
6	sjtu_test (null)	1,228.45	3.98	0.97	0.62	0.01	10 months ago
7	Self-Monitoring Navigation Agent (with beam search) (Self-Aware Co-Grounded Model)	373.09	4.48	0.97	0.61	0.02	1 year ago
8	Tactical Rewind - long	196.53	4.29	0.90	0.61	0.03	9 months ago
9	Reinforced Cross-Modal Matching + SIL (exploring unseen environments before testing) (SIL-R2)	9.48	4.21	0.67	0.60	0.59	10 months ago
10	AAEI-Agent	13.16	4.61	0.65	0.57	0.50	2 months ago
11	test-sf	10.99	4.57	0.65	0.57	0.50	5 months ago
12	PreSS (Greedy)	10.52	4.53	0.63	0.57	0.53	4 months ago
13	tourist (null)	1,214.94	4.57	0.96	0.56	0.01	11 months ago
14	Tactical Rewind - short	22.00	5.1.4	0.64	0.54	0.41	10 months are
15	Speaker-Follower (optimized for success rate) (Speaker-Follower)	till sev	eral	challeng	ges/lc	ng	way to go,
16	Kjtest-sp b	ottor al	aiaat	dataata	ra dir		

https://drive.google.com/file/d/1C9xsuyW1bVBzLimvVFbBfOcKCzV5ueHs/view

https://drive.google.com/file/d/1C9xsuyW1bVBzLimvVFbBfOcKCzV5ueHs/view

Video-based Dynamic Context and Spatial-Temporal Localization TVQA (videos with audio and subtitles)

TVQA (videos with audio and subtitles)

 Largest video-QA dataset with 6 video categories/genres, videos+subtitles QA, compositional, spatio-temporal localization (timestamps + bounding boxes)

TVQA Compositionality (Localization + VQA)

62s

0s

Write a question:

What is Sheldon holding when he is talking to Howard about swords?

What is Sheldon holding when he is talking to Howard about swords?

A computer

A comic book
 A sword
 A toy train
 A drink

Mark the START and END timestamps:

						Me	ethod (how)	Reasoning	(why)
Show	Genre	#Sea.	#Epi.	#Clip	#QA	0	others	5%	ocation (where)
BBT	sitcom	10	220	4,198	29,384	_	6 5%		(where)
Friends	sitcom	10	226	$5,\!337$	$37,\!357$		0.370	10%	
HIMYM	sitcom	5	72	$1,\!512$	$10,\!584$	Abstract (what)	21.5%	1.50/	
Grey	medical	3	58	$1,\!427$	$9,\!989$	Abstract (what)	21.370	15%	Person (who)
House	medical	8	176	$4,\!621$	$32,\!345$				
Castle	crime	8	173	$4,\!698$	$32,\!886$		17.5%	15%	
Total		44	925	21,793	$152,\!545$	- Object	(what)	A	ction (what)
						- 00jeet	(what)		

Detect	V Sro	OTuna	#Cling / #OAg	Avg.	Total	Q.	Src.	Timestamp
Dalasel	v. 51C.	QType	#Clips / #QAS	Len.(s)	Len.(h)	text	video	annotation
MovieFIB	Movie	OE	118.5k / 349k	4.1	135	\checkmark	-	-
Movie-QA	Movie	MC	6.8k / 6.5k	202.7	381	\checkmark	-	\checkmark
TGIF-QA	Tumblr	OE&MC	71.7k / 165.2k	3.1	61.8	\checkmark	\checkmark	-
Pororo-QA	Cartoon	MC	16.1k / 8.9k	1.4	6.3	\checkmark	\checkmark	-
TVQA (our)	TV show	MC	21.8k / 152.5k	76.2	461.2	\checkmark	\checkmark	\checkmark

TVQA Models

Multiple streams (video, subtitle), each stream deals with different contextual input

TVQA Results

		Video	Test Ac	ecuracy	A
	Method	Feature	w/o ts	w/ ts	tes
0	Random	-	20.00	20.00	
1	Longest Answer	-	30.41	30.41	V1
2	Retrieval-Glove	-	22.48	22.48	reg
3	Retrieval-SkipThought	-	24.24	24.24	CO
4	Retrieval-TFIDF	-	20.88	20.88	CO
5	NNS-Glove Q	-	22.40	22.40	
6	NNS-SkipThought Q	-	23.79	23.79	
7	NNS-TFIDF Q	-	20.33	20.33	
8	NNS-Glove S	-	23.73	29.66	
9	NNS-SkipThought S	-	26.81	37.87	
10	NNS-TFIDF S	-	49.94	51.23	
11	Our Q	_	43.34	43.34	
12	Our V+Q	img	42.67	43.69	Question only
13	Our V+Q	reg	42.75	44.85	Add Widoo
14	Our V+Q	cpt	43.38	45.41	Aud video
15	Our S+Q	-	63.14	66.23	Add Subtitle
16	Our S+V+Q	img	63.57	66.97	
17	Our S+V+Q	reg	63.19	67.82	Add Video, Su
18	Our S+V+Q	cpt	65.46	68.60	J

Accuracy for different methods on TVQA test set. Q = Question, S = Subtitle, V =Video, img = ImageNet features, reg = regional visual features, cpt = visual concept features, ts = timestamp annotation.

> Both visual and textual information are important!

dd Video, Subtitle

TVQA Results

		Video	Test Ac	ecuracy
	Method	Feature	w/o ts	w/ts
0	Random	-	20.00	20.00
1	Longest Answer	-	30.41	30.41
2	Retrieval-Glove	-	22.48	22.48
3	Retrieval-SkipThought	-	24.24	24.24
4	Retrieval-TFIDF	-	20.88	20.88
5	NNS-Glove Q	-	22.40	22.40
6	NNS-SkipThought Q	-	23.79	23.79
7	NNS-TFIDF Q	-	20.33	20.33
8	NNS-Glove S	-	23.73	29.66
9	NNS-SkipThought S	-	26.81	37.87
10	NNS-TFIDF S	-	49.94	51.23
11	Our Q	-	43.34	43.34
12	Our V+Q	img	42.67	43.69
13	Our V+Q	reg	42.75	44.85
14	Our V+Q	cpt	43.38	45.41
15	Our S+Q	-	63.14	66.23
16	Our S+V+Q	img	$\overline{63.57}$	66.97
17	Our S+V+Q	reg	63.19	67.82
18	Our S+V+Q	cpt	65.46	68.60

Accuracy for different methods on TVQA test set. Q = Question, S = Subtitle, V = Video, img = ImageNet features, reg = regional visual features, cpt = visual concept features, ts = timestamp annotation.

Timestamp information is helpful! But still several challenges/ long way to go from human performance 90%!

TVQA Leaderboard

			With Timestan	np Anno	tation 🤣				
	Rank	Date	Mod	el		Val			
0		Aug 27, 2018	Human Perf	ormance		93.44	91.95		
0	1	Mar 22, 2019	ZGF (sin				Without Timestamp Annotation 😣		
0	2	Aug 27, 2018	multi-stream mo						
•	3	Aug 27, 2018	NNS-1		Rank	Date	Model	Val 🚽	Test-Public
0	4	Aug 27, 2018	NNS-Skir	•		Aug 27, 2018	Human Performance	89.61	89.41
0	5	Aug 27, 2018	Longes	0	1	Mar 22, 2019	STAGE (span) (single model)	70.50	70.23
•	6	Aug 27, 2018	Retrieval-	0	2	Mar 22, 2019	ZGF (single model)	68.90	68.77
•	7	Aug 27, 2018	NNS-Skir	0	3	Dec 14, 2018	Multi-task learning, sub+vcpt (single model)	66.22	67.05
0	8	Aug 27, 2018	Rai	0	4	Apr 3, 2019	PAMN_subvcpt (single model)	66.38	66.77
				0	5	Aug 27, 2018	multi-stream model (single model)	65.85	66.46
				0	6	Aug 27, 2018	NNS-TFIDF-S	50.33	49.59
				0	7	Aug 27, 2018	Longest Answer	29.59	30.22
				0	8	Aug 27, 2018	NNS-SkipThought-S	27.50	26.93
				0	9	Aug 27, 2018	Retrieval-SkipThought	22.95	24.27
				0	10	Aug 27, 2018	NNS-SkipThought-Q	23.87	23.39

0

11

Aug 27, 2018

Random

20.00

20.00

TVQA+ (spatial localization: bounding box annotations)

Question: What is Sheldon holding when he is talking to Howard about the sword? Correct Answer: A computer.

Question: Who is talking to Howard when he is in the kitchen upset? Correct Answer: Raj is talking to Howard.

Video-based Dialogue

Generating chat responses given both video and previous dialogue history: •

2:36:07

2:36:19

2:36:20

2:36:21

2:36:21

2:36:22

L7Gasm : unsub

and make a good game

K 🐼 Moobot : 11 - 4

boost turned on?

Anselm2 : yeah me too

2:36:19 melvin109 : !record

M

2:36:10 Flame_96 : then maybe ea would wake up

A L7Gasm : JK i love u @InceptionXx

static background noise, have you got mic

Matt344 : @Flame_96 Imagine

everyone PTB, most games on Champions

: Your mic is picking up a lot of

- Unique Twitch language: •
 - Time-constrained, not just space •
 - Lots of special vocab, symbols, emoticons .
 - Multi-user with several interleaving turns ٠
 - Multi-lingual •

Video + Chat based Context

S2: Lol that finish bro S3: suprised you didn't S4: @S10 a drunk bet? S5: @S11 thanks mate S6: could have passed

The task is to predict the response (bottomright) using the video context (left) and the

[Pasunuru and Bansal, EMNLP 2018]

Multilingual Video Summary/Highlight Prediction

- Sports video portals offer an exciting domain for research on multimodal, multilingual analysis.
- Automatic video highlight prediction based on joint video and textual chat features from the realworld audience discourse with complex slang, in both English and Chinese.

Table 3: Test Results on the NALCS (English) and LMS (Traditional Chinese) datasets.

[Fu, Lee, Bansal, Berg, EMNLP 2017]

Thoughts/Challenges/Future Work

- Longer ambiguities and more structured knowledge for robotic tasks
- Strengths vs limitations of large-scale BERT/LXMERT pretraining
- Contrasting structured knowledge versus large-scale BERT/LXMERT pretraining?
- Multilingual extensions of TVQA and Video-Dialogue
- Multilingual+Multimodal LXMERT
- Adding other modalities such as speech and non-verbal cues

HOME PEOPLE PUBLICATIONS SOFTWARE/DATA SPONSORS TEACHING COLLOQUIA JOIN PHOTOS

Welcome to the UNC-NLP Research Group

Our lab has research interests in statistical natural language processing and machine learning, with a focus on multimodal, grounded, and embodied semantics (i.e., language with vision and speech, for robotics), human-like language generation and Q&A/dialogue, and interpretable and structured deep learning. We are a group of PhD, MS, BS, and visiting students who work with Prof. Mohit Bansal and collaborators in the Computer Science department (lab located in Brooks Building FB-241C) at the University of North Carolina (UNC) Chapel Hill.

News

Aug 2019 Congrats to Peter Hase for the Royster Society PhD Fellowship! Aug 2019 5 new papers in EMNLP 2019. July 2019 Congrats to Hyounghun for ACL 2019 Best Short Paper Nomination! Award. July 2019 We have a Postdoc opening - please apply! July 2019 Thanks for the NSF-CAREER Award (details). July 2019 Thanks for the Google Focused Research Award (details). May 2019 6 new papers in ACL 2019. Apr 2019 Congrats to Darryl Hannan for the 3-year NSF PhD Fellowship! (link). Mar 2019 Congrats to Hao Tan for 1st Rank on the Room-to-Room Vision-Language-Navigation Leaderboard! Feb 2019 5 new papers: 3 in NAACL 2019, 1 in CVPR 2019, 1 in ICRA 2019. Jan 2019. Congrats to Ramakanth Pasunuru for being awarded the 2year Microsoft Research PhD Fellowship!

Mar 2018. Thanks to Adobe for the Adobe Research Award. Feb 2018. 9 new 2018 papers in NAACL, CVPR, AAAI, WACV. Sept 2017. Thanks to DARPA for the DARPA Young Faculty Award (link). Sept 2017. Thanks to Facebook for the Facebook ParIAI Research Award.

July 2017. 3 papers at EMNLP 2017 and 2 papers at the Summarization-Frontiers and RepEval workshops.

June 2017. Top single model results on the <u>RepEval-NLI Shared Task</u> at EMNLP 2017 (congrats Yixin!).

June 2017. Outstanding Paper Award at ACL 2017 (congrats Ram!).

Feb 2017. Thanks to Google for a Google Faculty Research Award (link).

Nov 2016. 3 papers on navigational instruction generation, coherent dialogue w/ attn-LMs, and on context-RNN-GAN models to appear at AAAI 2017 and HRI 2017.

July 2016. 5 papers to appear at EMNLP 2016: visual story sorting, visual question relevance, neural network interpretation (for

Tweets by @uncnip UNC NLP Retweeted emnip2019

@emnlp2019

Registration for EMNLP 2019 will open in a few days. In the meantime, you can have a look at the registration fees for the conference.emnlpijcnlp2019.org/registration/

θ

EMNLP-IJCNLP 2019 Registration Fees

Туре	Register	Full package	Main conference	Main + 1 Day	1 Day	2 Days
Regular	Early	\$995	\$685	\$825	\$220	\$330
	Late	\$1120	\$800	\$1075	\$275	\$415
	Onsite	\$1315	\$905	\$1235	\$330	\$495

PhD Students

Lisa Bauer PhD at UNC

Hyounghun Kim PhD at UNC (co-advised w/ H. Fuchs)

Darryl Hannan PhD at UNC

Peter Hase PhD at UNC

Yichen Jiang PhD at UNC

Adyasha Maharana PhD at UNC

Yixin Nie PhD at UNC

Ramakanth Pasunuru PhD at UNC

Swarnadeep Saha PhD at UNC

Hao Tan PhD at UNC

Shiyue Zhang PhD at UNC

Yubo Zhang PhD at UNC (co-advised w/ A. Tropsha)

Xiang Zhou PhD at UNC

Tsion Coulter UG at UNC

Han Guo UG at UNC

Akshay Jain UG at UNC

Antonio Mendoza UG at UNC

Yicheng Wang UG at UNC

Songhe Wang UG at UNC

Sweta Karlekar UG at UNC

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Thank you!

Webpage: http://www.cs.unc.edu/~mbansal/

Email: <u>mbansal@cs.unc.edu</u>

UNC-NLP Lab: http://nlp.cs.unc.edu/

Postdoc Openings!!: <u>~mbansal/postdoc-advt-unc-nlp.pdf</u>