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Auxiliary Knowledge via Multi-Task Learning 
•  MTL: Paradigm to improve generalization performance of a task using related tasks. 

•  The multiple tasks are learned in parallel (alternating optimization mini-batches) while 
using shared model representations/parameters. 

•  Each task benefits from extra information in the training signals of related tasks.  

 

•  Useful survey+blog by Sebastian Ruder for details of diverse MTL papers! 

[Caruana, 1998; Argyriou et al., 2007; Kumar and Daume, 2012; Luong et al., 2016; Ruder, 2017] 



Auxiliary Knowledge in Language Generation 
•  Multi-Task & Reinforcement Learning for Entailment+Saliency Knowledge/Control in NLG (Video 

Captioning, Document Summarization, and Sentence Simplification) 

Document: top activists arrested after last month 's anti-
government rioting are in good condition , a red cross 
official said saturday .
Ground-truth: arrested activists in good condition says red 
cross
SotA Baseline: red cross says it is good condition after riots
Our model: red cross says detained activists in good 
condition

Document: canada 's prime minister has dined on seal meat 
in a gesture of support for the sealing industry .
Ground-truth: canadian pm has seal meat
SotA Baseline: canadian pm says seal meat is a matter of 
support
Our model: canada 's prime minister dines with seal meat



Auxiliary Knowledge in Language Generation 

[Pasunuru and Bansal, ACL 2017 (Outstanding Paper Award)] 

•  Many-to-Many Multi-Task Learning for Video Captioning (with Video and Entailment Generation) 

UNSUPERVISED
VIDEO PREDICTION

VIDEO CAPTIONING
ENTAILMENT
GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM



Results (YouTube2Text) 

* All models (1-to-M, M-to-1 and M-to-M) stat. signif. better than strong SotA baseline. 
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Results (MSR-VTT) 
•  Diverse video clips from a commercial video search engine 
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M-to-1 Multi-Task Model 

UNSUPERVISED
VIDEO PREDICTION

VIDEO CAPTIONING
ENTAILMENT
GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Results (Entailment Generation) 
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•  Video captioning mutually also helps improve the entailment-generation task 
in turn (w/ statistical significance)  

 
•  New multi-reference split setup of SNLI to allow automatic metric evaluation 

and a zero train-test premise overlap 



Human Evaluation 
•  Multi-task model > strong non-multitask baseline on relevance and 

coherence/fluency (for both video captioning and entailment generation) 
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Analysis Examples 

(a)  complex examples where the multi-task model performs better than baseline 

11	



Analysis Examples 

(b) ambiguous examples (i.e., ground truth itself confusing) where multi-task 
model still correctly predicts one of the possible categories 
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Analysis Examples 

(c) complex examples where both models perform poorly 
 

(d) baseline > MTL: both correct but low specificity 

•  Overall, multi-task model’s captions are better at both temporal action prediction and logical 
entailment w.r.t. ground truth captions (ablated examples in paper). 

13	



Auxiliary Knowledge in Language Generation 
•  Reverse Multi-Task Benefits: Improved Entailment Generation 

(a) (b) (c)

Figure 5: Examples of generated video captions on the YouTube2Text dataset: (a) complex examples where the multi-task
model performs better than the baseline; (b) ambiguous examples (i.e., ground truth itself confusing) where multi-task model
still correctly predicts one of the possible categories (c) complex examples where both models perform poorly.

Relevance Coherence
Not Distinguishable 70.7% 92.6%
SotA Baseline Wins 12.3% 1.7%
Multi-Task Wins (M-to-M) 17.0% 5.7%

Table 5: Human evaluation on YouTube2Text video caption-
ing.

Relevance Coherence
Not Distinguishable 84.6% 98.3%
SotA Baseline Wins 6.7% 0.7%
Multi-Task Wins (M-to-1) 8.7% 1.0%

Table 6: Human evaluation on entailment generation.

the multi-task models are always better than the
strongest baseline for both video captioning and
entailment generation, on both relevance and co-
herence, and with similar improvements (2-7%) as
the automatic metrics (shown in Table 1).

5.5 Analysis

Fig. 5 shows video captioning generation re-
sults on the YouTube2Text dataset where our fi-
nal M-to-M multi-task model is compared with
our strongest attention-based baseline model for
three categories of videos: (a) complex examples
where the multi-task model performs better than

Given Premise Generated
Entailment

a man on stilts is playing a tuba for
money on the boardwalk

a man is playing
an instrument

a child that is dressed as spiderman
is ringing the doorbell

a child is dressed
as a superhero

several young people sit at a table
playing poker

people are play-
ing a game

a woman in a dress with two chil-
dren

a woman is wear-
ing a dress

a blue and silver monster truck mak-
ing a huge jump over crushed cars

a truck is being
driven

Table 7: Examples of our multi-task model’s generated en-
tailment hypotheses given a premise.

the baseline; (b) ambiguous examples (i.e., ground
truth itself confusing) where multi-task model still
correctly predicts one of the possible categories
(c) complex examples where both models perform
poorly. Overall, we find that the multi-task model
generates captions that are better at both temporal
action prediction and logical entailment (i.e., cor-
rect subset of full video premise) w.r.t. the ground
truth captions. The supplementary also provides
ablation examples of improvements by the 1-to-M
video prediction based multi-task model alone, as
well as by the M-to-1 entailment based multi-task
model alone (over the baseline).

On analyzing the cases where the baseline is
better than the final M-to-M multi-task model, we
find that these are often scenarios where the multi-
task model’s caption is also correct but the base-
line caption is a bit more specific, e.g., “a man is
holding a gun” vs “a man is shooting a gun”.

Finally, Table 7 presents output examples of our
entailment generation multi-task model (Sec. 5.3),
showing how the model accurately learns to pro-
duce logically implied subsets of the premise.

6 Conclusion

We presented a multimodal, multi-task learning
approach to improve video captioning by incor-
porating temporally and logically directed knowl-
edge via video prediction and entailment genera-
tion tasks. We achieve the best reported results
(and rank) on three datasets, based on multiple au-
tomatic and human evaluations. We also show mu-
tual multi-task improvements on the new entail-
ment generation task. In future work, we are ap-
plying our entailment-based multi-task paradigm



Auxiliary Knowledge in Language Generation 

[Pasunuru and Bansal, EMNLP 2017] 

•  RL Reward = Entailment-corrected phrase-matching metrics such as CIDEr ! CIDEnt 

•  Penalize phrase-matching metric when entailment score is very low 

 

•  Entailment Scorer Details: 

•  SotA decomposable-attention model of Parikh et al. (2016) trained on SNLI corpus (>90% accurate) 
•  Ground-truth as premise and sampled word sequence as hypothesis 
•  Max. of class=entailment probability over multiple ground-truths is used as final entailment score  
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Auxiliary Knowledge in Language Generation 

Ground-truth caption Generated (sampled) caption CIDEr Ent
a man is spreading some butter in a pan puppies is melting butter on the pan 140.5 0.07
a panda is eating some bamboo a panda is eating some fried 256.8 0.14
a monkey pulls a dogs tail a monkey pulls a woman 116.4 0.04
a man is cutting the meat a man is cutting meat into potato 114.3 0.08
the dog is jumping in the snow a dog is jumping in cucumbers 126.2 0.03
a man and a woman is swimming in the pool a man and a whale are swimming in a pool 192.5 0.02

Table 1: Examples of captions sampled during policy gradient and their CIDEr vs Entailment scores.

sequence. We also use a variance-reducing bias

(baseline) estimator in the reward function. Their

details and the partial derivatives using the chain

rule are described in the supplementary.

Mixed Loss During reinforcement learning, op-

timizing for only the reinforcement loss (with au-

tomatic metrics as rewards) doesn’t ensure the

readability and fluency of the generated caption,

and there is also a chance of gaming the metrics

without actually improving the quality of the out-

put (Liu et al., 2016a). Hence, for training our

reinforcement based policy gradients, we use a

mixed loss function, which is a weighted combi-

nation of the cross-entropy loss (XE) and the rein-

forcement learning loss (RL), similar to the previ-

ous work (Paulus et al., 2017; Wu et al., 2016).

This mixed loss improves results on the metric

used as reward through the reinforcement loss

(and improves relevance based on our entailment-

enhanced rewards) but also ensures better read-

ability and fluency due to the cross-entropy loss (in

which the training objective is a conditioned lan-

guage model, learning to produce fluent captions).

Our mixed loss is defined as:

LMIXED = (1− γ)LXE + γLRL (4)

where γ is a tuning parameter used to balance

the two losses. For annealing and faster conver-

gence, we start with the optimized cross-entropy

loss baseline model, and then move to optimizing

the above mixed loss function.2

4 Reward Functions

Caption Metric Reward Previous image cap-

tioning papers have used traditional captioning

metrics such as CIDEr, BLEU, or METEOR as

reward functions, based on the match between the

generated caption sample and the ground-truth ref-

erence(s). First, it has been shown by Vedantam

2We also experimented with the curriculum learning
‘MIXER’ strategy of Ranzato et al. (2016), where the XE+RL
annealing is based on the decoder time-steps; however, the
mixed loss function strategy (described above) performed
better in terms of maintaining output caption fluency.

et al. (2015) that CIDEr, based on a consensus

measure across several human reference captions,

has a higher correlation with human evaluation

than other metrics such as METEOR, ROUGE,

and BLEU. They further showed that CIDEr gets

better with more number of human references (and

this is a good fit for our video captioning datasets,

which have 20-40 human references per video).

More recently, Rennie et al. (2016) further

showed that CIDEr as a reward in image caption-

ing outperforms all other metrics as a reward, not

just in terms of improvements on CIDEr metric,

but also on all other metrics. In line with these

above previous works, we also found that CIDEr

as a reward (‘CIDEr-RL’ model) achieves the best

metric improvements in our video captioning task,

and also has the best human evaluation improve-

ments (see Sec. 6.3 for result details, incl. those

about other rewards based on BLEU, SPICE).

Entailment Corrected Reward Although CIDEr

performs better than other metrics as a reward, all

these metrics (including CIDEr) are still based on

an undirected n-gram matching score between the

generated and ground truth captions. For exam-

ple, the wrong caption “a man is playing football”

w.r.t. the correct caption “a man is playing bas-

ketball” still gets a high score, even though these

two captions belong to two completely different

events. Similar issues hold in case of a negation

or a wrong action/object in the generated caption

(see examples in Table 1).

We address the above issue by using an entail-

ment score to correct the phrase-matching metric

(CIDEr or others) when used as a reward, ensur-

ing that the generated caption is logically implied

by (i.e., is a paraphrase or directed partial match

with) the ground-truth caption. To achieve an ac-

curate entailment score, we adapt the state-of-the-

art decomposable-attention model of Parikh et al.

(2016) trained on the SNLI corpus (image caption

domain). This model gives us a probability for

whether the sampled video caption (generated by

our model) is entailed by the ground truth caption

as premise (as opposed to a contradiction or neu-

Caption Metric Reward: It has been shown by Vedantam

et al., 2015 that CIDEr has a higher correlation with human 

evaluation than other metrics and also gets better with 

more number of references (this is a good fit for our video 

captioning datasets with 20-40 references). We also found 

that CIDEr as a reward achieves the best overall 

improvements.

Entailment Corrected Reward: Traditional evaluation 

metrics are based on undirected n-gram matching score 

between generated and ground truth sentences, hence 

can’t detect subtle wrong/contradictory info (wrong 

object/action, negation).

Reinforced Video Captioning with Entailment Rewards
Ramakanth Pasunuru and Mohit Bansal

Abstract

We show promising improvements on the temporal task of 

video captioning:

• Using policy gradient and mixed-loss methods for 

reinforcement learning to directly optimize sentence-

level task-based metrics (as rewards).

• Introduce a novel entailment-enhanced reward (CIDEnt) 

that corrects phrase-matching based metrics (such as 

CIDEr) to only allow for logically-implied partial matches 

and avoid contradictions.

Reinforced Video Captioning with Entailment Rewards

Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill

{ram, mbansal}@cs.unc.edu

Abstract

Sequence-to-sequence models have shown
promising improvements on the temporal
task of video captioning, but they opti-
mize word-level cross-entropy loss dur-
ing training. First, using policy gra-
dient and mixed-loss methods for re-
inforcement learning, we directly opti-
mize sentence-level task-based metrics (as
rewards), achieving significant improve-
ments over the baseline, based on both
automatic metrics and human evaluation
on multiple datasets. Next, we pro-
pose a novel entailment-enhanced reward
(CIDEnt) that corrects phrase-matching
based metrics (such as CIDEr) to only al-
low for logically-implied partial matches
and avoid contradictions, achieving fur-
ther significant improvements over the
CIDEr-reward model. Overall, our
CIDEnt-reward model achieves the new
state-of-the-art on the MSR-VTT dataset.

1 Introduction

The task of video captioning (Fig. 1) is an im-
portant next step to image captioning, with ad-
ditional modeling of temporal knowledge and
action sequences, and has several applications
in online content search, assisting the visually-
impaired, etc. Advancements in neural sequence-
to-sequence learning has shown promising im-
provements on this task, based on encoder-
decoder, attention, and hierarchical models (Venu-
gopalan et al., 2015a; Pan et al., 2016a). How-
ever, these models are still trained using a word-
level cross-entropy loss, which does not correlate
well with the sentence-level metrics that the task
is finally evaluated on (e.g., CIDEr, BLEU). More-
over, these models suffer from exposure bias (Ran-

Figure 1: A correctly-predicted video caption gen-
erated by our CIDEnt-reward model.

zato et al., 2016), which occurs when a model
is only exposed to the training data distribu-
tion, instead of its own predictions. First, us-
ing a sequence-level training, policy gradient ap-
proach (Ranzato et al., 2016), we allow video
captioning models to directly optimize these non-
differentiable metrics, as rewards in a reinforce-
ment learning paradigm. We also address the ex-
posure bias issue by using a mixed-loss (Paulus
et al., 2017; Wu et al., 2016), i.e., combining the
cross-entropy and reward-based losses, which also
helps maintain output fluency.

Next, we introduce a novel entailment-corrected
reward that checks for logically-directed partial
matches. Current reinforcement-based text gener-
ation works use traditional phrase-matching met-
rics (e.g., CIDEr, BLEU) as their reward func-
tion. However, these metrics use undirected n-
gram matching of the machine-generated caption
with the ground-truth caption, and hence fail to
capture its directed logical correctness. Therefore,
they still give high scores to even those generated
captions that contain a single but critical wrong
word (e.g., negation, unrelated action or object),
because all the other words still match with the
ground truth. We introduce CIDEnt, which pe-
nalizes the phrase-matching metric (CIDEr) based
reward, when the entailment score is low. This
ensures that a generated caption gets a high re-
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Model

Attention Baseline (Cross-Entropy): We encode input 

frame level video features via bi-directional LSTM-RNN 

and generate the caption using an LSTM-RNN with 

attention mechanism. Cross-entropy loss function is 

defined as:

Reinforcement Learning (Policy Gradient): In order to 

directly optimize the sentence-level test metrics (as 

opposed to cross-entropy loss), we use a policy gradient 

approach where training objective is to minimize the 

negative expected reward function:

Mixed Loss Training: While improving the metrics scores 

through reinforcement learning, we also ensure the 

readability and fluency of the generated caption through 

cross-entropy loss. Our mixed loss function is a weighted 

combination of these two losses:
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Figure 2: Reinforced (mixed-loss) video captioning using entailment-corrected CIDEr score as reward.

ward only when it is a directed match with (i.e., it

is logically implied by) the ground truth caption,

hence avoiding contradictory or unrelated infor-

mation (e.g., see Fig. 1). Empirically, we show

that first the CIDEr-reward model achieves signif-

icant improvements over the cross-entropy base-

line (on multiple datasets, and automatic and hu-

man evaluation); next, the CIDEnt-reward model

further achieves significant improvements over the

CIDEr-based reward. Overall, we achieve the new

state-of-the-art on the MSR-VTT dataset.

2 Related Work

Past work has presented several sequence-to-

sequence models for video captioning, using at-

tention, hierarchical RNNs, 3D-CNN video fea-

tures, joint embedding spaces, language fusion,

etc., but using word-level cross entropy loss train-

ing (Venugopalan et al., 2015a; Yao et al., 2015;

Pan et al., 2016a,b; Venugopalan et al., 2016).

Policy gradient for image captioning was re-

cently presented by Ranzato et al. (2016), using

a mixed sequence level training paradigm to use

non-differentiable evaluation metrics as rewards.1

Liu et al. (2016b) and Rennie et al. (2016) improve

upon this using Monte Carlo roll-outs and a test in-

ference baseline, respectively. Paulus et al. (2017)

presented summarization results with ROUGE re-

wards, in a mixed-loss setup.

Recognizing Textual Entailment (RTE) is a tra-

ditional NLP task (Dagan et al., 2006; Lai and

Hockenmaier, 2014; Jimenez et al., 2014), boosted

by a large dataset (SNLI) recently introduced

by Bowman et al. (2015). There have been several

leaderboard models on SNLI (Cheng et al., 2016;

Rocktäschel et al., 2016); we focus on the decom-

posable, intra-sentence attention model of Parikh

et al. (2016). Recently, Pasunuru and Bansal

(2017) used multi-task learning to combine video

captioning with entailment and video generation.

1Several papers have presented the relative comparison of
image captioning metrics, and their pros and cons (Vedantam
et al., 2015; Anderson et al., 2016; Liu et al., 2016b; Hodosh
et al., 2013; Elliott and Keller, 2014).

3 Models

Attention Baseline (Cross-Entropy) Our

attention-based seq-to-seq baseline model is

similar to the Bahdanau et al. (2015) architecture,

where we encode input frame level video features

{f1:n} via a bi-directional LSTM-RNN and then

generate the caption w1:m using an LSTM-RNN

with an attention mechanism. Let θ be the model

parameters and w∗

1:m be the ground-truth caption,

then the cross entropy loss function is:

L(θ) = −
m
∑

t=1

log p(w∗

t |w
∗

1:t−1, f1:n) (1)

where p(wt|w1:t−1, f1:n) = softmax(W Thdt ),
W T is the projection matrix, and wt and hdt are

the generated word and the RNN decoder hidden

state at time step t, computed using the standard

RNN recursion and attention-based context vector

ct. Details of the attention model are in the sup-

plementary (due to space constraints).

Reinforcement Learning (Policy Gradient) In

order to directly optimize the sentence-level test

metrics (as opposed to the cross-entropy loss

above), we use a policy gradient pθ, where θ rep-

resent the model parameters. Here, our baseline

model acts as an agent and interacts with its envi-

ronment (video and caption). At each time step,

the agent generates a word (action), and the gen-

eration of the end-of-sequence token results in a

reward r to the agent. Our training objective is to

minimize the negative expected reward function:

L(θ) = −Ews
∼pθ [r(w

s)] (2)

where ws is the word sequence sampled from

the model. Based on the REINFORCE algo-

rithm (Williams, 1992), the gradients of this non-

differentiable, reward-based loss function are:

∇θL(θ) = −Ews
∼pθ [r(w

s) ·∇θ log pθ(w
s)] (3)

We follow Ranzato et al. (2016) approximating

the above gradients via a single sampled word
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ward only when it is a directed match with (i.e., it

is logically implied by) the ground truth caption,

hence avoiding contradictory or unrelated infor-

mation (e.g., see Fig. 1). Empirically, we show

that first the CIDEr-reward model achieves signif-

icant improvements over the cross-entropy base-

line (on multiple datasets, and automatic and hu-

man evaluation); next, the CIDEnt-reward model
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CIDEr-based reward. Overall, we achieve the new

state-of-the-art on the MSR-VTT dataset.
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by a large dataset (SNLI) recently introduced

by Bowman et al. (2015). There have been several

leaderboard models on SNLI (Cheng et al., 2016;

Rocktäschel et al., 2016); we focus on the decom-

posable, intra-sentence attention model of Parikh

et al. (2016). Recently, Pasunuru and Bansal

(2017) used multi-task learning to combine video

captioning with entailment and video generation.

1Several papers have presented the relative comparison of
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attention-based seq-to-seq baseline model is

similar to the Bahdanau et al. (2015) architecture,

where we encode input frame level video features
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parameters and w∗
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the generated word and the RNN decoder hidden

state at time step t, computed using the standard
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ct. Details of the attention model are in the sup-

plementary (due to space constraints).

Reinforcement Learning (Policy Gradient) In

order to directly optimize the sentence-level test

metrics (as opposed to the cross-entropy loss

above), we use a policy gradient pθ, where θ rep-

resent the model parameters. Here, our baseline

model acts as an agent and interacts with its envi-

ronment (video and caption). At each time step,

the agent generates a word (action), and the gen-

eration of the end-of-sequence token results in a

reward r to the agent. Our training objective is to

minimize the negative expected reward function:

L(θ) = −Ews
∼pθ [r(w

s)] (2)

where ws is the word sequence sampled from

the model. Based on the REINFORCE algo-

rithm (Williams, 1992), the gradients of this non-

differentiable, reward-based loss function are:

∇θL(θ) = −Ews
∼pθ [r(w

s) ·∇θ log pθ(w
s)] (3)

We follow Ranzato et al. (2016) approximating

the above gradients via a single sampled word

Reward Functions

Results/Setup

We address this issue by penalizing CIDEr reward when 

entailment score is low. Thus, ensuring the generated 

caption logically implies (i.e., is paraphrase or directed 

partial match w/) ground-truth caption.

tral case).3 Similar to the traditional metrics, the

overall ‘Ent’ score is the maximum over the en-

tailment scores for a generated caption w.r.t. each

reference human caption (around 20/40 per MSR-

VTT/YouTube2Text video). CIDEnt is defined as:

CIDEnt =

{

CIDEr − λ, if Ent < β

CIDEr, otherwise
(5)

which means that if the entailment score is very

low, we penalize the metric reward score by de-

creasing it by a penalty λ. This agreement-based

formulation ensures that we only trust the CIDEr-

based reward in cases when the entailment score

is also high. Using CIDEr−λ also ensures the

smoothness of the reward w.r.t. the original CIDEr

function (as opposed to clipping the reward to a

constant). Here, λ and β are hyperparameters

that can be tuned on the dev-set; on light tun-

ing, we found the best values to be intuitive: λ =
roughly the baseline (cross-entropy) model’s score

on that metric (e.g., 0.45 for CIDEr on MSR-VTT

dataset); and β = 0.33 (i.e., the 3-class entailment

classifier chose contradiction or neutral label for

this pair). Table 1 shows some examples of sam-
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Datasets We use 2 datasets: MSR-VTT (Xu et al.,
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has 1970 videos, 40 references/video. Standard

splits and other details in supp.

Automatic Evaluation We use several standard
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4, CIDEr-D, and ROUGE-L (from MS-COCO

evaluation server (Chen et al., 2015)).
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See supplementary for extra training details, e.g.,

about the optimizer, learning rate, RNN size,

Mixed-loss, and CIDEnt hyperparameters.

6 Results

6.1 Primary Results
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MSR-VTT dataset. First, our baseline attention

model trained on cross entropy loss (‘Baseline-

XE’) achieves strong results w.r.t. the previous

state-of-the-art methods.4 Next, our policy gra-

dient based mixed-loss RL model with reward as

CIDEr (‘CIDEr-RL’) improves significantly5 over

the baseline on all metrics, and not just the CIDEr

metric. It also achieves statistically significant im-

provements in terms of human relevance evalua-

tion (see below). Finally, the last row in Table 2

shows results for our novel CIDEnt-reward RL

model (‘CIDEnt-RL’). This model achieves sta-

tistically significant6 improvements on top of the

strong CIDEr-RL model, on all automatic metrics

(as well as human evaluation). Note that in Ta-

ble 2, we also report the CIDEnt reward scores,
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Rank1 on the MSR-VTT leaderboard, based on

their ranking criteria.
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els pairwise.7 As shown in Table 3 and Table 4, in
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significantly outperforms the baseline XE model

(p < 0.02); next, our CIDEnt-RL model signif-
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4We list previous works’ results as reported by the
MSR-VTT dataset paper itself, as well as their 3
leaderboard winners (http://ms-multimedia-challenge.
com/leaderboard), plus the 10-ensemble video+entailment
generation multi-task model of Pasunuru and Bansal (2017).

5Statistical significance of p < 0.01 for CIDEr, ME-
TEOR, and ROUGE, and p < 0.05 for BLEU, based on the
bootstrap test (Noreen, 1989; Efron and Tibshirani, 1994).

6Statistical significance of p < 0.01 for CIDEr, BLEU,
ROUGE, and CIDEnt, and p < 0.05 for METEOR.
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to be equally good or equally bad).

Entailment Scorer Details:
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label).

• Ground-truth as premise and sampled word sequence as 
hypothesis.
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Models BLEU-4 METEOR ROUGE-L CIDEr-D CIDEnt Human*
PREVIOUS WORK

Venugopalan (2015b)⋆ 32.3 23.4 - - - -
Yao et al. (2015)⋆ 35.2 25.2 - - - -
Xu et al. (2016) 36.6 25.9 - - - -
Pasunuru and Bansal (2017) 40.8 28.8 60.2 47.1 - -
Rank1: v2t navigator 40.8 28.2 60.9 44.8 - -
Rank2: Aalto 39.8 26.9 59.8 45.7 - -
Rank3: VideoLAB 39.1 27.7 60.6 44.1 - -

OUR MODELS

Cross-Entropy (Baseline-XE) 38.6 27.7 59.5 44.6 34.4 -
CIDEr-RL 39.1 28.2 60.9 51.0 37.4 11.6
CIDEnt-RL (New Rank1) 40.5 28.4 61.4 51.7 44.0 18.4

Table 2: Our primary video captioning results on MSR-VTT. All CIDEr-RL results are statistically

significant over the baseline XE results, and all CIDEnt-RL results are stat. signif. over the CIDEr-RL

results. Human* refers to the ‘pairwise’ comparison of human relevance evaluation between CIDEr-RL

and CIDEnt-RL models (see full human evaluations of the 3 models in Table 3 and Table 4).

Relevance Coherence
Not Distinguishable 64.8% 92.8%
Baseline-XE Wins 13.6% 4.0%
CIDEr-RL Wins 21.6% 3.2%

Table 3: Human eval: Baseline-XE vs CIDEr-RL.

Relevance Coherence
Not Distinguishable 70.0% 94.6%
CIDEr-RL Wins 11.6% 2.8%
CIDEnt-RL Wins 18.4% 2.8%

Table 4: Human eval: CIDEr-RL vs CIDEnt-RL.

0.03). The models are statistically equal on co-

herence in both comparisons.

6.2 Other Datasets

We also tried our CIDEr and CIDEnt reward mod-

els on the YouTube2Text dataset. In Table 5, we

first see strong improvements from our CIDEr-RL

model on top of the cross-entropy baseline. Next,

the CIDEnt-RL model also shows some improve-

ments over the CIDEr-RL model, e.g., on BLEU

and the new entailment-corrected CIDEnt score. It

also achieves significant improvements on human

relevance evaluation (250 samples).8

6.3 Other Metrics as Reward

As discussed in Sec. 4, CIDEr is the most promis-

ing metric to use as a reward for captioning,

based on both previous work’s findings as well as

ours. We did investigate the use of other metrics

as the reward. When using BLEU as a reward

(on MSR-VTT), we found that this BLEU-RL

model achieves BLEU-metric improvements, but

was worse than the cross-entropy baseline on hu-

man evaluation. Similarly, a BLEUEnt-RL model

achieves BLEU and BLEUEnt metric improve-

ments, but is again worse on human evaluation.

8This dataset has a very small dev-set, causing tuning is-
sues – we plan to use a better train/dev re-split in future work.

Models B M R C CE H*
Baseline-XE 52.4 35.0 71.6 83.9 68.1 -
CIDEr-RL 53.3 35.1 72.2 89.4 69.4 8.4
CIDEnt-RL 54.4 34.9 72.2 88.6 71.6 13.6

Table 5: Results on YouTube2Text (MSVD)

dataset. CE = CIDEnt score. H* refer to the pair-

wise human comparison of relevance.

We also experimented with the new SPICE met-

ric (Anderson et al., 2016) as a reward, but this

produced long repetitive phrases (as also discussed

in Liu et al. (2016b)).

6.4 Analysis

Fig. 1 shows an example where our CIDEnt-

reward model correctly generates a ground-truth

style caption, whereas the CIDEr-reward model

produces a non-entailed caption because this cap-

tion will still get a high phrase-matching score.

Several more such examples are in the supp.

7 Conclusion

We first presented a mixed-loss policy gradi-

ent approach for video captioning, allowing for

metric-based optimization. We next presented an

entailment-corrected CIDEnt reward that further

improves results, achieving the new state-of-the-

art on MSR-VTT. In future work, we are apply-

ing our entailment-corrected rewards to other di-

rected generation tasks such as image caption-

ing and document summarization (using the new

multi-domain NLI corpus (Williams et al., 2017)).
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Examples

Figure: Reinforced (mixed-loss) video captioning using entailment-corrected CIDEr as reward.

Table 1: Examples of captions sampled during policy gradient and their CIDEr vs Entailment scores. 

Table 2: Our primary video captioning results on MSR-VTT (CIDEnt-RL is stat. significantly better 

than CIDEr-RL in all metrics, and CIDEr-RL is better than Baseline-XE).

Table 4: Results on YouTube2Text (MSVD) dataset. 

Table 3: Human evaluation results on MSR-VTT (CIDEnt-RL is stat. significantly better than 

CIDEr-RL, and CIDEr-RL is better than Baseline-XE).

Setup: We use 2 datasets: MSR-VTT has 10,000 videos, 20 

references/video; and YouTube2Text/MSVD has 1970 videos, 40 
references/video. We use standard automated evaluation metrics: 
METEOR, BLEU-4, CIDEr-D, and ROUGE-L, and also human evaluation.

Other Metrics as Rewards: When using BLEU as a reward (on MSR-

VTT), we found that BLEU-RL model achieves BLEU-metric 
improvements, but was worse than the cross-entropy baseline on human 
evaluation. Similar is the case with BLEUEnt-RL. Experiments with the 

new SPICE as a reward produced long repetitive phrases.

Figure 3: Output examples where our CIDEnt-RL

model produces better entailed captions than the

phrase-matching CIDEr-RL model, which in turn

is better than the baseline cross-entropy model.

captioning metrics achieve a high score even when

the generation does not exactly entail the ground

truth but is just a high phrase overlap. This

can obviously cause issues by inserting a sin-

gle wrong word such as a negation, contradic-

tion, or wrong action/object. On the other hand,

our entailment-enhanced CIDEnt score is only

high when both CIDEr and the entailment classi-

fier achieve high scores. The CIDEr-RL model,

in turn, produces better captions than the base-

line cross-entropy model, which is not aware of

sentence-level matching at all.

References

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. SPICE: Semantic proposi-
tional image caption evaluation. In ECCV, pages
382–398.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

David L Chen and William B Dolan. 2011. Collect-
ing highly parallel data for paraphrase evaluation.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 190–200.
Association for Computational Linguistics.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft COCO cap-
tions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. In EMNLP.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evalu-
ating predictive uncertainty, visual object classifica-
tion, and recognising tectual entailment, pages 177–
190. Springer.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In EACL.

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

Desmond Elliott and Frank Keller. 2014. Comparing
automatic evaluation measures for image descrip-
tion. In ACL, pages 452–457.

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2013. Framing image description as a ranking task:
Data, models and evaluation metrics. Journal of Ar-
tificial Intelligence Research, 47:853–899.

Sergio Jimenez, George Duenas, Julia Baquero,
Alexander Gelbukh, Av Juan Dios Bátiz, and
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Abstract

Sequence-to-sequence models have shown
promising improvements on the temporal
task of video captioning, but they opti-
mize word-level cross-entropy loss dur-
ing training. First, using policy gra-
dient and mixed-loss methods for re-
inforcement learning, we directly opti-
mize sentence-level task-based metrics (as
rewards), achieving significant improve-
ments over the baseline, based on both
automatic metrics and human evaluation
on multiple datasets. Next, we pro-
pose a novel entailment-enhanced reward
(CIDEnt) that corrects phrase-matching
based metrics (such as CIDEr) to only al-
low for logically-implied partial matches
and avoid contradictions, achieving fur-
ther significant improvements over the
CIDEr-reward model. Overall, our
CIDEnt-reward model achieves the new
state-of-the-art on the MSR-VTT dataset.

1 Introduction

The task of video captioning (Fig. 1) is an im-
portant next step to image captioning, with ad-
ditional modeling of temporal knowledge and
action sequences, and has several applications
in online content search, assisting the visually-
impaired, etc. Advancements in neural sequence-
to-sequence learning has shown promising im-
provements on this task, based on encoder-
decoder, attention, and hierarchical models (Venu-
gopalan et al., 2015a; Pan et al., 2016a). How-
ever, these models are still trained using a word-
level cross-entropy loss, which does not correlate
well with the sentence-level metrics that the task
is finally evaluated on (e.g., CIDEr, BLEU). More-
over, these models suffer from exposure bias (Ran-

Figure 1: A correctly-predicted video caption gen-
erated by our CIDEnt-reward model.

zato et al., 2016), which occurs when a model
is only exposed to the training data distribu-
tion, instead of its own predictions. First, us-
ing a sequence-level training, policy gradient ap-
proach (Ranzato et al., 2016), we allow video
captioning models to directly optimize these non-
differentiable metrics, as rewards in a reinforce-
ment learning paradigm. We also address the ex-
posure bias issue by using a mixed-loss (Paulus
et al., 2017; Wu et al., 2016), i.e., combining the
cross-entropy and reward-based losses, which also
helps maintain output fluency.

Next, we introduce a novel entailment-corrected
reward that checks for logically-directed partial
matches. Current reinforcement-based text gener-
ation works use traditional phrase-matching met-
rics (e.g., CIDEr, BLEU) as their reward func-
tion. However, these metrics use undirected n-
gram matching of the machine-generated caption
with the ground-truth caption, and hence fail to
capture its directed logical correctness. Therefore,
they still give high scores to even those generated
captions that contain a single but critical wrong
word (e.g., negation, unrelated action or object),
because all the other words still match with the
ground truth. We introduce CIDEnt, which pe-
nalizes the phrase-matching metric (CIDEr) based
reward, when the entailment score is low. This
ensures that a generated caption gets a high re-

Ground-truth caption Generated (sampled) caption CIDEr Ent
a man is spreading some butter in a pan puppies is melting butter on the pan 140.5 0.07
a panda is eating some bamboo a panda is eating some fried 256.8 0.14
a monkey pulls a dogs tail a monkey pulls a woman 116.4 0.04
a man is cutting the meat a man is cutting meat into potato 114.3 0.08
the dog is jumping in the snow a dog is jumping in cucumbers 126.2 0.03
a man and a woman is swimming in the pool a man and a whale are swimming in a pool 192.5 0.02

Table 1: Examples of captions sampled during policy gradient and their CIDEr vs Entailment scores.

sequence. We also use a variance-reducing bias

(baseline) estimator in the reward function. Their

details and the partial derivatives using the chain

rule are described in the supplementary.

Mixed Loss During reinforcement learning, op-

timizing for only the reinforcement loss (with au-

tomatic metrics as rewards) doesn’t ensure the

readability and fluency of the generated caption,

and there is also a chance of gaming the metrics

without actually improving the quality of the out-

put (Liu et al., 2016a). Hence, for training our

reinforcement based policy gradients, we use a

mixed loss function, which is a weighted combi-

nation of the cross-entropy loss (XE) and the rein-

forcement learning loss (RL), similar to the previ-

ous work (Paulus et al., 2017; Wu et al., 2016).

This mixed loss improves results on the metric

used as reward through the reinforcement loss

(and improves relevance based on our entailment-

enhanced rewards) but also ensures better read-

ability and fluency due to the cross-entropy loss (in

which the training objective is a conditioned lan-

guage model, learning to produce fluent captions).

Our mixed loss is defined as:

LMIXED = (1− γ)LXE + γLRL (4)

where γ is a tuning parameter used to balance

the two losses. For annealing and faster conver-

gence, we start with the optimized cross-entropy

loss baseline model, and then move to optimizing

the above mixed loss function.2

4 Reward Functions

Caption Metric Reward Previous image cap-

tioning papers have used traditional captioning

metrics such as CIDEr, BLEU, or METEOR as

reward functions, based on the match between the

generated caption sample and the ground-truth ref-

erence(s). First, it has been shown by Vedantam

2We also experimented with the curriculum learning
‘MIXER’ strategy of Ranzato et al. (2016), where the XE+RL
annealing is based on the decoder time-steps; however, the
mixed loss function strategy (described above) performed
better in terms of maintaining output caption fluency.

et al. (2015) that CIDEr, based on a consensus

measure across several human reference captions,

has a higher correlation with human evaluation

than other metrics such as METEOR, ROUGE,

and BLEU. They further showed that CIDEr gets

better with more number of human references (and

this is a good fit for our video captioning datasets,

which have 20-40 human references per video).

More recently, Rennie et al. (2016) further

showed that CIDEr as a reward in image caption-

ing outperforms all other metrics as a reward, not

just in terms of improvements on CIDEr metric,

but also on all other metrics. In line with these

above previous works, we also found that CIDEr

as a reward (‘CIDEr-RL’ model) achieves the best

metric improvements in our video captioning task,

and also has the best human evaluation improve-

ments (see Sec. 6.3 for result details, incl. those

about other rewards based on BLEU, SPICE).

Entailment Corrected Reward Although CIDEr

performs better than other metrics as a reward, all

these metrics (including CIDEr) are still based on

an undirected n-gram matching score between the

generated and ground truth captions. For exam-

ple, the wrong caption “a man is playing football”

w.r.t. the correct caption “a man is playing bas-

ketball” still gets a high score, even though these

two captions belong to two completely different

events. Similar issues hold in case of a negation

or a wrong action/object in the generated caption

(see examples in Table 1).

We address the above issue by using an entail-

ment score to correct the phrase-matching metric

(CIDEr or others) when used as a reward, ensur-

ing that the generated caption is logically implied

by (i.e., is a paraphrase or directed partial match

with) the ground-truth caption. To achieve an ac-

curate entailment score, we adapt the state-of-the-

art decomposable-attention model of Parikh et al.

(2016) trained on the SNLI corpus (image caption

domain). This model gives us a probability for

whether the sampled video caption (generated by

our model) is entailed by the ground truth caption

as premise (as opposed to a contradiction or neu-
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Figure 1: Our sequence generator with RL training.

the non-differentiable evaluation metric as reward
while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-Reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.
LRL1 = �(r1(w

s
)� r1(w

a
))r✓ log p✓(w

s
)

LRL2 = �(r2(w
s
)� r2(w

a
))r✓ log p✓(w

s
)

(2)

4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.

Figure 2: Overview of our saliency predictor model.

Saliency Reward ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Reward A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our
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Figure 1: Our sequence generator with RL training.

the non-differentiable evaluation metric as reward
while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-Reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.
LRL1 = �(r1(w
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4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.

Figure 2: Overview of our saliency predictor model.

Saliency Reward ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Reward A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our
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the non-differentiable evaluation metric as reward
while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-Reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.
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4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.
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Saliency Reward ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Reward A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our



Auxiliary Knowledge in Language Generation 

[Guo, Pasunuru, and Bansal, ACL 2018; Pasunuru and Bansal, NAACL 2018] 

Input Document: celtic have written to the scottish football association in order to gain an ‘understanding’ of the refereeing decisions 
during their scottish cup semi-final defeat by inverness on sunday . the hoops were left outraged by referee steven mclean ’s failure to 
award a penalty or red card for a clear handball in the box by josh meekings to deny leigh griffith ’s goal-bound shot during the first-half . 
caley thistle went on to win the game 3-2 after extra-time and denied rory delia ’s men the chance to secure a domestic treble this season . 
celtic striker leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings . ……after the restart for scything 
down marley watkins in the area . greg tansey duly converted the resulting penalty . edward ofere then put caley thistle ahead , only for 
john guidetti to draw level for the bhoys . with the game seemingly heading for penalties , david raven scored the winner on 117 minutes , 
breaking thousands of celtic hearts . celtic captain scott brown -lrb- left -rrb- protests to referee steven mclean but the handball goes 
unpunished . griffiths shows off his acrobatic skills during celtic ’s eventual surprise defeat by inverness . celtic pair aleksandar tonev -lrb- 
left -rrb- and john guidetti look dejected as their hopes of a domestic treble end .

Ground-truth Summary: celtic were defeated 3-2 after extra-time in the scottish cup semi-final . leigh griffiths had a goal-bound shot 
blocked by a clear handball. however, no action was taken against offender josh meekings. the hoops have written the sfa for an 
‘understanding’ of the decision . 

See et al. (2017): john hartson was once on the end of a major hampden injustice while playing for celtic . but he can not see any point in 
his old club writing to the scottish football association over the latest controversy at the national stadium . hartson had a goal wrongly 
disallowed for offside while celtic were leading 1-0 at the time but went on to lose 3-2 . 

Our Baseline: john hartson scored the late winner in 3-2 win against celtic . celtic were leading 1-0 at the time but went on to lose 3-2 . 
some fans have questioned how referee steven mclean and additional assistant alan muir could have missed the infringement . 

Our Multi-task Summary: celtic have written to the scottish football association in order to gain an ‘ understanding ’ of the refereeing 
decisions . the hoops were left outraged by referee steven mclean ’s failure to award a penalty or red card for a clear handball in the box by 
josh meekings . celtic striker leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings .



Auxiliary Knowledge in Language Generation 

[Guo, Pasunuru, and Bansal, COLING 2018 (Area Chair Favorites)] 

•  Dynamic-Curriculum MTL with Entailment+Paraphrase Knowledge for Sentence Simplification 

Code: https://github.com/HanGuo97/MultitaskSimplification 



AutoSeM: Automatic Auxiliary Task Selection+Mixing 

[Guo, Pasunuru, and Bansal, NAACL 2019] 

Code: https://github.com/HanGuo97/AutoSeM 

Left: the multi-armed bandit controller used for task selection, where each arm represents a candidate auxiliary task. The agent 
iteratively pulls an arm, observes a reward, updates its estimates of the arm parameters, and samples the next arm. Right: the 
Gaussian Process controller used for automatic mixing ratio (MR) learning. The GP controller sequentially makes a choice of mixing 
ratio, observes a reward, updates its estimates, and selects the next mixing ratio to try, based on the full history of past observations. 

Task
Utility

Gaussian Process

MR-1

Multi-Armed
Bandit Controller

Arm1 Arm2 Arm3 Arm4 Arm5 Arm6

Primary
Task

Sampled
Task

MR-2
MR-3

FeedbackSample

Next
Sample

Next
Sample

Mixing Ratios

Figure 2: Overview of our AUTOSEM framework. Left: the multi-armed bandit controller used for task selection,
where each arm represents a candidate auxiliary task. The agent iteratively pulls an arm, observes a reward, updates
its estimates of the arm parameters, and samples the next arm. Right: the Gaussian Process controller used for
automatic mixing ratio (MR) learning. The GP controller sequentially makes a choice of mixing ratio, observes a
reward, updates its estimates, and selects the next mixing ratio to try, based on the full history of past observations.

our single-task learning baseline (see Sec. 3.1)
into multi-task learning model by augmenting the
model with N projection layers while sharing the
rest of the model parameters across these N tasks
(see Fig. 1). We employ MTL training of these
tasks in alternate mini-batches based on a mixing
ratio ⌘1:⌘2:..⌘N , similar to previous work (Luong
et al., 2015), where we optimize ⌘i mini-batches
of task i and go to the next task.

In MTL, choosing the appropriate auxiliary
tasks and properly tuning the mixing ratio can be
important for the performance of multi-task mod-
els. The naive way of trying all combinations of
task selections is hardly tractable. To solve this is-
sue, we propose AUTOSEM, a two-stage pipeline
in the next section. In the first stage, we automat-
ically find the relevant auxiliary tasks (out of the
given N � 1 options) which improve the perfor-
mance of the primary task. After finding the rel-
evant auxiliary tasks, in the second stage, we take
these selected tasks along with the primary task
and automatically learn their training mixing ratio.

3.3 Automatic Task Selection: Multi-Armed
Bandit with Thompson Sampling

Tuning the mixing ratio for N tasks in MTL be-
comes exponentially harder as the number of aux-
iliary tasks grows very large. However, in most
circumstances, only a small number of these aux-
iliary tasks are useful for improving the primary
task at hand. Manually searching for this optimal
choice of relevant tasks is intractable. Hence, in
this work, we present a method for automatic task
selection via multi-armed bandits with Thompson
Sampling (see the left side of Fig. 2).

Let {a1, ..., aN} represent the set of N arms
(corresponding to the set of tasks {D1, ..., DN})
of the bandit controller in our multi-task setting,
where the controller selects a sequence of ac-
tions/arms over the current training trajectory to
maximize the expected future payoff. At each
round tb, the controller selects an arm based on
the noisy value estimates and observes rewards rtb
for the selected arm. Let ✓k 2 [0, 1] be the utility
(usefulness) of task k. Initially, the agent begins
with an independent prior belief over ✓k. We take
these priors to be Beta-distributed with parameters
↵k and �k, and the prior probability density func-
tion of ✓k is:

p(✓k) =
�(↵k + �k)

�(↵k)�(�k)
✓

↵k�1
k (1� ✓k)

�k�1 (2)

where � denotes the gamma function. We for-
mulate the reward rtb 2 {0, 1} at round tb as a
Bernoulli variable, where an action k produces a
reward of 1 with a chance of ✓k and a reward of 0
with a chance of 1� ✓k. The true utility of task k,
i.e., ✓k, is unknown, and may or may not change
over time (based on stationary vs. non-stationary
of task utility). We define the reward as whether
sampling the task k improves (or maintains) the
validation metric of the primary task,

rtb =

(
1, if Rtb � Rtb�1

0, otherwise
(3)

where Rtb represents the validation perfor-
mance of the primary task at time tb. With our
reward setup above, the utility of each task (✓k)
can be intuitively interpreted as the probability



Interpretability: Visualization of Stage-1 Task Selection 

[Guo, Pasunuru, and Bansal, NAACL 2019] 

Visualization of Stage-1

!36

Visualization of task utility 
estimates from the multi-
armed bandit controller on 
SST-2 (primary task). The x-
axis represents the task utility, 
and the y- axis represents the 
corresponding probability 
density. Each curve 
corresponds to a task and the 
bar corresponds to their 
confidence interval.



Adversarially-Robust Dialogue Generation 

•  “Should-Not-Change” Over-Sensitivity Strategies: 
•  Random Swap 
•  Stopword Dropout 
•  Data-level Paraphrasing 
•  Generative-level Paraphrasing 
•  Grammar Errors 

•  “Should-Change” Over-Stability Strategies: 
•  Add Negation 
•  Antonym 
•  Random Inputs 
•  Random Inputs with Preserved Entities 
•  Confusing Entity 

•  Tasks/Datasets: Ubuntu (Activity/Entity F1, Human Eval), CoCoA (Completion Rate) 

•  Models: VHRED, Reranking-RL, DynoNet 
[Niu and Bansal, CoNLL 2018] 

•  Robustness to real-world noise (e.g., user errors) and subtle but important markers! 

I think I’m having a heart attack.

I’m afraid I’m having a heart attack.

Someone having a heart attack may feel: chest
pain, which may also include feelings of: tightness.

My aplogies... I don’t understand.

Assistant

Assistant

Adv-trained Assistant
Perturbation
(Paraphrase, Grammar Errors ...) Adversarially-

Trained Agent 

Agent 

Agent 



Adversarially-Robust Dialogue Generation 
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Strategy Name N-train + A-test A-train + A-test A-train + N-test N-train + N-test
Normal Input - - - 5.94, 3.52
Random Swap 6.10, 3.42 6.47, 3.64 6.42, 3.74 -
Stopword Dropout 5.49, 3.44 6.23, 3.82 6.29, 3.71 -
Data-Level Para. 5.38, 3.18 6.39, 3.83 6.32, 3.87 -
Generative-Level Para. 4.25, 2.48 5.89, 3.60 6.11, 3.66 -
Grammar Errors 5.60, 3.09 5.93, 3.67 6.05, 3.69 -
All Should-Not-Change - - 6.74, 3.97 -
Add Negation 6.06, 3.42 5.01, 3.12 6.07, 3.46 -
Antonym 5.85, 3.56 5.43, 3.43 5.98, 3.56 -

Table 2: Activity and Entity F1 results of adversarial strategies on the VHRED model.

least one of the F1’s decreases statistically signif-
icantly9 as compared to the same model fed with
normal inputs. Next, all adversarial trainings on
Should-Not-Change strategies not only make the
model more robust to adversarial inputs (each A-
train + A-test F1 is stat. significantly higher than
that of N-train + A-test) , but also make them per-
form better on normal inputs (each A-train + N-
test F1 is stat. significantly higher than that of N-
train + N-test, except for Grammar Errors’s Ac-
tivity F1). Motivated by the success in adversar-
ial training on each strategy alone, we also exper-
imented with training on all Should-Not-Change
strategies combined, and obtained F1’s stat. sig-
nificantly higher than any single strategy (the All
Should-Not-Change row in Table 2), except that
All-Should-Not-Change’s Entity F1 is stat. equal
to that of Data-Level Paraphrasing, showing that
these strategies are able to compensate for each
other to further improve performance. An inter-
esting strategy to note is Random Swap: although
it itself is not effective as an adversarial strategy
for VHRED, training on it does make the model
perform better on normal inputs.

Results on Should-Change Strategies Table 2
and 3 show that Add Negation and Antonym
are both successful Should-Change strategies, be-
cause no change in N-train + A-test F1 is stat.
significant compared to that of N-train + N-
test, which shows that both models are ignoring
the semantic-changing perturbations to the inputs.
From the last two rows of A-train + A-test column
in each table, we also see that adversarial training
successfully brings down both F1’s (stat. signif-
icantly) for each model, showing that the model
becomes more sensitive to the context change.

Semantic Similarity In addition to F1, we also
follow Serban et al. (2017a) and employ cosine

9We obtained stat. significance via the bootstrap
test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K
samples, and consider p < 0.05 as stat. significant.

similarity between average embeddings of nor-
mal and adversarial inputs/responses (proposed
by Liu et al. (2016)) to evaluate how much the in-
puts/responses change in semantic meaning (Ta-
ble 4). This metric is useful in three ways. Firstly,
by comparing the two columns of context sim-
ilarity, we can get a general idea of how much
change is perceived by each model. For exam-
ple, we can see that Stopword Dropout leads to
more evident changes from VHRED’s perspective
than from Reranking-RL’s. This also agrees with
the F1 results in Table 2 and 3, which indicate
that Reranking-RL is much more robust to this
strategy than VHRED is. The high context sim-
ilarity of Should-Change strategies shows that al-
though we have added “not” or replaced antonyms
in every utterance of the source inputs, from the
model’s point of view the context has not changed
much in meaning. Secondly, for each Should-Not-
Change strategy, the cosine similarity of context
is much higher than that of response, indicating
that responses change more significantly in mean-
ing than their corresponding contexts. Lastly, The
high semantic similarity for Generative Paraphras-
ing also partly shows that the Pointer-Generator
model in general produces faithful paraphrases.
Human Evaluation As introduced in Section 5,
we performed two human studies on adversarial
training and Generative Paraphrasing. For the
first study, Table 5 indicates that the adversarially
trained model indeed on average produced better
responses. This agrees with the adversarial train-
ing results in Table 2. For the second study, Ta-
ble 6 shows that on average the generated para-
phrase has roughly the same semantic meaning
with the original utterance, but may sometimes
miss some information. Its quality is also close to
that of the ground-truth in ParaNMT-5M dataset.

Output Examples of Generated Responses
We present a selected example of generated re-
sponses before and after adversarial training on the
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Strategy Name N-train + A-test A-train + A-test A-train + N-test N-train + N-test
Normal Input - - - 5.67, 3.73
Random Swap 5.49, 3.56 6.20, 4.28 6.36, 4.39 -
Stopword Dropout 5.51, 4.09 - - -
Data-Level Para. 5.28, 3.07 5.53, 3.69 5.79, 3.87 -
Generative-Level Para. 4.47, 2.63 5.30, 3.35 5.86, 3.90 -
Grammar Errors 5.33, 3.25 5.55, 3.92 5.93, 4.04 -
Add Negation 5.61, 3.79 4.92, 2.78 6.10, 3.93 -
Antonym 5.68, 3.70 5.30, 2.95 5.80, 3.71 -

Table 3: Activity and Entity F1 results of adversarial strategies on the Reranking-RL model.

Strategy Name VHRED Reranking-RL
Cont. Resp. Cont. Resp.

Random Swap 1.00 0.71 1.00 0.86
Stopword Dropout 0.61 0.50 0.76 0.68
Data-Level Para. 0.96 0.58 0.96 0.74
Gen.-Level Para. 0.70 0.40 0.76 0.55
Grammar Err 0.96 0.58 0.97 0.74
Add Negation 0.96 0.69 0.97 0.81
Antonym 0.98 0.66 0.98 0.74

Table 4: Textual similarity of adversarial strategies on
the VHRED and Reranking-RL models. “Cont.” stands
for “Context”, and “Resp.” stands for “Response”.

VHRED Tie Combined-VHRED
Winning % 28 22 49

Table 5: Human evaluation results on comparison be-
tween VHRED and VHRED train on all Should-Not-
Change strategies combined.

Random Swap strategy with the VHRED model in
Table 7 (more examples in Appendix on all strate-
gies with both models). First of all, we can see that
it is hard to differentiate between the original and
the perturbed context (N-context and A-context) if
one does not look very closely. For this reason,
the model gets fooled by the adversarial strategy,
i.e., after adversarial perturbation, the N-train +
A-test response (NA-Response) is worse than that
of N-train + N-test (NN-Response). However, af-
ter our adversarial training phase, A-train + A-test
(AA-Response) becomes better again.

6.2 Adversarial Results on CoCoA

Table 8 shows the results of Should-Change strate-
gies on DynoNet with the CoCoA task. The Ran-
dom Inputs strategy shows that even without com-
munication, the two bots are able to locate their
shared entry 82% of the time by revealing their
own KB through SELECT action. When we keep
the mentioned entities untouched but randomize
all other tokens, DynoNet actually achieves state-
of-the-art Completion Rate, indicating that the two
agents are paying zero attention to each other’s ut-
terances other than the entities contained in them.
This is also why we did not apply Add Negation

Pointer-Generator ParaNMT-5M
Avg.Score 3.26 3.54

Table 6: Human evaluation scores on paraphrases
generated by Pointer-Generator Networks and ground-
truth pairs from ParaNMT-5M.

and Antonym to DynoNet — if Random Inputs
does not work, these two strategies will also make
no difference to the performance (in other words
Random Inputs subsumes the other two Should-
Change strategies). We can also see that even with
the Normal Inputs with Confusing Entities strat-
egy, DynoNet is still able to finish the task 77% of
the time, and with only slightly more turns. This
again shows that the model mainly relies on the
SELECT action to guess the shared entry.

7 Byte-Pair-Encoding VHRED

Although we have shown that adversarial training
on most strategies makes the dialogue model more
robust, generating such perturbed data is not al-
ways straightforward for diverse, complex strate-
gies. For example, our data-level and generative-
level strategies all leverage datasets that are not
always available to a language. We are thus
motivated to also address the robustness task on
the model-level, and explore an extension to the
VHRED model that makes it robust to Grammar
Errors even without adversarial training.
Model Description: We perform Byte Pair En-
coding (BPE) (Sennrich et al., 2016) on the
Ubuntu dataset. This algorithm encodes rare and
unknown words as sequences of subword units,
which helps segmenting words with the same
lemma but different inflections (e.g., “showing” to
“show + ing”, and “cakes” to “cake + s”), mak-
ing the model more likely to be robust to grammar
errors such as verb tense or plural/singular noun
confusion. We experiment BPE with 5K merging
operations, and obtain a vocabulary size of 5121.
Results: BPE-VHRED achieved F1’s (5.99,
3.66), which is stat. equal to (5.94, 3.52) ob-
tained without BPE. To our best knowledge, we

[Niu and Bansal, CoNLL 2018] 
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Context Response
N: ... you could save your ubuntu files and reinstall Windows
, then install ubuntu as a dual boot option eou eot aight
buddy , so how do i get that **unknown** space back eou
Random Swap: ... you could your save ubuntu and files
Windows reinstall , then install ubuntu as dual a option boot

eou eot aight buddy , so do how i that get space **un-
known** back eou

NN: you can use the Live CD , you
can install Ubuntu on the same parti-
tion as the Windows partition eou
NA: I am using ubuntu . eou
AA: you can use Windows XP on the
Windows partition , and then install
Ubuntu on the same drive eou

N: ... ok then the problem is you don’t have the nvidia driver
eou dpkg -l — grep nvidia eou eot i can see some

nvidia thing :P eou
Stopword Dropout: ... ok then problem is you don’t have
nvidia driver eou dpkg -l — grep nvidia eou eot i
see nvidia thing :P

NN: sudo apt-get install nvidia-glx
eou

NA: ok eou
AA: you can use the nvidia driver

eou

N: ... if using hdmi , the display should be set properly . ex-
cept perhaps for any overscan settings eou eot which
package do i have to install for that ? eou
Data-Level Para.: ... if using hdmi , the displaying ought
to be set correctly . except maybe for any overscan setting

eou eot which packets do i have to installs for that ?
eou

NN: you can use the nvidia-settings
tool to install the drivers . eou
NA: the monitor is the monitor .

eou
AA: you can use the nvidia-settings
tool to see if the video card is in-
stalled . eou

N: at this point driver activated but not in use eou eot
did you uninstall the old driver first ? eou
Generative-Level Para.: driver activated but not in use

eou eot did you uninstall the old driver ? eou

NN: i installed the driver from nvidia
website eou
NA: ok eou
AA: i installed the driver from nvidia
website eou

N: i would go with a thinkpad . they are pretty support and
have decent hardware eou
Grammar Errors: ii would go with a thinkpad . they are
quite support and have descent hardwares eou

NN: I know , but I don’t want to buy
a new laptop . eou
NA: Ubuntu . eou
AA: I know , but I don’t want to buy
a new laptop . eou

N: suggest you reinstall grub . assuming no other changes ,
your root system and data should be present and safe . per-
haps the bootloader scrambled somehow ? eou
Add Negation: suggest you don’t reinstall grub . assum-
ing no other changes , your root system and data should be
present and safe . perhaps the bootloader scrambled some-
how ? eou

NN: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
NA: I have a Windows XP partition
, and I want to install Ubuntu on it .

eou
AA: I don’t know how to do that , but
I don’t know how to do that . eou

N: 100% of your RAM . You have it to be used . eou
eot what what ? eou

Antonym: 100% of your RAM . You refuse it to be used .
eou eot what what ? eou

NN: you have a lot of RAM . eou
NA: you have a lot of RAM . eou
AA: I don’t know . I don’t use it
much . eou

Table 2: Selected examples before and after adversarial training for the VHRED model with each strategy.

[Niu and Bansal, CoNLL 2018] 

Code: https://github.com/WolfNiu/AdversarialDialogue 



Auto-Augment Adversary Generation 

[Cubuk et al., 2018] [Niu and Bansal, EMNLP 2019] 

How do we automatically generate the best adversaries without manual design? Our AutoAugment model consists 
of a controller and a target model. The controller first samples a policy that transforms the original data to augmented 
data, on which the target model trains. After training, the target model is evaluated to obtain the performance on the 
validation set. This performance is then fed back to the controller as the reward signal. 

Controller sample Policy

Data Aug-data

training

Model
performance reward (R)

perturb

transform

Figure 1: The controller samples a policy to perturb the 
training data. After training on the augmented inputs, the 
model feeds the performance back as reward.

Figure 3: AutoAugment controller. An input-agnostic controller 
corresponds to the lower part of the figure. It samples a list of 
operations in sequence. An input-aware controller additionally has 
an encoder (upper part) that takes in the source inputs of the data.

S
3

S
2

S
1

Encoder

Decoder

Source 

Operation

Num. of

Changes
Op. Type Probability

<Start>

Ribeiro et al., 2018; Zhao et al., 2018 



Auto-Augment Adversary Generation 

[Niu and Bansal, EMNLP 2019] 

Policy Hierarchy and Search Space: 
•  A policy consists of 4 sub-policies; 
•  Each sub-policy consists of 2 operations applied in sequence; 
•  Each operation is defined by 3 parameters: Operation Type, 

Number of Changes (the maximum number of times allowed 
to perform the operation, and the Probability of applying that 
operation.  

•  Our pool of operations contains Random Swap, Stopword 
Dropout, Paraphrase, Grammar Errors, and Stammer. 

Subdivision of Operations: 

●  Stopword Dropout: To allow the controller to learn more 
nuanced combinations of operations, divide Stopword Dropout 
into 7 categories: Noun, Adposition, Pronoun, Adverb, Verb, 
Determiner, and Other. 

●  Grammar Errors: Noun (plural/singular confusion) and Verb 
(verb inflected/base form confusion). 

I have three 
beautiful kids.

I have three 
beautiful kids.

I have three 
lovely children.

0.3 0.7

0.6 0.4 0.6 0.4

Op1: (P, 2, 0.7)

Op2: (G, 1, 0.4)

I have three 
beautiful kids.

I have three 
lovely child.

I have three 
lovely children.

I have three 
beautiful kid.

Figure 2: Example of a sub-policy applied to a source 
input. E.g., the first operation (Paraphrase, 2, 0.7) 
paraphrases the input twice with probability 0.7.



Auto-Augment Adversary Generation 

[Niu and Bansal, EMNLP 2019] 

•  Setup: Variational Hierarchical Encoder-Decoder (VHRED) (Serban et al., 2017b) on troubleshooting Ubuntu Dialogue 
task (Lowe et al., 2015); REINFORCE (Williams, 1992; Sutton et al., 2000) to train the controller. 

•  Evaluation: Serban et al. (2017a), evaluate on F1s for both activities (technical verbs) and entities (technical nouns). 
We also conducted human studies on Mturk, comparing each of the input-agnostic/aware models with the VHRED 
baseline and All-operations from Niu and Bansal (2018).  

Table 1: Activity, Entity F1 results reported by previous 
work, the All-operations and AutoAugment models.

Table 2: Human evaluation results on comparisons among the baseline, All-
operations, and the two AutoAugment models. W: Win, T: Tie, L: Loss.

Table 4: Top 3 policies on the validation set and their test performances. Operations: 
R=Random Swap, D=Stopword Dropout, P=Paraphrase, G=Grammar Errors, 
S=Stammer. Universal tags: n=noun, v=verb, p=pronoun, adv=adverb, adp=adposition.



Auto-Augment Adversary Generation 

[Niu and Bansal, EMNLP 2019] 

•  Setup: Variational Hierarchical Encoder-Decoder (VHRED) (Serban et al., 2017b) on troubleshooting Ubuntu Dialogue 
task (Lowe et al., 2015); REINFORCE (Williams, 1992; Sutton et al., 2000) to train the controller. 

•  Evaluation: Serban et al. (2017a), evaluate on F1s for both activities (technical verbs) and entities (technical nouns). 
We also conducted human studies on Mturk, comparing each of the input-agnostic/aware models with the VHRED 
baseline and All-operations from Niu and Bansal (2018).  

Table 1: Activity, Entity F1 results reported by previous 
work, the All-operations and AutoAugment models.

Table 2: Human evaluation results on comparisons among the baseline, All-
operations, and the two AutoAugment models. W: Win, T: Tie, L: Loss.

Table 4: Top 3 policies on the validation set and their test performances. Operations: 
R=Random Swap, D=Stopword Dropout, P=Paraphrase, G=Grammar Errors, 
S=Stammer. Universal tags: n=noun, v=verb, p=pronoun, adv=adverb, adp=adposition.

Still several challenges: better AutoAugm 
algorithms for RL speed, reward sparsity, 
other NLU/NLG tasks? Visit Tong’s poster 
Nov5 3.30pm for more details! 



Question Generation with Semantic Validity Knowledge 

[Zhang and Bansal, EMNLP 2019] 

•  “Semantic drift” problem 
•  Generated questions semantically drift 

away from the given context and answer . 
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Context: ...during the age of enlightenment, philoso-
phers such as john locke advocated the principle in
their writings, whereas others, such as thomas hobbes,
strongly opposed it. montesquieu was one of the fore-
most supporters of separating the legislature, the exec-
utive, and the judiciary...

Gt: who was an advocate of separation of powers?
Base: who opposed the principle of enlightenment?
Ours: who advocated the principle in the age of en-
lightenment?

Figure 6: An examples of the “semantic drift” issue in
Question Generation (“Gt” is short for “ground truth”).•  Two “semantics-enhanced” rewards 

•  QPP: Question Paraphrasing Probability 
•  QAP: Question Answering Probability 

•  Reinforcement learning: 
•  Policy gradient (Williams, 1992) 
•  Mixed loss (Paulus et al., 2017) 
•  Multi-reward optimization (Pasunuru & Bansal, 2018)  



Question Generation with Semantic Validity Knowledge 

•  QPP (Question Paraphrasing Probability) reward: 
•  From QPC (Question Paraphrasing Classification) model 
•  Represents “the probability of the generated question and the ground-truth 

question being paraphrases” 

QPC

Groundtruth (gt): in what year 
was a master of arts course first 
offered ?

Generated (gen): when did the 
university begin offering a master 
of arts ? 

0.46
Context: ...the university first offered 
graduate degrees , in the form of a 
master of arts ( ma ) , in the the 1854
– 1855 academic year ...

QG

pqpc(is para = true|qgt, qgen)

5

[Zhang and Bansal, EMNLP 2019] 



Question Generation with Semantic Validity Knowledge 

•  QAP (Question Answering Probability) reward: 
•  From QA (Question Answering) model 
•  Represents “the probability that the generated question can be correctly 

answered by the given answer”  

QA

Generated (gen): in what year did 
common sense begin publication ? 

Context: ...in 1987 , when some 
students believed that the observer 
began to show a conservative bias , 
a liberal newspaper , common 
sense was published... 

0.94, 1987

Context: ...in 1987 , when some 
students believed that the observer 
began to show a conservative bias , 
a liberal newspaper , common 
sense was published... 

QG

pqa(a|qgen, context); qgen ⇠ pqg(q|a, context)

4

[Zhang and Bansal, EMNLP 2019] 



Evaluation for QG 
•  QA-based QG evaluation: Measure the QG model’s ability to mimic human 

annotators in generating QA training data.  

QG

Context: ...in 1987 , when some students believed that the 
observer began to show a conservative bias , a liberal 
newspaper , common sense was published... 
Gen: in what year did common sense begin publication ? 

Context: ...new york city consists of five boroughs, each of 
which is a separate county of new york state... 
Gen: new york city consists of how many boroughs ? Context: ...to limit protests, officials pushed parents to sign a 

document, which forbade them from holding protests, in 
exchange of money, but some who refused to sign were 
threatened...
Generated: what did the officials refused to sign ? 

Synthetic QA dataset

QA

Human-labelled
QA dev set

generate

train

test

as evaluation

A higher dev performance
means a stronger QA

A stronger QA means a better training set,
given the same QA model

A better training set means
a better annotator

[Zhang and Bansal, EMNLP 2019] 



Semi-supervised QA 

QG QA

Model-generated questions  Human-labeled questions 

Question answering probability

New or existing paragraphs Existing paragraphs

when did the observer begin to 
show a conservative bias?

.. in 1987, when some students
believed that the observer began to
show a conservative bias, a liberal
newspaper, common sense was 
was published …

.. in 1987, when some students

show a conservative bias, a liberal
newspaper, common sense was 
was published …

believed that the observer began to

in what year did the student paper
common sense begin publication?

D
a

ta

F
ilte

r

Augment QA dataset with QG-generated examples (Generate from Existing Articles, and 
Generate from New Articles) 
(1) QAP filter: To filter out poorly-generated examples; Filter synthetic examples with QAP < 𝜀.  
(2) Mixing mini-batch training: To make sure that the gradients from ground-truth data are not 
overwhelmed by synthetic data, for each mini-batch, we combine half mini-batch ground-truth 
data with half mini-batch synthetic data. 

[Zhang and Bansal, EMNLP 2019] 



Semi-supervised QA 

QG QA

Model-generated questions  Human-labeled questions 

Question answering probability

New or existing paragraphs Existing paragraphs

when did the observer begin to 
show a conservative bias?

.. in 1987, when some students
believed that the observer began to
show a conservative bias, a liberal
newspaper, common sense was 
was published …

.. in 1987, when some students

show a conservative bias, a liberal
newspaper, common sense was 
was published …

believed that the observer began to

in what year did the student paper
common sense begin publication?

D
a

ta

F
ilte

r

Augment QA dataset with QG-generated examples (Generate from Existing Articles, and 
Generate from New Articles) 
(1) QAP filter: To filter out poorly-generated examples; Filter synthetic examples with QAP < 𝜀.  
(2) Mixing mini-batch training: To make sure that the gradients from ground-truth data are not 
overwhelmed by synthetic data, for each mini-batch, we combine half mini-batch ground-truth 
data with half mini-batch synthetic data. 

Still several challenges: need higher 
diversity in generated questions, better/
automatic filters for semi-supervised QA, 
etc. Visit Shiyue’s poster Nov6 10.30am! 

[Zhang and Bansal, EMNLP 2019] 



Commonsense in Generative Q&A Reasoning 

[Bauer, Wang, and Bansal, EMNLP 2018] 

   

"What is the connection
between Esther and Lady
Dedlock?"

"Mother and daughter."

"Sir Leicester Dedlock and his 
wife Lady Honoria live on his 
estate at Chesney Wold.."

"..Unknown to Sir Leicester, 
Lady Dedlock had a lover .. 
before she married and had a
daughter with him.."

"..Lady Dedlock believes her 
daughter is dead. The 
daughter, Esther, is in fact 
alive.."

"..Esther sees Lady Dedlock at
church and talks with her later
at Chesney Wod though neither
woman recognizes their 
connection.."

2c

lady

1c 3c 4c 5c1r 2r 3r 4r

Context

AnswersQuestion

ConceptNet

wife marry

mother daughter child

church house child     their

person lover

"Mother and illegitimate
child."

Figure 2: Commonsense selection approach.
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3.2 Commonsense Selection and
Representation

In QA tasks that require multiple hops of reason-
ing, the model often needs knowledge of relations
not directly stated in the context to reach the cor-
rect conclusion. In the datasets we consider, man-
ual analysis shows that external knowledge is fre-
quently needed for inference (see Table 1).

Even with a large amount of training data, it
is very unlikely that a model is able to learn ev-
ery nuanced relation between concepts and ap-
ply the correct ones (as in Fig. 2) when reasoning

Dataset Outside Knowledge Required

WikiHop 11%
NarrativeQA 42%

Table 1: Qualitative analysis of commonsense require-
ments. WikiHop results are from Welbl et al. (2018);
NarrativeQA results are from our manual analysis (on
the validation set).

about a question. We remedy this issue by intro-
ducing grounded commonsense (background) in-
formation using relations between concepts from
ConceptNet (Speer and Havasi, 2012)1 that help
inference by introducing useful connections be-
tween concepts in the context and question.

Due to the size of the semantic network and
the large amount of unnecessary information, we
need an effective way of selecting relations which
provides novel information while being grounded
by the context-query pair. Our commonsense se-
lection strategy is twofold: (1) collect potentially
relevant concepts via a tree construction method
aimed at selecting with high recall candidate rea-
soning paths, and (2) rank and filter these paths to
ensure both the quality and variety of added infor-
mation via a 3-step scoring strategy (initial node
scoring, cumulative node scoring, and path selec-
tion). We will refer to Fig. 2 as a running example
throughout this section.2

3.2.1 Tree Construction
Given context C and question Q, we want to con-
struct paths grounded in the pair that emulate rea-
soning steps required to answer the question. In
this section, we build ‘prototype’ paths by con-
structing trees rooted in concepts in the query with
the following branching steps3 to emulate multi-
hop reasoning process. For each concept c1 in the
question, we do:
Direct Interaction: In the first level, we select re-
lations r1 from ConceptNet that directly link c1
to a concept within the context, c2 2 C, e.g., in
Fig. 2, we have lady ! church, lady ! mother,
lady ! person.
Multi-Hop: We then select relations in Concept-
Net r2 that link c2 to another concept in the con-
text, c3 2 C. This emulates a potential reason-

1A semantic network where the nodes are individual con-
cepts (words or phrases) and the edges describe directed re-
lations between them (e.g., hisland, UsedFor, vacationi).

2We release all our commonsense extraction code and
the extracted commonsense data at: https://github.com/
yicheng-w/CommonSenseMultiHopQA

3If we are unable to find a relation that satisfies the condi-
tion, we keep the steps up to and including the node.

reasoning operator can be derived by stacking multiple reasoning units in a sequence or a tree form
depending on the nature of the reasoning operator. In particular, we can apply ideas from LSTMs
or tree-LSTMs to model layers of reasoning units. With a tree structure, we can form general
reasoning operators.

3.2.2 A Unified Text-based Reasoning Engine with Multi-hop Inferences

Another crucial component of MCS is multi-hop reasoning, i.e., compositional and complex rea-
soning against commonsense knowledge. We will leverage techniques from the PIs’ previous
work including gated-bypass-attention cells for generative QA [8], textbook QA [34], multimodal
physics based reasoning and prediction [50], interaction based multi-hop reasoning in actionable
photo realistic environments [89, 90, 83], and interactive QA [18]. The main steps of our proposed
multi-hop reasoning include 1) query decomposition and 2) commonsense composition.

Query Decomposition We propose a model that answers complex questions by decomposing
them into sequences of simple queries, which can be answered with simple question answering
techniques. Our model will sequentially generate simple queries, using attention both between
the original question and the context, as well as between the original question and all previously
generated queries in the sequence to determine which aspect of the original question to focus on
for each query. We will use meta learning approaches to generate category-aware simple ques-
tions with encoder-decoder models. We then compute an attention mask between the previously
generated queries and the original question. We propose to use reinforcement learning for training.

Commonsense Composition Answering a complex query requires composing commonsense
knowledge with learned reasoning operators. We will build on our recent novel work [8] and
use ‘bypass-attention’ mechanism to reason jointly on both internal context and external knowl-
edge/commonsense, and essentially learn when to fill ‘gaps’ of reasoning and with what informa-
tion (as shown in Figure 8).
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Figure 8: Our bypass-attention reasoning cell to incorporate hops from
multiple resources and modalities.

We will use inference
with attention to select
relevant reasoning opera-
tors and facts to answer
queries. As described in
Section 3.2.1, we assume
that all facts from the
input (structured or un-
structured) and reasoning
operations are all repre-
sented with a dense vector.
Once the facts and reason-
ing operators are selected, we learn a new macro on how to compose them. We will build a flexible
and adaptive reasoning system that can decide on the fly which information type to employ to
continue the current reasoning chain.

9

•  We use ‘bypass-attention’ mechanism to reason jointly on both internal context and external 
commonsense, and essentially learn when to fill ‘gaps’ of reasoning and with what information 



Part2: Spatial, Video-Grounded NLG/Dialogue Models 

•  NLG/dialogue model should “see” daily activities around it and condition on that 
context for generation; and execute+generate instructions for navigation and 
assembling/arrangement tasks, for joint human-robot collaboration/task-solving. 

Room-to-Room Navigation Task

(a) Turn right and (b) go up 
the steps. (c) Walk to the right 
behind the 2 desks. (d) Stop 
when reach the long wooden 
table beside the ping pong 
table. (e)

(a) (b) 

(c) (d) (e) 
B
Objects
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E Easel
H Hatrack
L Lamp
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Wall paintings
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Butterfly
Fish

Floor patterns

Brick
Blue

Concrete
Flower
Grass
Gravel
Wood
Yellow
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Navigational Instruction Generation 

Navigational Instruction Generation
as Inverse Reinforcement Learning
with Neural Machine Translation

Andrea F. Daniele
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Abstract—Modern robotics applications that involve human-
robot interaction require robots to be able to communicate with
humans seamlessly and effectively. Natural language provides a
flexible and efficient medium through which robots can exchange
information with their human partners. Significant advancements
have been made in developing robots capable of interpreting
free-form instructions, but less attention has been devoted to
endowing robots with the ability to generate natural language.
We propose a navigational guide model that enables robots to
generate natural language instructions that allow humans to
navigate a priori unknown environments. We first decide which
information to share with the user according to their preferences,
using a policy trained from human demonstrations via inverse
reinforcement learning. We then “translate” this information
into a natural language instruction using a neural sequence-to-
sequence model that learns to generate free-form instructions
from natural language corpora. We evaluate our method on
a benchmark route instruction dataset and achieve a BLEU
score of 72.18% when compared to human-generated reference
instructions. We additionally conduct navigation experiments
with human participants that demonstrate that our method
generates instructions that people follow as accurately and easily
as those produced by humans.

I. INTRODUCTION

Robots are increasingly being used as our partners, working
with and alongside people, whether it is serving as assistants
in our homes [59], transporting cargo in warehouses [11],
helping students with language learning in the classroom [28],
and acting as guides in public spaces [23]. In order for
humans and robots to work together effectively, robots must
be able to communicate with their human partners in order to
establish a shared understanding of the collaborative task and
to coordinate their efforts [21, 17, 49, 48]. Natural language
provides an efficient, flexible medium through which humans
and robots can exchange information. Consider, for example,
a search-and-rescue operation carried out by a human-robot
team. The human may first issue spoken commands (e.g.,
“Search the rooms at the end of the hallway”) that direct one
or more robots to navigate throughout the building searching
for occupants [40, 53, 41]. In this process, the robot may
engage the user in dialogue to resolve any ambiguity in the
task (e.g., to clarify which hallway the user was referring
to) [54, 15, 46, 55, 24]. The user’s ability to trust their robotic
partners is also integral to effective collaboration [20], and
a robot’s ability to generate natural language explanations

Input: map and path

C

B

H

E

L

S

B
C
E
H
L
S

Blue
Brick
Concrete
Flower
Grass
Black
Wood
Yellow

Floor patterns:

Tower
Butterfly
Fish

Wall paintings:

Barstool
Chair
Easel
Hatrack
Lamp
Sofa

Objects:

Output: route instruction
“turn to face the grass hallway. walk forward twice. face
the easel. move until you see black floor to your right. face
the stool. move to the stool”

Fig. 1. An example route instruction that our framework generates for the
shown map and path.

of its progress (e.g., “I have inspected two rooms”) and
decision-making processes have been shown to help establish
trust [16, 2, 60].

In this paper, we specifically consider the surrogate prob-
lem of synthesizing natural language route instructions and
describe a method that generates free-form directions that
people can accurately and efficiently follow in environments
unknown to them a priori (Fig. 1). This specific problem has
previously been considered by the robotics community [18, 44]
and is important for human-robot collaborative tasks, such
as search-and-rescue, exploration, and surveillance [33], and
for robotic assistants, such as those that serve as guides in
museums, offices, and other public spaces. More generally,
the problem is relevant beyond human-robot interaction to
the broader domain of indoor navigation, for which GPS
is unavailable and the few existing solutions that rely upon
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our framework through experiments with human instruction
followers.

1) Data Augmentation: The SAIL dataset is significantly
smaller than those typically used to train neural sequence-
to-sequence models. In order to overcome this scarcity, we
augmented the original dataset using a set of rules. In
particular, for each command-instruction (c

(i)
,⇤

(i)
) pair in

the original dataset we generate a number of new demon-
strations iterating over the set of possible values for each
attribute in the command and updating the relative in-
struction accordingly. For example, given the original pair
(Turn(direction=Left), “turn left”), we augment the dataset
with 2 new pairs, namely (Turn(direction=Right), “turn
right”) and (Turn(direction=Back), “turn back”). Our aug-
mented dataset consists of about 750k and 190k demonstra-
tions for training and validation, respectively.

B. Implementation Details

We implemented and tested the proposed model using
the following values for the system parameters: kc = 100,
Pt = 0.99, ke = 128, and Lt = 95.0. The encoder-aligner-
decoder consisted of 2 layers for the encoder and decoder
with 128 LSTM units per layer. The language model similarly
included a 2-layer recurrent neural network with 128 LSTM
units per layer. The size of the CAS and natural (English)
language vocabularies was 88 and 435, respectively, based
upon the SAIL dataset. All parameters were chosen based on
the performance on the validation set. We train our model
using Adam [30] for optimization. At test time, we perform
approximate inference using a beam width of two. Our method
requires an average of 33 s (16 s without beam search) to
generate instructions for a path consisting of 9 movements
when run on a laptop with a 2.0GHz CPU and 8GB of RAM.
As with other neural models, performance would improve
significantly using a GPU.

C. Automatic Evaluation

To the best of our knowledge, we are the first to use the
SAIL dataset for the purposes of generating route instructions.
Consequently, we evaluate our method by comparing our
generated instructions with a reference set of human-generated
commands from the SAIL dataset using the BLEU score (a
4-gram matching-based precision) [45]. For this purpose, for
each command-instruction pair (c(i),⇤(i)) in the validation
set, we first feed the command c

(i)
, into our model to obtain

the generated instruction ⇤

⇤, and secondly use ⇤

(i)
, and ⇤

⇤

respectively as the reference and hypothesis for computing
the 4-gram BLEU score. We consider both the average of the
BLEU scores at the individual sentence level (macro-average
precision) as well as at the full-corpus level (micro-average
precision).

D. Human Evaluation

The use of BLEU score indicates the similarity between
instructions generated via our method and those produced
by humans, but it does not provide a complete measure

Fig. 4. Participants’ field of view in the virtual world used for the human
navigation experiments.

of the quality of the instructions (e.g., instructions that are
correct but different in prose will receive a low BLEU score).
In an effort to further evaluate the accuracy and usability
of our method, we conducted a set of human evaluation
experiments in which we asked 42 novice participants on
Amazon Mechanical Turk (21 females and 21 males, ages
18–64, all native English speakers) to follow natural language
route instructions, randomly chosen from two equal-sized sets
of instructions generated by our method and by humans for 50
distinct paths of various lengths. The paths and corresponding
human-generated instructions were randomly sampled from
the SAIL test set. Given a route instruction, human participants
were asked to navigate to the best of their ability using their
keyboard within a first-person, three-dimensional virtual world
representative of the three environments from the SAIL corpus.
Fig. 4 provides an example of the participants’ field of view
while following route instructions. After attempting to follow
each instruction, each participant was given a survey composed
of eight questions, three requesting demographic information
and five requesting feedback on their experience and the
quality of the instructions that they followed. We collected data
for a total of 441 experiments (227 using human annotated
instructions and 214 using machine generated instructions).
The system randomly assigned the experiments to discourage
the participants from learning the environments or becoming
familiar with the style of a particular instructor. No participants
experienced the same scenario with both human annotated and
machine generated instructions. Appendix B provides further
details regarding the experimental procedure.

VI. RESULTS

We evaluate the performance of our architecture by scoring
the generated instructions using the 4-gram BLEU score com-
monly used as an automatic evaluation mechanism for machine
translation. Comparing to the human-generated instructions,
our method achieves sentence- and corpus-level BLEU scores
of 74.67% and 60.10%, respectively, on the validation set.
On the test set, the method achieves sentence- and corpus
level BLEU scores of 72.18% and 45.39%, respectively. Fig. 1
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Fig. 2. Our method generates natural language instructions for a given map
and path.

A. Compound Action Specifications

In order to bridge the gap between the low-level nature of
the input paths and the natural language output, we encode
paths using an intermediate logic-based formal language.
Specifically, we use the Compound Action Specification
(CAS) representation [39], which provides a formal abstraction
of navigation commands for hybrid metric-topologic-semantic
maps such as ours. The CAS language consists of five actions
(i.e., Travel, Turn, Face, Verify, and Find), each of which is
associated with a number of attributes that together define spe-
cific commands (e.g., Travel.distance, Turn.direction). We dis-
tinguish between CAS structures, which are instructions with
the attributes left empty (e.g., Turn(direction=None)) thereby
defining a class of instructions, and CAS commands, which
correspond to instantiated instructions with the attributes set to
particular values (e.g., Turn(direction=Left)). For each English
instruction ⇤

(i)
) in the dataset, we generate the corresponding

CAS command c

(i) using the MARCO architecture [39].For
a complete description of the CAS language, see MacMahon
et al. [39].

B. Content Selection

There are many ways in which one can compose a CAS
specification of the desired path, both in terms of the type
of information that is conveyed (e.g., referencing distances
vs. physical landmarks), as well as the specific references
to use (e.g., different objects provide candidate landmarks).
Humans exhibit common preferences in terms of the type of
information that is shared (e.g., favoring visible landmarks
over distances) [58], yet the specific nature of this information
depends upon the environment and the followers’ demograph-
ics [61, 27]. Our goal is to learn these preferences from a
dataset of instructions generated by humans.

1) MDP with Inverse Reinforcement Learning: In similar
fashion to Oswald et al. [44], we formulate the content
selection problem as a Markov decision process (MDP) with
a goal of then identifying an information selection policy
that maximizes long-term cumulative reward consistent with
human preferences (Fig. 2). However, this reward function is
unknown a priori and generally difficult to define. We assume
that humans optimize a common reward function when com-
posing instructions and employ inverse reinforcement learning
to learn a policy that mimics the preferences that humans
exhibit based upon a set of human demonstrations.

An MDP is defined by the tuple (S,A,R, P, �), where S

is a set of states, A is a set of actions, R(s, a, s

0
) 2 R is the

reward received when executing action a 2 A in state s 2 S

and transitioning to state s

0 2 S, P (s

0|a, s) is the probability

of transitioning from state s to state s

0 when executing action
a, and � 2 (0, 1] is the discount factor. The policy ⇡(a|s)
corresponds to a distribution over actions given the current
state. In the case of the route instruction domain, the state s

defines the user’s pose and path in the context of the map
of the environment. We represent the state in terms of 14

context features that express characteristics such as changes
in orientation and position, the relative location of objects,
and nearby environment features (e.g., floor color). We encode
the state s as a 14-dimensional binary vector that indicates
which context features are active for that state. In this way, the
state space S is that spanned by all possible instantiations of
context features. Meanwhile, the action space corresponds to
the space of different CAS structures (i.e., without instantiated
attributes) that can be used to define the path.

We seek a policy ⇡(a|s) that maximizes expected cumu-
lative reward. However, the reward function that defines the
value of particular characteristics of the instruction is unknown
and difficult to define. For that reason, we frame the task as
an inverse reinforcement learning (IRL) problem using human-
provided route instructions as demonstrations of the optimal
policy. Specifically, we learn a policy using the maximum
entropy formulation of IRL [63], which models user actions as
a distribution over paths parameterized as a log-linear model
P (a; ✓) / e

�✓>⇠(a), where ⇠(a) is a feature vector defined
over actions. We consider 9 instruction features (properties)
that include features expressing the number of landmarks
included in the instruction, the frame of reference that is
used, and the complexity of the command. The feature vector
⇠(a) then takes the form of a 9-dimensional binary vector.
Appendix A presents the full set of context and property
features used to parameterize the state and action, respectively.
Maximum entropy IRL then solves for the distribution via the
following optimization

P (a; ✓

⇤
) = arg max

✓
P (a; ✓) logP (a; ✓)

s.t. ⇠g = E[⇠(a)],
(1)

where ⇠g denotes the features from the demonstrations and the
expectation is taken over the action distribution. For further
details regarding maximum entropy IRL, we refer the reader
to Ziebart et al. [63].

The policy defines a distribution over CAS structure com-
positions (i.e., using the Verify action vs. the Turn action) in
terms of their feature encoding. We perform inference over
this policy to identify the maximum a posteriori property
vector ⇠(a

⇤
) = arg max⇠ ⇡. As there is no way to invert

the feature mapping, we then match this vector ⇠(a

⇤
) to a

database of CAS structures formed from our training set.
Rather than choosing the nearest match, which may result
in an inconsistent CAS structure, we retrieve the kc nearest
neighbors from the database using a weighted distance in terms
of mutual information [44] that expresses the importance of
different CAS features based upon the context. As several of
these may be valid, we employ spectral clustering using the
similarity of the CAS strings to identify a set of candidate
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Fig. 3. Our encoder-aligner-decoder model for surface realization.

CAS structures Cs.
2) Sentence Planning: Given the set of candidate CAS

structures Cs, our method next chooses the attributes values
such that the final CAS commands are both valid and not
ambiguous. We can compute the likelihood of a command c

to be a valid instruction for a path p defined on a map m as:

P (c|p,m) =

�(c|p,m)

PK
j=1 �(c|p̂j ,m)

. (2)

The index j iterates over all the possible paths that have the
same starting pose of p and �(c | p,m) is defined as:

�(c|p,m) =

⇢
1 if ⌘(c) = �(c, p,m)

0 otherwise

where ⌘(c) is the number of attributes defined in c, and
�(c, p,m) is the number of attributes defined in c that are
also valid with respect to the inputs p,m.

For each candidate CAS structure c 2 Cs, we generate mul-
tiple CAS commands by iterating over the possible attributes
values. We evaluate the correctness and ambiguity of each
configuration according to Equation 2. A command is deemed
valid if its likelihood is greater than a threshold Pt. Since the
number of possible configurations for a structure increases
exponentially with respect to the number of attributes, we
assign attributes using greedy search. The iteration algorithm
is constrained to use only objects and properties of the
environment visible to the follower. The result is a set C of
valid CAS commands.

C. Surface Realization

Having identified a set of CAS commands suitable to the
given path, our method then proceeds to generate the corre-
sponding natural language route instruction. We formulate this
problem as one of “translating” the instruction specification in
the formal CAS language into its natural language equivalent.1
We perform this translation using an encoder-aligner-decoder
model (Fig. 3) that enables our framework to generate natural
language instructions by learning from examples of human-
generated instructions, without the need for specialized fea-
tures, resources, or templates.

1Related work [40, 4, 41] similarly models the inverse task of language
understanding as a machine translation problem.

1) Sequence-to-Sequence Model: We formulate the prob-
lem of generating natural language route instructions as infer-
ence over a probabilistic model P (�1:T |x1:N ), where �1:T =

(�1,�2, . . . ,�T ) is the sequence of words in the instruction
and x1:N = (x1, x2, . . . xN ) is the sequence of tokens in
the CAS command. The CAS sequence includes a token for
each action (e.g., Turn, Travel) and a set of tokens with
the form attribute.value for each couple (attribute,value); for
example, Turn(direction=Right) is represented by the sequence
(Turn, direction.Right). Generating an instruction sequence
then corresponds to inference over this model

�

⇤
1:T = arg max

�1:T

P (�1:T |x1:N ) (3a)

= arg max
�1:T

TY

t=1

P (�t|�1:t�1, x1:N ) (3b)

We model this task as a sequence-to-sequence learning
problem, whereby we use a recurrent neural network (RNN)
to first encode the input CAS command

hj = f(xj , hj�1) (4a)
zt = b(h1, h2, . . . hN ), (4b)

where hj is the encoder hidden state for CAS token j, and f

and b are nonlinear functions, which we define later. An aligner
computes the context vector zt that encodes the language
instruction at time t 2 {1, . . . , T}. An RNN decodes the
context vector zt to arrive at the desired likelihood (Eqn. 3)

P (�t|�1:t�1, x1:N ) = g(dt�1, zt), (5)

where dt�1 is the decoder hidden state at time t� 1, and g is
a nonlinear function.

Encoder Our encoder (Fig. 3) takes as input the sequence
of tokens in the CAS command x1:N . We transform each
token xi into a ke�dimensional binary vector using a word
embedding representation [43]. We feed this sequence into an
RNN encoder that employs LSTMs as the recurrent unit as a
result of their ability to learn long-term dependencies among
the instruction sequences, without being prone to vanishing
or exploding gradients. The LSTM-RNN encoder summarizes
the relationship between elements of the CAS command and
yields a sequence of hidden states h1:N = (h1, h2, . . . , hN ),
where hj encodes CAS words up to and including xj . In
practice, we reverse the input sequence before feeding it into
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(a) Q1: “How do you define the amount of information provided?”

(b) Q2: “How would you evaluate the task in terms of difficulty?”

(c) Q3: “How confident are you that you followed the desired path?”

(d) Q4: “How many times did you have to backtrack?”

(e) Q5: “Who do you think generated the instructions?”

Fig. 7. Participants’ survey response statistics.

and were rated as providing too little information 15% less
frequently than the human-generated baseline (Fig. 7(a)).
Meanwhile, participants felt that our instructions were easier
to follow (Fig. 7(b)) than the human-generated baselines (72%
vs. 52% rated as “easy” or “very easy” for our method vs. the
baseline). Participants were more confident in their ability to
follow our method’s instructions (Fig. 7(c)) and felt that they
had to backtrack less often (Fig. 7(d)). Meanwhile, both types
of instructions were confused equally often as being machine-
generated (Fig. 7(e)), however participants were less sure of
who generated our instructions relative to the human baseline.

Figure 8 compares the paths that participants took when
following our instructions with those that they took given
the reference human-generated directions. In the case of the
map on the left (Fig. 8(a)), none of the five participants
reached the correct destination (indicated by a “G”) when
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“with your back to the wall turn left. walk
along the flowers to the hatrack. turn left.
walk along the brick two alleys past the lamp.
turn left. move along the wooden floor to the
chair. in the next block is a hatrack”

Ours
“you should have the olive hallway on your
right now. walk forward twice. turn left. move
until you see wooden floor to your left. face
the bench. move to the bench”

(b)

Human

“head toward the blue floored hallway. make
a right on it. go down till you see the fish
walled areas. make a left in the fish walled
hallway and go to the very end”

Ours
“turn to face the white hallway. walk forward
once. turn right. walk forward twice. turn left.
move to the wall”

Fig. 8. Examples of paths from the SAIL corpus that ten participants (five
for each map) followed according to instructions generated by humans and
by our method. Paths in red are those traversed according to human-generated
instructions, while paths in green were executed according to our instructions.
Circles with an “S” and “G” denote the start and goal locations, respectively.

following the human-generated instruction. One participant
reached location 2, three participants stopped at location 3

(one of whom backtracked after reaching the end of the
hallway above the goal), and one participant went in the
wrong direction at the outset. In contrast, all five participants
reached the goal directly (i.e., without backtracking) when
following our instruction. For the scenario depicted on the
right (Fig. 8(b)), five participants failed to reach the destination
when provided with the human-generated instruction. Two of
the participants went directly to location 1, two participants
navigated to location 2, and one participant went to location
2 before backtracking and taking a right to location 1. We
attribute the failures to the ambiguity in the human-generated
instruction that references “fish walled areas,” which could
correspond to most of the hallways in this portion of the map
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Room-to-Room Navigation Task

(a) Turn right and (b) go up 
the steps. (c) Walk to the right 
behind the 2 desks. (d) Stop 
when reach the long wooden 
table beside the ping pong 
table. (e)

(a) (b) 

(c) (d) (e) 

•  Learning to Navigate Unseen Environments: Back Translation with Environmental 
Dropout (to create new rooms with view and viewpoint consistency; generate instructions 
for new rooms; use generated room-instruction data in semi-supervised setup) 
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[Tan, Yu, Bansal. NAACL 2019] 

t 

t+1 

V
ie

w
po

in
ts

 

Views 
(a) Feature dropout

V
ie

w
po

in
ts

 

Views 

t 

t+1 

(b) Environmental dropout

Figure 3: Comparison of two dropout methods ([ an illustration –HT ] on RGB image).
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Figure 4: Comparison of two dropouts (on image feature).

which navigates inside an environment E, trying
to find the correct route R according to the given
instruction I. The backward model is a speaker
PE,R�I, which generates an instruction I from
a given route R inside an environment E. Our
speaker model is an enhanced version of Fried
et al. (2018), where we use a stacked bidirectional
LSTM-RNN encoder with attention flow.

For back translation, the Room-to-Room
dataset labels around 10% routes {R} in the train-
ing environments 4 , so the rest of the routes {R0}
are unlabeled. Hence, we generate additional in-
structions I0 using PE,R�I (E,R0

), so to obtain
the new triplets (E,R0

, I0). The agent is then
fine-tuned with this new data using the IL+RL
method described in Sec. 3.3. However, note that
the environment E in the new triplet (E,R0

, I0)
for semi-supervised learning is still selected from
the seen training environments. We demonstrate
that the limited amount of environments {E} is
actually the bottleneck of the agent performance
in Sec. 7.2. Thus, we introduce our environmental
dropout method to mimic the “new” environment

4 [ The number of all possible routes (shortest paths)
in the existing 60 training environments is 190K. The
Room-to-Room dataset labeled around 14K routes with
one navigable instruction for each, so the amount of la-
beled routes is less than 10% of 190K. –HT ]

E0, as described next in Sec. 3.4.2.

3.4.2 Environmental Dropout
Failure of Feature Dropout Different from
dropout on neurons to regularize neural networks,
we drop raw feature dimensions (see Fig. 4a) to
mimic the removal of random objects from an
RGB image (see Fig. 3a). The traditional fea-
ture dropout (with dropout rate p) is implemented
as an element-wise multiplication of the feature
f and the dropout mask ⇠

f . Each element ⇠

f
e

in the dropout mask ⇠

f is a sample of a random
variable which obeys an independent and identi-
cal Bernoulli distribution multiplied by 1/(1� p).
And for different features, the distributions of
dropout masks are independent as well.

dropoutp(f) =f � ⇠

f (13)

⇠

f
e ⇠ 1

1� p

Ber(1� p) (14)

Because of this independence among dropout
masks, the traditional feature dropout fails in aug-
menting the existing environments because the
‘removal’ is inconsistent in different views at the
same viewpoint, and in different viewpoints.

To illustrate this idea, we take the four RGB
views in Fig. 3a as an example, where the chairs
are randomly dropped from the views. The re-
moval of the left chair (marked with red polygon)
from view ot,2 is inconsistent because it also ap-
pears in view ot,1. Thus, the speaker could still
refer to it and the agent is aware of the existence
of the chair. Moreover, another chair (marked
with yellow polygon) is completely removed from
viewpoint observation ot, but the views in next
viewpoint ot+1 provides conflicting information

•  Learning to Navigate Unseen Environments: Back Translation with Environmental 
Dropout (to create new rooms with view and viewpoint consistency; generate instructions 
for new rooms; use generated room-instruction data in semi-supervised setup) 
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fine-tune the forward model PX�Y as additional
training data (also known as ‘data augmentation’).

Back translation was introduced to the task of
navigation in Fried et al. (2018). The forward
model is a navigational agent PE,I�R (Sec. 3.2),
which navigates inside an environment E, trying
to find the correct route R according to the given
instruction I. The backward model is a speaker
PE,R�I, which generates an instruction I from
a given route R inside an environment E. Our
speaker model (details in Sec. 3.4.3) is an en-
hanced version of Fried et al. (2018), where we
use a stacked bidirectional LSTM-RNN encoder
with attention flow.

For back translation, the Room-to-Room
dataset labels around 7% routes {R} in the train-
ing environments6, so the rest of the routes {R0}
are unlabeled. Hence, we generate additional in-
structions I0 using PE,R�I (E,R0

), so to obtain
the new triplets (E,R0

, I0). The agent is then fine-
tuned with this new data using the IL+RL method

6The number of all possible routes (shortest paths) in
the 60 existing training environments is 190K. Of these,
the Room-to-Room dataset labeled around 14K routes with
one navigable instruction for each, so the amount of labeled
routes is around 7% of 190K.

described in Sec. 3.3. However, note that the envi-
ronment E in the new triplet (E,R0

, I0) for semi-
supervised learning is still selected from the seen
training environments. We demonstrate that the
limited amount of environments {E} is actually
the bottleneck of the agent performance in Sec. 7.1
and Sec. 7.2. Thus, we introduce our environmen-
tal dropout method to mimic the “new” environ-
ment E0, as described next in Sec. 3.4.2.

3.4.2 Environmental Dropout
Failure of Feature Dropout Different from
dropout on neurons to regularize neural networks,
we drop raw feature dimensions (see Fig. 4a) to
mimic the removal of random objects from an
RGB image (see Fig. 3a). This traditional fea-
ture dropout (with dropout rate p) is implemented
as an element-wise multiplication of the feature
f and the dropout mask ⇠

f . Each element ⇠

f
e

in the dropout mask ⇠

f is a sample of a random
variable which obeys an independent and identi-
cal Bernoulli distribution multiplied by 1/(1� p).
And for different features, the distributions of
dropout masks are independent as well.

dropoutp(f) =f � ⇠

f (13)

⇠

f
e ⇠ 1

1� p

Ber(1� p) (14)

Because of this independence among dropout
masks, the traditional feature dropout fails in aug-
menting the existing environments because the
‘removal’ is inconsistent in different views at the
same viewpoint, and in different viewpoints.

To illustrate this idea, we take the four RGB
views in Fig. 3a as an example, where the chairs
are randomly dropped from the views. The re-
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fine-tune the forward model PX�Y as additional
training data (also known as ‘data augmentation’).

Back translation was introduced to the task of
navigation in Fried et al. (2018). The forward
model is a navigational agent PE,I�R (Sec. 3.2),
which navigates inside an environment E, trying
to find the correct route R according to the given
instruction I. The backward model is a speaker
PE,R�I, which generates an instruction I from
a given route R inside an environment E. Our
speaker model (details in Sec. 3.4.3) is an en-
hanced version of Fried et al. (2018), where we
use a stacked bidirectional LSTM-RNN encoder
with attention flow.

For back translation, the Room-to-Room
dataset labels around 7% routes {R} in the train-
ing environments6, so the rest of the routes {R0}
are unlabeled. Hence, we generate additional in-
structions I0 using PE,R�I (E,R0

), so to obtain
the new triplets (E,R0

, I0). The agent is then fine-
tuned with this new data using the IL+RL method

6The number of all possible routes (shortest paths) in
the 60 existing training environments is 190K. Of these,
the Room-to-Room dataset labeled around 14K routes with
one navigable instruction for each, so the amount of labeled
routes is around 7% of 190K.

described in Sec. 3.3. However, note that the envi-
ronment E in the new triplet (E,R0

, I0) for semi-
supervised learning is still selected from the seen
training environments. We demonstrate that the
limited amount of environments {E} is actually
the bottleneck of the agent performance in Sec. 7.1
and Sec. 7.2. Thus, we introduce our environmen-
tal dropout method to mimic the “new” environ-
ment E0, as described next in Sec. 3.4.2.

3.4.2 Environmental Dropout
Failure of Feature Dropout Different from
dropout on neurons to regularize neural networks,
we drop raw feature dimensions (see Fig. 4a) to
mimic the removal of random objects from an
RGB image (see Fig. 3a). This traditional fea-
ture dropout (with dropout rate p) is implemented
as an element-wise multiplication of the feature
f and the dropout mask ⇠

f . Each element ⇠

f
e

in the dropout mask ⇠

f is a sample of a random
variable which obeys an independent and identi-
cal Bernoulli distribution multiplied by 1/(1� p).
And for different features, the distributions of
dropout masks are independent as well.

dropoutp(f) =f � ⇠

f (13)

⇠

f
e ⇠ 1

1� p

Ber(1� p) (14)

Because of this independence among dropout
masks, the traditional feature dropout fails in aug-
menting the existing environments because the
‘removal’ is inconsistent in different views at the
same viewpoint, and in different viewpoints.

To illustrate this idea, we take the four RGB
views in Fig. 3a as an example, where the chairs
are randomly dropped from the views. The re-



Room-to-Room Navigation with Instruction Generation 

[Tan, Yu, Bansal. NAACL 2019] 
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go through the door … 
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Figure 2: Left: IL+RL supervised learning (stage 1). Right: Semi-supervised learning with back translation and environmental
dropout (stage 2).

3.3 Supervised Learning: Mixture of
Imitation+Reinforcement Learning

[ We discuss our supervised learning method in this sec-
tion. As an opposite to the semi-supervised method in
Sec. 3.4, we call both the reinforcement learning and imi-
tation learning as supervised learning. –HT ]

Imitation Learning (IL) In IL, an agent learns
to imitate the behavior of a teacher. The teacher
demonstrates a teacher action a

⇤
t at each time step

t. In the task of navigation, a teacher action a

⇤
t

selects the next navigable viewpoint which is on
the shortest route from the current viewpoint to the
target T. The off-policy2 agent learns from this
weak supervision by minimizing the negative log
probability of the teacher’s action a

⇤
t . The loss of

IL is as follows:

LIL
=

X

t

LIL
t =

X

t

- log pt(a⇤t ) (11)

For exploration, we follow the IL method of Be-
havioral Cloning (Bojarski et al., 2016), where
the agent moves to the viewpoint following the
teacher’s action a

⇤
t at time step t.

Reinforcement Learning (RL) Although the
route induced by the teacher’s actions in IL is the
shortest, this selected route is not guaranteed to
satisfy the instruction. Thus, the agent using IL
is biased towards the teacher’s actions instead of
finding the correct route indicated by the instruc-
tion. To overcome these misleading actions, the
on-policy reinforcement learning method Advan-
tage Actor-Critic (Mnih et al., 2016) is applied,
where the agent takes a sampled action from the
distribution {pt(at,k)} and learns from rewards. If

2According to Poole and Mackworth (2010), an off-policy
learner learns the agent policy independently of the agent’s
navigational actions. An on-policy learner learns the policy
from the agent’s behavior including the exploration steps.

the agent stops within 3m around the target view-
point T, a positive reward +3 is assigned at the
final step. Otherwise, a negative reward �3 is as-
signed. We also apply reward shaping (Wu et al.,
2018): the direct reward at each non-stop step t is
the change of the distance to the target viewpoint.

IL+RL Mixture To take the advantage of both
off-policy and on-policy learners, we use a method
to mix IL and RL. The IL and RL agents share
weights, take actions separately, and navigate two
independent routes (see Fig. 2). The mixed loss is
the weighted sum of LIL and LRL:

LMIX
= LRL

+ �ILLIL (12)

IL can be viewed as a language model on action
sequences, which regularizes the RL training.3

3.4 Semi-Supervised Learning: Back
Translation with Environmental Dropout

3.4.1 Back Translation
Suppose the primary task is to learn the mapping
of X � Y with paired data {(X,Y)} and un-
paired data {Y0}. In this case, the back transla-
tion method first trains a forward model PX�Y

and a backward model PY�X, using paired data
{(X,Y)}. Next, it generates additional datum X0

from the unpaired Y0 using the backward model
PY�X. Finally, (X0

,Y0
) are paired to further

fine-tune the forward model PX�Y as additional
training data (also known as ‘data augmentation’).

Back translation was introduced to the task of
navigation in Fried et al. (2018). The forward
model is a navigational agent PE,I�R (Sec. 3.2),

3This approach is similar to the method ML+RL in Paulus
et al. (2018) for summarization. Recently, Wang et al.
(2018a) combines pure supervised learning and RL training
however, they use a different algorithm named MIXER (Ran-
zato et al., 2015), which computes cross entropy (XE) losses
for the first k actions and RL losses for the remaining.

•  Learning to Navigate Unseen Environments: Back Translation with Environmental 
Dropout (to create new rooms with view and viewpoint consistency; generate instructions 
for new rooms; use generated room-instruction data in semi-supervised setup) 
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Still several challenges/ long way to go, e.g., 
better object detectors, diverse language, etc.! 



Pour me some water 

From where? 
To where? 

     From bottle 
  To cup 

1. Understanding language
2. Observing environment

3. Inferencing with common sense

4. Conducting the action

Commonsense via Robotic Instruction Completion 
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New Spatio-Temporal Video+Dialogue Task 

[Fu, Lee, Bansal, Berg, EMNLP 2017] 

•  Video + Chat: conversations grounded in concrete video events! 

Video Highlight Prediction Using Audience Chat Reactions

Cheng-Yang Fu, Joon Lee, Mohit Bansal, Alex C. Berg
UNC Chapel Hill

{cyfu, joonlee, mbansal, aberg}@cs.unc.edu

Abstract

Sports channel video portals offer an ex-
citing domain for research on multimodal,
multilingual analysis. We present meth-
ods addressing the problem of automatic
video highlight prediction based on joint
visual features and textual analysis of the
real-world audience discourse with com-
plex slang, in both English and tradi-
tional Chinese. We present a novel dataset
based on League of Legends champi-
onships recorded from North American
and Taiwanese Twitch.tv channels (will be
released for further research), and demon-
strate strong results on these using multi-
modal, character-level CNN-RNN model
architectures.

1 Introduction

On-line eSports events provide a new setting for
observing large-scale social interaction focused on
a visual story that evolves over time—a video
game. While watching sporting competitions has
been a major source of entertainment for millen-
nia, and is a significant part of today’s culture, eS-
ports brings this to a new level on several fronts.
One is the global reach, the same games are played
around the world and across cultures by speak-
ers of several languages. Another is the scale of
on-line text-based discourse during matches that is
public and amendable to analysis. One of the most
popular games, League of Legends, drew 43 mil-
lion views for the 2016 world series final matches
(broadcast in 18 languages) and a peak concurrent
viewership of 14.7 million1. Finally, players in-
teract through what they see on screen while fans
(and researchers) can see exactly the same views.

1
http://www.lolesports.com/en_US/articles/

2016-league-legends-world-championship-numbers

(a) Twitch

(b) Youtube

(c) Facebook

Figure 1: Pictures of Broadcasting platforms:(a)
Twitch: League of Legends Tournament
Broadcasting, (b) Youtube: News Channel,
(c)Facebook: Personal live sharing

This paper builds on the wealth of interaction
around eSports to develop predictive models for
match video highlights based on the audience’s
online chat discourse as well as the visual record-
ings of matches themselves. ESports journal-
ists and fans create highlight videos of impor-
tant moments in matches. Using these as ground
truth, we explore automatic prediction of high-
lights via multimodal CNN+RNN models for mul-
tiple languages. Appealingly this task is natural,
as the community already produces the ground
truth and is global, allowing multilingual multi-
modal grounding.

Highlight prediction is about capturing the ex-
citing moments in a specific video (a game match
in this case), and depends on the context, the state
of play, and the players. This task of predicting
the exciting moments is hence different from sum-
marizing the entire match into a story summary.
Hence, highlight prediction can benefit from the
available real-time text commentary from fans,
which is valuable in exposing more abstract back-
ground context, that may not be accessible with
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•  Very interesting chat language! 
•  Time-constrained, not just space 
•  Lots of special vocab, symbols, emoticons 
•  Multi-user with several interleaving turns 
•  Multi-lingual 
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Abstract

Sports channel video portals offer an ex-
citing domain for research on multimodal,
multilingual analysis. We present meth-
ods addressing the problem of automatic
video highlight prediction based on joint
visual features and textual analysis of the
real-world audience discourse with com-
plex slang, in both English and tradi-
tional Chinese. We present a novel dataset
based on League of Legends champi-
onships recorded from North American
and Taiwanese Twitch.tv channels (will be
released for further research), and demon-
strate strong results on these using multi-
modal, character-level CNN-RNN model
architectures.

1 Introduction

On-line eSports events provide a new setting for
observing large-scale social interaction focused on
a visual story that evolves over time—a video
game. While watching sporting competitions has
been a major source of entertainment for millen-
nia, and is a significant part of today’s culture, eS-
ports brings this to a new level on several fronts.
One is the global reach, the same games are played
around the world and across cultures by speak-
ers of several languages. Another is the scale of
on-line text-based discourse during matches that is
public and amendable to analysis. One of the most
popular games, League of Legends, drew 43 mil-
lion views for the 2016 world series final matches
(broadcast in 18 languages) and a peak concurrent
viewership of 14.7 million1. Finally, players in-
teract through what they see on screen while fans
(and researchers) can see exactly the same views.

1
http://www.lolesports.com/en_US/articles/

2016-league-legends-world-championship-numbers

(a) Twitch

(b) Youtube

(c) Facebook

Figure 1: Pictures of Broadcasting platforms:(a)
Twitch: League of Legends Tournament
Broadcasting, (b) Youtube: News Channel,
(c)Facebook: Personal live sharing

This paper builds on the wealth of interaction
around eSports to develop predictive models for
match video highlights based on the audience’s
online chat discourse as well as the visual record-
ings of matches themselves. ESports journal-
ists and fans create highlight videos of impor-
tant moments in matches. Using these as ground
truth, we explore automatic prediction of high-
lights via multimodal CNN+RNN models for mul-
tiple languages. Appealingly this task is natural,
as the community already produces the ground
truth and is global, allowing multilingual multi-
modal grounding.

Highlight prediction is about capturing the ex-
citing moments in a specific video (a game match
in this case), and depends on the context, the state
of play, and the players. This task of predicting
the exciting moments is hence different from sum-
marizing the entire match into a story summary.
Hence, highlight prediction can benefit from the
available real-time text commentary from fans,
which is valuable in exposing more abstract back-
ground context, that may not be accessible with

Code/Data: https://github.com/chengyangfu/Pytorch-Twitch-LOL 
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Figure 3: Network architecture of proposed models.

of predicted frames with a positive label as Spred.
Following (Gygli et al., 2014; Song et al., 2015),
we use the harmonic mean F-score in Eq.2 widely
used in video summarization task for evaluation:

P =
Sgt \ Spred

|Spred|
, R =

Sgt \ Spred

|Sgt|
(1)

F =
2PR

P +R

⇥ 100% (2)

V-CNN We use the ResNet-34 model (He et al.,
2016) to represent frames, motivated by its strong
results on the ImageNet Challenge (Russakovsky
et al., 2015). Our naive V-CNN model (Fig-
ure 3a) uses features from the pre-trained version
of this network 6 directly to make prediction at
each frame (which are resized to 224x224).

V-CNN-LSTM In order to exploit visual video
information sequentially over time, we use a
memory-based LSTM-RNN on top of the image
features, so as to model long-term dependencies.
All of our videos are 30FPS. As the difference be-
tween consecutive frames is usually minor, we run
prediction every 10th frame during evaluation and
interpolate predictions between these frames. Dur-
ing training, due to the GPU memory constraints,
we unfold the LSTM cell 16 times. Therefore the
image window size is around 5-seconds (16 sam-
ples every 10th frame from 30fps video). The hid-
den state from the last cell is used as the V-CNN-
LSTM feature. This process is shown in Figure 3b.

L-Word-LSTM and L-Char-LSTM Next, we
discuss our language-based models using the
audience chat text. Word-level LSTM-RNN
models (Sutskever et al., 2014) are a common
approach to embedding sentences. Unfortu-
nately, this does not fit our Internet-slang style
language with irregularities, “mispelled” words
(hapy, happppppy), emojis (ˆ ˆ), abbreviations
(LOL), marks (?!?!?!?!), or onomatopoeic cases

6
https://github.com/pytorch/pytorch

(e.g., 4 which sounds like yes in traditional Chi-
nese). People may type variant length of 4, e.g.,,
4444444 to express their remarks.

Therefore, alternatively, we model the audience
chat with a character-level LSTM-RNN model
(Graves, 2013). Characters of the language, Chi-
nese, English, or Emojis, are expanded to multiple
ASCII characters according to the two-character
Unicode or other representations used on the chat
servers. We encode a 1-hot vector for each ASCII
input character. For each frame we use all chats
that occur in the next Wt seconds which are called
text window size to form the input for L-Char-
LSTM. We concatenate all the chats in a window,
separating them by a special stop character, and
then fed to a 3-layer L-Char-LSTM model.7 This
model is shown in Figure 3c. Following the setting
in Sec. 5, we evaluate the text window size from 5
seconds to 9 seconds, and got the following accu-
racies:32.1%, 29.6%, 41.5%, 28.2%, 34.4%. We
achieved best results with text window size as 7
seconds, and used this in rest of the experiments.

Joint lv-LSTM Model Our final lv-LSTM
model combines the best vision and language
models: V-CNN-LSTM and L-Char-LSTM. For
the vision and language models, we can extract
features Fv and Fl from V-CNN-LSTN and L-
Char-LSTM, respectively. Then we concatenate
Fv and Fl, and feed it into a 2-layer MLP. The
completed model is shown in Figure 3d. We ex-
pect there is room to improve this approach, by
using more involved representations, e.g., Bilinear
Pooling (Fukui et al., 2016), Memory Networks
(Xiong et al., 2016), and Attention Models (Lu
et al., 2016); this is future work.

7The number of these stop characters is then an encod-
ing of the number of chats in the window. Therefore, the
L-Char-LSTM could learn to use this #chats information, if
it is a useful feature. Also, some content has been deleted by
Twitch.tv or the channel itself due to the usage of improper
words. We use symbol ”\n” to replace such cases.

Method Data UF P R F
L-Char-LSTM C 100% 0.11 0.99 19.6
L-Char-LSTM C last 25% 0.35 0.51 41.5
L-Word-LSTM C last 25% 0.10 0.99 19.2
V-CNN V 100% 0.40 0.93 56.2
V-CNN V last 25% 0.57 0.74 64.0
V-CNN-LSTM V last 25% 0.58 0.82 68.3
lv-LSTM C+V last 25% 0.77 0.72 74.8

Table 2: Ablation Study: Effects of various mod-
els. C:Chat, V:Video, UF: % of frames Used in
highlight clips as positive training examples; P:
Precision, R: Recall, F: F-score.

5 Experiments and Results

Training Details In development and ablation
studies, we use train and val splits of the data from
NALCS to evaluate models in Section 3. For the
final results, models are retrained on the combina-
tion of train and val data (following major vision
benchmarks e.g. PASCAL-VOC and COCO), and
performance is measured on the test set. We sepa-
rate the highlight prediction to three different tasks
based on using different input data: videos, chats,
and videos+chats. The details of dataset split are
in Section 3. Our code is implemented in PyTorch.

To deal with the large number of frames total,
we sample only 5k positive and 5k negative exam-
ples in each epoch. We use batch size of 32 and
run 60 epochs in all experiments. Weight decay is
10�4 and learning rate is set as 10�2 in the first 20
epochs and 10�3 after that. Cross entropy loss is
used. Highlights are generated by fans and consist
of clips. We match each clip to when it happened
in the full match and call this the highlight clip
(non-overlapping). The action of interest (kill, ob-
jective control, etc.) often happens in the later part
of a highlight clip, while the clip contains some
additional context before that action that may help
set the stage. For some of our experimental set-
tings (Table 2), we used a heuristic of only includ-
ing the last 25% frames in every highlight clip as
positive training examples. During evaluation, we
used all frames in the highlight clip.

Ablation Study Table 2 shows the performance
of each module separately on the dev set. For
the basic L-Char-LSTM and V-CNN models, us-
ing only the last 25% of frames in highlight clips
in training works best. In order to evaluate the per-
formance of L-Char-LSTM model, we also train a
Word-LSTM model by tokenizing all the chats and

Method Data NALCS LMS
L-Char-LSTM chat 43.2 39.7
V-CNN-LSTM video 72.2 69.2
lv-LSTM chat+video 74.7 70.0

Table 3: Test Results on the NALCS (English) and
LMS (Traditional Chinese) datasets.

only considering the words that appeared more
than 10 times, which results in 10019 words. We
use this vocabulary to encode the words to 1-hot
vectors. The L-Char-LSTM outperforms L-Word-
LSTM by 22.3%.

Test Results Test results are shown in Table 3.
Somewhat surprisingly, the vision only model is
more accurate than the language only model, de-
spite the real-time nature of the comment stream.
This is perhaps due to the visual form of the game,
where highlight events may have similar anima-
tions. However, including language with vision in
the lv-LSTM model significantly improves over
vision alone, as the comments may exhibit addi-
tional contextual information. Comparing results
between ablation and the final test, it seems more
data contributes to higher accuracy. This effect is
more apparent in the vision models, perhaps due
to complexity. Moreover, L-Char-LSTM performs
better in English compared to traditional Chinese.
From the numbers given in Section 3, variation in
the number of chats in NALCS was much higher
than LMS, which one may expect to have a critical
effect in the language model. However, our results
seem to suggest that the L-Char-LSTM model can
pickup other factors of the chat data (e.g. content)
instead of just counting the number of chats. We
expect a different language model more suitable
for the traditional Chinese language should be able
to improve the results for the LMS data.

6 Conclusion

We presented a new dataset and multimodal meth-
ods for highlight prediction, based on visual cues
and textual audience chat reactions in multiple lan-
guages. We hope our new dataset can encourage
further multilingual, multimodal research.
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ods addressing the problem of automatic
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1 Introduction

On-line eSports events provide a new setting for
observing large-scale social interaction focused on
a visual story that evolves over time—a video
game. While watching sporting competitions has
been a major source of entertainment for millen-
nia, and is a significant part of today’s culture, eS-
ports brings this to a new level on several fronts.
One is the global reach, the same games are played
around the world and across cultures by speak-
ers of several languages. Another is the scale of
on-line text-based discourse during matches that is
public and amendable to analysis. One of the most
popular games, League of Legends, drew 43 mil-
lion views for the 2016 world series final matches
(broadcast in 18 languages) and a peak concurrent
viewership of 14.7 million1. Finally, players in-
teract through what they see on screen while fans
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This paper builds on the wealth of interaction
around eSports to develop predictive models for
match video highlights based on the audience’s
online chat discourse as well as the visual record-
ings of matches themselves. ESports journal-
ists and fans create highlight videos of impor-
tant moments in matches. Using these as ground
truth, we explore automatic prediction of high-
lights via multimodal CNN+RNN models for mul-
tiple languages. Appealingly this task is natural,
as the community already produces the ground
truth and is global, allowing multilingual multi-
modal grounding.

Highlight prediction is about capturing the ex-
citing moments in a specific video (a game match
in this case), and depends on the context, the state
of play, and the players. This task of predicting
the exciting moments is hence different from sum-
marizing the entire match into a story summary.
Hence, highlight prediction can benefit from the
available real-time text commentary from fans,
which is valuable in exposing more abstract back-
ground context, that may not be accessible with
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tiple languages. Appealingly this task is natural,
as the community already produces the ground
truth and is global, allowing multilingual multi-
modal grounding.

Highlight prediction is about capturing the ex-
citing moments in a specific video (a game match
in this case), and depends on the context, the state
of play, and the players. This task of predicting
the exciting moments is hence different from sum-
marizing the entire match into a story summary.
Hence, highlight prediction can benefit from the
available real-time text commentary from fans,
which is valuable in exposing more abstract back-
ground context, that may not be accessible with
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1 Introduction
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a visual story that evolves over time—a video
game. While watching sporting competitions has
been a major source of entertainment for millen-
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public and amendable to analysis. One of the most
popular games, League of Legends, drew 43 mil-
lion views for the 2016 world series final matches
(broadcast in 18 languages) and a peak concurrent
viewership of 14.7 million1. Finally, players in-
teract through what they see on screen while fans
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Modeling Game-Based Video-Context Dialogue

Anonymous EMNLP submission

Abstract
Current dialogue systems focus more on tex-
tual and speech context knowledge and are
usually based on two speakers. Some re-
cent work has investigated static image-based
dialogue. However, several real-world hu-
man interactions also involve dynamic visual
context (similar to videos) as well as dia-
logue exchanges among multiple speakers. To
move closer towards such multimodal con-
versational skills and visually-situated appli-
cations, we introduce a new video-context,
many-speaker dialogue dataset based on live-
broadcast soccer game videos and chats from
Twitch.tv. This challenging testbed allows us
to develop visually-grounded dialogue mod-
els that should generate relevant temporal and
spatial event language from the live video,
while also being relevant to the chat his-
tory. For strong baselines, we also present
several discriminative and generative mod-
els, e.g., based on tridirectional attention
flow (TriDAF). We evaluate these models
via retrieval ranking-recall, automatic phrase-
matching metrics, as well as human evalua-
tion studies. We also present dataset analyses,
model ablations, and visualizations to under-
stand the contribution of different modalities
and model components.

1 Introduction

Dialogue systems or conversational agents which
are able to hold natural, relevant, and coherent in-
teractions with humans have been a long-standing
goal of artificial intelligence and machine learn-
ing. There has been a lot of important previ-
ous work in this field since decades (Weizenbaum,
1966; Isbell et al., 2000; Rambow et al., 2001;
Rieser et al., 2005; Georgila et al., 2006; Rieser
and Lemon, 2008; Ritter et al., 2011), includ-
ing recent work on introduction of large textual-
dialogue datasets (e.g., Lowe et al. (2015); Ser-
ban et al. (2016)) and end-to-end neural network

S1: what an offside trap 
OMEGALUL
 

S2: Lol that finish bro
 

S3: suprised you didn't 
do the extra pass
 

S4: @S10 a drunk bet? 
 

S5: @S11 thanks mate
 

S6: could have passed 
one more
 

S7: Pass that
 

S1: record now!
 

S8: !record 

S9: done a nother pass there

Figure 1: Sample example from our many-speaker,
video-context dialogue dataset, based on live soccer
game chat. The task is to predict the response (bottom-
right) using the video context (left) and the chat context
(top-right).

based models (Sordoni et al., 2015; Vinyals and
Le, 2015; Su et al., 2016; Luan et al., 2016; Li
et al., 2016; Serban et al., 2017a,b).

Current dialogue tasks are usually focused on
the textual or verbal context (conversation his-
tory). In terms of multimodal dialogue, speech-
based spoken dialogue systems have been widely
explored (Eckert et al., 1997; Singh et al., 2000;
Young, 2000; Janin et al., 2003; Celikyilmaz et al.,
2017; Wen et al., 2015; Su et al., 2016; Mrkšić
et al., 2016), as well as work on gesture and hap-
tics based dialogue (Johnston et al., 2002; Cassell,
1999; Foster et al., 2008). In order to address the
additional advantage of using visually-grounded
context knowledge in dialogue, recent work intro-
duced the visual dialogue task (Das et al., 2017;
de Vries et al., 2017; Mostafazadeh et al., 2017).
However, the visual context in these tasks is lim-
ited to one static image. Moreover, the interac-
tions are between two speakers with fixed roles
(one asks questions and the other answers).

Several situations of real-world dialogue among
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...... ......

response-to-video
 attention

chat-to-video
 attention

......

video-to-chat
 attention

response-to-chat
 attention

video-to-response
 attention

chat-to-response
 attention

Figure 5: Overview of our tridirectional attention flow
(TriDAF) model with self-attention on video context,
chat context, and response as inputs.

where the summation is over all the training triples
in the dataset. M is a tunable margin hyperparam-
eter between positive and negative training triples.

4.2.2 Tridirectional Attention Flow (TriDAF)
Our tridirectional attention flow model learns
stronger joint spaces between the three modalities
in a mutual-information way. We use bidirectional
attention flow mechanisms (Seo et al., 2017) be-
tween the video and chat contexts, between the
video context and the response, as well as between
the chat context and the response, hence enabling
attention flow across all three modalities, as shown
in Fig. 5. We name this model Tridirectional At-
tention Flow or TriDAF. We will next discuss the
bidirectional attention flow mechanism between
video and chat contexts, but the same formula-
tion holds true for bidirectional attention between
video context and response, and between chat con-
text and response. Given the video context hidden
state h

v
i and chat context hidden state h

u
j at time

steps i and j respectively, the bidirectional atten-
tion mechanism is based on the similarity score:

S

(v,u)
i,j = w

T
S(v,u) [h

v
i ;h

u
j ;h

v
i � h

u
j ] (3)

where S

(v,u)
i,j is a scalar, wS(v,u) is a trainable

parameter, and � denote element-wise multi-
plication. The attention distribution from chat
context to video context is defined as ↵i: =

softmax(Si:), hence the chat-to-video context
vector c

v u
i =

P
j ↵i,jh

u
j . Similarly, the atten-

tion distribution from video context to chat con-
text is defined as �j: = softmax(S:j), hence the
video-to-chat context vector c

u v
j =

P
i �j,ih

v
i .

We then compute similar bidirectional attention
flow mechanisms between the video context and
response, and between the chat context and re-
sponse. Then, we concatenate each hidden state
and its corresponding context vector from other
two modalities, e.g., ˆhvi = [h

v
i ; c

v u
i ; c

v r
i ] for the

ith timestep of the video context. Finally, we add

self-attention mechanism (Lin et al., 2017) across
the concatenated hidden states of each of the three
modules.6 If ˆ

h

v
i is the final concatenated vector

of the video context at time step i, then the self-
attention weights ↵s for this video context are the
softmax of es:

e

s
i = V

v
a tanh(W

v
a
ˆ

h

v
i + b

v
a) (4)

where V

v
a , W v

a , and b

v
a are trainable self-attention

parameters. The final representation vector of
the full video context after self-attention is ĉ

v
=P

i ↵
s
i
ˆ

h

v
i . Similarly, the final representation vec-

tors of the chat context and the response are ĉ

u

and ĉ

r, respectively. Finally, the probability that
the given training triple (v, u, r) is positive is:

p(v, u, r; ✓) = �([ĉ

v
; ĉ

u
]

T
Wĉ

r
+ b) (5)

Again, here also we use max-margin loss (Eqn. 2).

4.3 Generative Models
4.3.1 Seq2seq with Attention
Our simpler generative model is a sequence-to-
sequence model with bilinear attention mechanism
(similar to Luong et al. (2015)). We have two en-
coders, one for encoding the video context and
another for encoding the chat context, as shown
in Fig. 6. We combine the final state informa-
tion from both encoders and give it as initial state
to the response generation decoder. The two en-
coders and the decoder are all two-layer LSTM-
RNNs. Let h

v
i and h

u
j be the hidden states of

video and chat encoders at time step i and j re-
spectively. At each time step t of the decoder with
hidden state h

r
t , the decoder attends to parts of

video and chat encoders and uses the combined
information to generate the next token. Let ↵t and
�t be the attention weight distributions for video
and chat encoders respectively with video context
vector c

v
t =

P
i ↵t,ih

v
i and chat context vector

c

u
t =

P
j �t,jh

u
j . The attention distribution for

video encoder is the defined as (and the same holds
for chat encoder):

et,i = h

r
t
T
W

v
a h

v
i ; ↵t = softmax(et) (6)

where W

v
a is a trainable parameter. Next, we con-

catenate the context information and decoder hid-
den state h

r
t and do a non-linear transformation to

get the final hidden state ˆ

h

r
t as follows:

ˆ

h

r
t = tanh(Wc[c

v
t ; c

u
t ;h

r
t ]) (7)

6In our preliminary experiments, we found that adding
self-attention is 0.92% better in recall@1 and faster than
passing the hidden states through another layer of RNN, as
done in Seo et al. (2017).
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Models r@1 r@2 r@5
BASELINES

Most-Frequent-Response 10.0 16.0 20.9
Naive Bayes 9.6 20.9 51.5
Logistic Regression 10.8 21.8 52.5
Nearest Neighbor 11.4 22.6 53.2
Chat-Response-Cosine 11.4 22.0 53.2

DISCRIMINATIVE MODEL
Dual Encoder (C) 17.1 30.3 61.9
Dual Encoder (V) 16.3 30.5 61.1
Triple Encoder (C+V) 18.1 33.6 68.5
TriDAF+Self Attn (C+V) 20.7 35.3 69.4

GENERATIVE MODEL
Seq2seq +Attn (C) 14.8 27.3 56.6
Seq2seq +Attn (V) 14.8 27.2 56.7
Seq2seq + Attn (C+V) 15.7 28.0 57.0
Seq2seq + Attn + BiDAF (C+V) 16.5 28.5 57.7

Table 3: Performance of our baselines, discriminative
models, and generative models for recall@k metrics on
our Twitch FIFA test set. C and V represent chat and
video context, respectively.

From the study, we found that human performance
on this dataset is around 55% on recall@1, demon-
strating that this is a reasonably challenging task
for humans, but also that there is a lot of scope
for future model improvements because the best-
performing model so far (see Sec. 6.3) achieves
only around 22% recall@1, and hence there is a
large 33% (dev set) gap.7

6.2 Baseline Results

Table 3 displays all our primary results. We
first discuss results of our simple non-trained and
trained baselines (see Sec. 4.1). The ‘Most-
Frequent-Response’ baseline, which just ranks the
10-sized response retrieval list based on their fre-
quency in the training data, gets only around
10% recall@1.8 Our other non-trained baselines:
‘Chat-Response-Cosine’ and ‘Nearest Neighbor’,
which ranks the candidate responses based on
(Twitch-trained RNN encoder’s vector) cosine

7The low human performance is also due to the fact that
this is a challenging recall-based evaluation, i.e., the choice
comes w.r.t. 9 tricky negative examples along with just 1 pos-
itive example. Moreover, our dataset filtering (see Sec. 3.1)
also ‘suppresses’ simple baselines and makes the task even
harder. Finally, this might be a task where an ML model can
be better than humans, esp. because humans find it challeng-
ing to carefully and patiently look for each intricate detail in
the long video and the long, many-speaker chat, in a live,
time-constrained setting, whereas the model has full low-
level features and no time limit in principle. Note that the
human evaluators were familiar with Twitch FIFA-18 video
games and also the Twitch’s unique set of chat mannerisms
and emotes.

8Note that the performance of this baseline is worse than
the random choice baseline (recall@1:10%, recall@2:20%,
recall@5:50%) because our dataset filtering process already
suppresses frequent responses (see Sec. 3.1), in order to pro-
vide a challenging dataset for the community.

Models METEOR ROUGE-L
MULTIPLE REFERENCES

Seq2seq + Atten. (C) 2.59 8.44
Seq2seq + Atten. (V) 2.66 8.34
Seq2seq + Atten. (C+V) ⌦ 3.03 8.84
⌦ + BiDAF (C+V) 3.70 9.82

Table 4: Performance of our generative models on
phrase matching metrics.

Models Relevance Fluency
Seq2seq + Atten. (C+V) wins 13.0 % 9.0 %
Bi-DAF wins 21.0 % 11.0 %
Non-distinguishable 66.0 % 80.0 %

Table 5: Human evaluation comparing the baseline and
Bi-DAF generative models.

similarity with chat-context and K-best training
contexts’ response vectors, respectively, achieves
slightly better scores. We also show that our sim-
ple trained baselines (logistic regression and near-
est neighbor) also achieve relatively low scores,
indicating that a simple, shallow model will not
work on this challenging dataset.

6.3 Discriminative Model Results

Next, we present the recall@k retrieval perfor-
mance of our various discriminative models in Ta-
ble 3: dual encoder (chat context only), dual en-
coder (video context only), triple encoder, and
TriDAF model with self-attention. Our dual en-
coder models are significantly better than random
choice and all our simple baselines above, and
further show that they have complementary in-
formation because using both of them together
(in ‘Triple Encoder’) improves the overall perfor-
mance of the model. Finally, we show that our
novel TriDAF model with self-attention performs
significantly better than the triple encoder model.9

6.4 Generative Model Results

Next, we evaluate the performance of our gener-
ative models with both retrieval-based recall@k
scores and phrase matching-based metrics as dis-
cussed in Sec. 5 (as well as human evaluation).
We first discuss the retrieval-based recall@k re-
sults in Table 3. Starting with a simple sequence-
to-sequence attention model with video only, chat
only, and both video and chat encoders, the re-
call@k scores are better than all the simple base-
lines. Moreover, using both video+chat context is
again better than using only one context modal-
ity. Finally, we show that the addition of the bidi-

9Statistical significance of p < 0.01 for recall@1, based
on the bootstrap test (Noreen, 1989; Efron and Tibshirani,
1994) with 100K samples.
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the given training triple (v, u, r) is positive is:

p(v, u, r; ✓) = �([ĉ

v
; ĉ

u
]

T
Wĉ

r
+ b) (5)

Again, here also we use max-margin loss (Eqn. 2).

4.3 Generative Models
4.3.1 Seq2seq with Attention
Our simpler generative model is a sequence-to-
sequence model with bilinear attention mechanism
(similar to Luong et al. (2015)). We have two en-
coders, one for encoding the video context and
another for encoding the chat context, as shown
in Fig. 7. We combine the final state informa-
tion from both encoders and give it as initial state
to the response generation decoder. The two en-
coders and the decoder are all two-layer LSTM-
RNNs. Let h

v
i and h

u
j be the hidden states of

video and chat encoders at time step i and j re-
spectively. At each time step t of the decoder with
hidden state h

r
t , the decoder attends to parts of

video and chat encoders and uses the combined
information to generate the next token. Let ↵t and
�t be the attention weight distributions for video
and chat encoders respectively with video context
vector c

v
t =

P
i ↵t,ih

v
i and chat context vector

c

u
t =

P
j �t,jh

u
j . The attention distribution for

video encoder is defined as (and the same holds
for chat encoder):

et,i = h

r
t
T
W

v
a h

v
i ; ↵t = softmax(et) (6)

where W

v
a is a trainable parameter. Next, we con-

catenate the attention-based context information
(cvt and c

u
t ) and decoder hidden state (hrt ), and do

a non-linear transformation to get the final hidden
state ˆ

h

r
t as follows:

ˆ

h

r
t = tanh(Wc[c

v
t ; c

u
t ;h

r
t ]) (7)

where Wc is again a trainable parameter. Fi-
nally, we project the final hidden state informa-
tion to vocabulary size and give it as input to a
softmax layer to get the vocabulary distribution
p(rt|r1:t�1, v, u; ✓). During training, we minimize
the cross-entropy loss defined as follows:

LXE(✓) = �
XX

t

log p(rt|r1:t�1, v, u; ✓) (8)

where the final summation is over all the training
triples in the dataset.

Further, to train a stronger generative model
with negative training examples (which teaches

chat-to-video
 attention

video-to-chat
 attention

Figure 7: Overview of our generative model with bidi-
rectional attention flow between video context and chat
context during response generation.

the model to give higher generative decoder prob-
ability to the positive response as compared to all
the negative ones), we use a max-margin loss (sim-
ilar to Eqn. 2 in Sec. 4.2.1):

LMM(✓) =
X

[max(0,M + log p(r|v0, u)� log p(r|v, u))

+ max(0,M + log p(r|v, u0
)� log p(r|v, u))

+ max(0,M + log p(r0|v, u)� log p(r|v, u))]
(9)

where the summation is over all the training triples
in the dataset. Overall, the final joint loss func-
tion is a weighted combination of cross-entropy
loss and max-margin loss: L(✓) = LXE(✓) +

�LMM(✓), where � is a tunable hyperparameter.

4.3.2 Bidirectional Attention Flow (BiDAF)
The stronger version of our generative model
extends the two-encoder-attention-decoder model
above to add bidirectional attention flow (BiDAF)
mechanism (Seo et al., 2017) between video and
chat encoders, as shown in Fig. 7. Given the hid-
den states hvi and h

u
j of video and chat encoders at

time step i and j, the final hidden states after the
BiDAF are ˆ

h

v
i = [h

v
i ; c

v u
i ] and ˆ

h

u
j = [h

u
i ; c

u v
j ]

(similar to as described in Sec. 4.2.2), respectively.
Now, the decoder attends over these final hidden
states, and the rest of the decoder process is simi-
lar to Sec 4.3.1 above, including the weighted joint
cross-entropy and max-margin loss.

5 Experimental Setup

Evaluation We first evaluate both our discrimi-
native and generative models using retrieval-based
recall@k scores, which is a concrete metric for
such dialogue generation tasks (Lowe et al., 2015).
For our discriminative models, we simply rerank
the given responses (in a candidate list of size 10,
based on 9 negative examples; more details below)



Thoughts/Challenges/Future Work 
•  Other axes of NLG:  

•  Personality (we have done some work on politeness/rudeness- and humor-based language 
generation) 

•  Speed and scalability (hybrid extractive+abstractive summarization with RL connector; SotA
+20x speedup) 

•  Extending the video-dialogue and video-QA models to multiple other languages 
•  AutoAugment design for other NLG tasks 
•  More structured commonsense for other NLG tasks 
•  Better AutoAugment algorithms for speed, input-awareness, RL instability and reward 

sparsity 
•  Richer spatial world benchmarks with instruction generation/dialogue 







Thank you! 
 

Webpage: http://www.cs.unc.edu/~mbansal/ 
 

Email: mbansal@cs.unc.edu 
 

UNC-NLP Lab: http://nlp.cs.unc.edu/ 
 

Postdoc Openings!!: ~mbansal/postdoc-advt-unc-nlp.pdf  


