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Abstract

We present a simple method to learn contin-
uous representations of dependency substruc-
tures (links), with the motivation of directly
working with higher-order, structured embed-
dings and their hidden relationships, and also
to avoid the millions of sparse, template-based
word-cluster features in dependency parsing.
These link embeddings allow a significantly
smaller and simpler set of unary features for
dependency parsing, while maintaining im-
provements similar to state-of-the-art, n-ary
word-cluster features, and also stacking over
them. Moreover, these link vectors (made
publicly available) are directly portable as off-
the-shelf, dense, syntactic features in vari-
ous NLP tasks. As one example, we incor-
porate them into constituent parse reranking,
where their small feature set again matches the
performance of standard non-local, manually-
defined features, and also stacks over them.

1 Introduction

Word representations and more recently, word em-
beddings, learned from large amounts of text have
been quite successful as features in various NLP
tasks (Koo et al., 2008; Turian et al., 2010; Col-
lobert et al., 2011; Dhillon et al., 2012; Al-Rfou’ et
al., 2013; Bansal et al., 2014; Guo et al., 2014; Pen-
nington et al., 2014; Yu and Dredze, 2014; Faruqui
et al., 2014; Wang et al., 2015). While these word
representations do capture useful, dense relation-
ships among known and unknown words, one still
has to work with sparse conjunctions of features on
the multiple words involved in the substructure that

a task factors on, e.g., head-argument links in de-
pendency parsing. Therefore, most statistical depen-
dency parsers still suffer from millions of such con-
joined, template-based, n-ary features on word clus-
ters or embeddings (Koo et al., 2008; Bansal et al.,
2014). Some recent work has addressed this issue,
via low-rank tensor mappings (Lei et al., 2014), fea-
ture embeddings (Chen et al., 2014), or neural net-
work parsers (Chen and Manning, 2014).

Secondly, it would also be useful to learn dense
representations directly for the higher-order sub-
structures (that structured NLP tasks factor on) so
as to explicitly capture the useful, hidden relation-
ships among these substructures, instead of relying
on the sparse word-conjoined relationships.

In this work, we propose to address both these
issues by learning simple dependency link embed-
dings on ‘head—argument’ pairs (as a single con-
catenated unit), which allows us to work directly
with linguistically-intuitive, higher-order substruc-
tures, and also fire significantly fewer and sim-
pler features in dependency parsing, as opposed to
word cluster and embedding features in previous
work (Koo et al., 2008; Bansal et al., 2014), while
still maintaining their strong accuracies.

Trained using appropriate dependency-based con-
text in word2vec, the fast neural language model
of Mikolov et al. (2013a), these link vectors allow
a substantially smaller set of unary link features (as
opposed to n-ary, conjoined features) which provide
savings in parsing time and memory. Moreover,
unlike conjoined features, link embeddings allow
a tractable set of accurate per-dimension features,
making the feature set even smaller and the feature-
generation process orders of magnitude faster (than



hierarchical clustering features).
At the same time, these link embedding features

maintain dependency parsing improvements simi-
lar to the complex, template-based features on word
clusters and embeddings by previous work (Koo et
al., 2008; Bansal et al., 2014) (up to 9% relative error
reduction), and also stack statistically significantly
over them (up to an additional 5% relative error re-
duction).

Another advantage of this approach (versus pre-
vious work on feature embeddings or special neu-
ral networks for parsing) is that these link embed-
dings can be imported as off-the-shelf, dense, syn-
tactic features into various other NLP tasks, similar
to word embedding features, but now with richer,
structured information, and in tasks where plain
word embeddings have not proven useful . As an ex-
ample, we incorporate them into a constituent parse
reranker and see improvements that again match
state-of-the-art, manually-defined, non-local rerank-
ing features and stack over them statistically sig-
nificantly. We make our link embeddings publicly
available1 and hope that they will prove useful in
various other NLP tasks in future work, e.g., as
dense, syntactic features in sentence classification
or as linguistically-intuitive, initial units in vector-
space composition.

2 Dependency Link Embeddings

To train the link embeddings, we use the speedy,
skip-gram neural language model of Mikolov et
al. (2013a; 2013b) via their toolkit word2vec.2 We
use the original skip-gram model and simply change
the context tuple data on which the model is trained,
similar to Bansal et al. (2014) and Levy and Gold-
berg (2014). The goal is to learn similar embeddings
for links with similar syntactic contextual properties
like label, signed distance, ancestors, etc.

To this end, we first parse the BLLIP corpus
(minus the PTB portion)3 using the baseline MST-
Parser (McDonald et al., 2005b). Next, for each
predicted link, we create a tuple, consisting of the
parent-child pair p—c (concatenated as a single unit,
same as p c) and its various properties such as the

1ttic.edu/bansal
2https://code.google.com/p/word2vec/
3Same dataset as what was used to train the BROWN clusters

in Koo et al. (2008), for comparability.

N.Y.–Yonkers, Md.–Columbia, N.Y.–Bronx, Va.–Reston,
Ky.–Lexington, Mich.–Kalamazoo, Calif.–Calabasas, ...
boost–revenue, tap–markets, take–losses, launch–fight,
reduce–holdings, terminate–contract, identify–bidders, ...
boosting–bid, meeting–schedules, obtaining–order,
having–losses, completing–review, governing–industry, ...
says–mean, adds–may, explains–have, contend–has,
recalls–had, figures–is, asserted–is, notes–would, ...
would–Based, is–Besides, was–Like, is–From, are–Despite,
said–Besides, says–Despite, reported–As, ...
began–Meanwhile, was–Since, are–Often, would–Now,
had–During, were–Over, was–Late, have–Until, ...
Catsimatidis–Mr., Swete–Mr., Case–Mr., Montoya–Mr.,
Byerlein–Mr., Heard–Mr., Leny–Mr., Graham–Mrs., ...
only–1.5, about–170, nearly–eight, approximately–10,
almost–15, some–80, Only–two, about–23, roughly–50, ...

Table 1: Example clusters of the link embeddings.

link’s dependency relation label l, the grandparent
dependency relation label gl, and the signed, binned
distance d:

“d<D> gl<GL> p—c l<L> d<D>”, (1)

We then run the skip-gram model on the the above
context tuples (Eq. 1) with a window-size of 2,
dimension-size of 100, and a min-count cutoff of 4
to give us a vocabulary of around 92K.4 We also
tried other context settings, e.g., where we add more
lexicalized, link-based context to the tuple such as
the neighboring grandparent-parent link gp—p:

“gl<GL> gp—p p—c d<D> l<L>”, (2)

but the setting in Eq. 1 performs slightly better
(based on the development set).

Clusters: Table 1 shows example clusters ob-
tained by clustering link embeddings via MAT-
LAB’s linkage + cluster commands, with
1000 clusters.5 We can see that these link embed-
dings are able to capture useful groups and subtle
distinctions directly at the link level (without hav-
ing to work with all pairs of word types), e.g., based
on syntactic properties like capitalization, verb form,
position in sentence; and based on topics like loca-
tion, time, finance, etc.

4We add subscripts to all context tokens so as to treat them
differently and remove them from the vocabulary after training.

5http://www.mathworks.com/help/stats/
linkage.html, http://www.mathworks.com/
help/stats/cluster.html



3 Dependency Parsing Experiments

In this section, we will first discuss how we use the
link embeddings as features in dependency parsing.
Next, we will present empirical results on feature
space reduction and on parsing performance on both
in-domain and out-of-domain datasets.

3.1 Features

The BROWN cluster features are based on Bansal et
al. (2014), who follow Koo et al. (2008) to add 1st
and 2nd order features to MSTParser based on pre-
fixes (of length 4, 6, 8, and 12) of the 0-1 hierarchi-
cal clustering bit-strings (via the bigram class-based
language model of Brown et al. (1992)) of the head
and argument, siblings, intermediate words, etc. See
McDonald et al. (2005a) and Koo et al. (2008) for
the exact feature templates.

For link embeddings, we tried two feature types:

Bucket features: For each dimension of the link
vector, we fire a simple indicator feature, where the
feature name consists of the dimension index d and
the bucketed vector value b at that index (using a
bucket of 0.25), i.e., simply d∧b, as compared to the
large list of n-ary feature templates in previous work,
which include various conjunctions, in-between and
surrounding word information, etc. (see McDonald
et al. (2005a) and Koo et al. (2008)). We have an-
other feature that additionally includes the signed,
bucketed distance of the particular link in the given
sentence.

Also note the difference of our unary bucket fea-
tures from the binary bucket features of Bansal et al.
(2014), who had to work with pairwise, conjoined
features of the head and the argument. Hence, they
used features on conjunctions of the two bucket val-
ues from the head and argument word vectors, firing
one pairwise feature per dimension, because firing
features on all dimension pairs (corresponding to an
outer product) led to an infeasible number of fea-
tures. The result discussion of these feature differ-
ences in presented in §3.2.

Bit-string features: We first hierarchically cluster
the link vectors via MATLAB’s linkage function
with {method=ward, metric=euclidean} to get 0-1
bit-strings (similar to BROWN). Next, we again fire a
small set of unary indicator features that simply con-

System Number of features
Baseline 5M
BROWN 13M
Bansal et al. (2014) 30M
Bucket 15K
Bit-string 1M

Table 2: Number of features.

System Dev Test
Baseline 92.4 91.9
+ BROWN 93.2 92.7
+ Bucket 93.0 92.3
+ Bit-string 92.9 92.6
+ BROWN + Bucket 93.4 93.0
+ BROWN + Bit-string 93.4 93.1

Table 3: UAS results on WSJ.

sist of the link’s bit-string prefix, the prefix-length,
and another feature that adds the signed, bucketed
distance of that link in the sentence.6

3.2 Setup and Results

For all experiments (unless otherwise noted), we fol-
low the 2nd-order MSTParser setup of Bansal et al.
(2014), in terms of data splits, parameters, prepro-
cessing, and feature thresholding. Statistical signifi-
cance is reported based on the bootstrap test (Efron
and Tibshirani, 1994) with 1 million samples.

First, we compare the number of features in
Table 2. Our dense, unary, link-embedding based
Bucket and Bit-string features are substantially
fewer than the sparse, n-ary, template-based features
used in the MSTParser baseline, in BROWN, and
in the word embedding SKIPDEP result of Bansal et
al. (2014). This in turn also improves our parsing
speed and memory. Moreover, regarding the pre-
processing time taken to generate these various fea-
ture types, our Bucket features, which just need the
fast word2vec training, take 2-3 orders of magni-
tude lesser time than the BROWN features (15 mins.
versus 2.5 days)7; this is also advantageous when

6We again used prefixes of length 4, 6, 8, 12, same as the
BROWN feature setting. For unknown links’ features, we re-
place the bucket or bit-string prefix with a special ‘UNK’ string.

7Based on a modern 3.50 GHz desktop and 1 thread. The
Bit-string features additionally need hierarchical clustering, but
are still at least twice as fast as BROWN features.



System Test Average
Baseline 83.5
+ BROWN 84.2
+ Bucket 84.0
+ Bit-string 83.8
+ BROWN + Bucket 84.6
+ BROWN + Bit-string 84.4

Table 4: UAS results on Web treebanks.

training and parsing with representations of new do-
mains or languages.

Table 3 shows the main UAS (unlabeled at-
tachment score) results on WSJ, where each ‘+
X’ row denotes adding type X features to the
MSTParser baseline. All the final test improve-
ments, i.e., Bucket (92.3) and Bit-string (92.6) w.r.t.
Baseline (91.9), and BROWN + Bucket (93.0) and
BROWN + Bit-string (93.1) w.r.t. BROWN (92.7),
are statistically significant at p < 0.01. More-
over, the Bit-string result (92.6) is the same, i.e.,
has no statistically significant difference from the
BROWN result (92.7), and also from the Bansal et
al. (2014) SKIPDEP result (92.7). Therefore, the
main contribution of these link embeddings is that
their significantly simpler, smaller, and faster set
of unary features can match the performance of
complex, template-based BROWN features (and of
the dependency-based word embedding features of
Bansal et al. (2014)), and also stack over them. We
also get similar trends of improvements on the la-
beled attachment score (LAS) metric.8

Moreover, unlike Bansal et al. (2014), our Bucket
features achieve statistically significant improve-
ments, most likely because they fired D pairwise,
conjoined features, one per dimension d, consisting
of the two bucket values from the head and argument
word vectors. This would disallow the classifier to
learn useful linear combinations of the various di-
mensions. Firing D2 features on all dimension pairs
(corresponding to an outer product) would lead to an
infeasible number of features. On the other hand, we
have a single vector for head+argument, allowing us
to fire just D features (one per dimension) and still
learn useful dimension combinations in linear space.

8Note that one can achieve even stronger results by tuning
separate prefix lengths for the Bit-string versus the BROWN +
Bit-string cases.

Dev Test
Parsing Model F1 EX F1 EX
Baseline (1-best) 90.6 39.4 90.2 37.3
Baseline (log p(t|w)) 90.4 38.9 89.9 37.3
+ Config 91.8 43.8 91.1 40.6
+ Bit-string 91.1 40.3 90.9 40.6
+ Config + Bit-string 92.0 43.9 91.4 42.0
Table 5: F1 results of constituent reranker on WSJ.

We also report out-of-domain performance, in Ta-
ble 4, on the Web treebank (Petrov and McDon-
ald, 2012) test sets, directly using the WSJ-trained
models. Again, both our Bucket and Bit-string link-
embedding features achieve decent improvements
over Baseline and they stack over BROWN, while us-
ing much fewer features. Moreover, one can hope-
fully achieve bigger gains by training link embed-
dings on Web or Wikipedia data (since BLLIP is
news-domain).

4 Off-the-shelf: Constituent Parsing

Finally, these link embeddings are also portable as
off-the-shelf, dense, syntactic features into other
NLP tasks, either to incorporate missing syntac-
tic information, or to replace sparse (n-ary lexical-
ized or template-based) parsing features, or where
word embedding features are not appropriate and
one needs higher-order embeddings, e.g., in con-
stituent parsing (see Andreas and Klein (2014)).

Therefore, as a first example, we import our link
embedding features into a constituent parse reranker.
We follow Bansal and Klein (2011), reranking 50-
best lists of the Berkeley parser (Petrov et al., 2006).
We first extract dependency links in each candidate
constituent tree based on the head-modifier rules of
Collins (2000). Next, we simply fire our Bit-string
features on each link, where the feature again con-
sists of just the prefix bit-string, the prefix length,
and the signed, bucketed link distance.9

Table 5 shows these reranking results, where 1-
best and log p(t|w) are the two Berkeley parser base-
lines, and where Config is the state-of-the-art, non-
local, configurational feature set of Huang (2008),

9Based on development set tuning, we use prefixes 4, 6, 8,
and then gaps of 4 up to the full-length for ‘+ Bit-string’ and
prefixes 4, 6, 8, 12, 16, and full-length for ‘+ Config + Bit-
string’.



which in turn is a simplified merge of Charniak and
Johnson (2005) and Collins (2000) (here configura-
tional). Again, all our test improvements are sta-
tistically significant at p < 0.01: Bit-string (90.9)
over both the baselines (90.2, 89.9); and Config
+ Bit-string (91.4) over Config (91.1). Moreover,
the Bit-string result (90.9) is the same (i.e., no sta-
tistically significant difference) as the Config re-
sult (91.1). Therefore, we can again match the
improvements of complex, manually-defined, non-
local reranking features with a much smaller set
of simple, dense, off-the-shelf, link-embedding fea-
tures, and also complement them statistically signif-
icantly.

5 Related Work

As mentioned earlier, there has been a lot of use-
ful, previous work on using word embeddings for
NLP tasks such as similarity, tagging, NER, senti-
ment analysis, and parsing (Turian et al., 2010; Col-
lobert et al., 2011; Dhillon et al., 2012; Huang et al.,
2012; Al-Rfou’ et al., 2013; Hisamoto et al., 2013;
Andreas and Klein, 2014; Bansal et al., 2014; Guo
et al., 2014; Pennington et al., 2014; Wang et al.,
2015), inter alia.

In related work, Bansal et al. (2014) also use
dependency context to tailor word embeddings to
dependency parsing. However, their embedding
features are still based on the sparse set of n-ary,
word-based templates from previous work (McDon-
ald et al., 2005a; Koo et al., 2008). Our structured
link embeddings achieve similar improvements as
theirs (and better in the case of direct, per-dimension
bucket features) with a substantially smaller and
simpler (unary) set of features that are aimed to
directly capture hidden relationships between the
substructures that dependency parsing factors on.
Moreover, we hope that similar to word embeddings,
these link embeddings will also prove useful when
imported into various other NLP tasks as dense, con-
tinuous features, but now with additional syntactic
information.

There has also been some recent, useful work
on reducing the sparsity of features in dependency
parsing, e.g., via low-rank tensors (Lei et al., 2014)
and via neural network parsers that learn tag and
label embeddings (Chen and Manning, 2014). In

related work, Chen et al. (2014) learn dense fea-
ture embeddings for dependency parsing; however,
they still work with the large number of manually-
defined feature templates from previous work and
train embeddings for all those templates, with an aim
to discover hidden, shared information among the
large set of sparse features. We get similar improve-
ments with a much smaller and simpler set of unary
link features; also, our link embeddings are more
portable to other NLP tasks than template-based em-
beddings specific to dependency parsing.

Other work includes learning distributed struc-
tured output via dense label vectors (Srikumar and
Manning, 2014), learning bilexical operator embed-
dings (Madhyastha et al., 2014), and learning joint
word embeddings and composition functions based
on predicate-argument compositionality (Hashimoto
et al., 2014).

Our main goal is to directly learn embeddings on
linguistically-intuitive units like dependency links,
so that they can be used as non-sparse, unary fea-
tures in dependency parsing, and also as off-the-
shelf, dense, syntactic features in other NLP tasks
(versus more intrinsic approaches based on feature
embeddings or neural network parsers, which are
harder to export).

6 Conclusion and Future Work

We presented dependency link embeddings, which
provide a small, simple set of unary features for
dependency parsing, while maintaining statistically
significant improvements, similar and complemen-
tary to sparse, n-ary, word-cluster features. These
link vectors are also portable as off-the-shelf syntac-
tic features in other NLP tasks; we import them into
constituent parse reranking, where they again match
and stack over state-of-the-art, non-local reranking
features. We release our link embeddings (avail-
able at ttic.edu/bansal) and hope that these
will prove useful in various other NLP tasks, e.g.,
as dense, syntactic features in sentence classification
or as linguistically-intuitive, initial units in vector-
space composition.

In future work, it will be useful to try obtaining
stronger parsing accuracies via newer, better rep-
resentation learning tools, e.g., GloVe (Pennington
et al., 2014), and by training on larger quantities



of automatically-parsed data. It will also be useful
to perform intrinsic evaluation of these link embed-
dings on appropriate syntactic datasets and metrics,
and extrinsic evaluation via various other NLP tasks
such as sentence classification. Finally, it will be in-
teresting to try parsers or frameworks where we can
directly employ the embeddings as features, instead
of bucketing or clustering them.
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