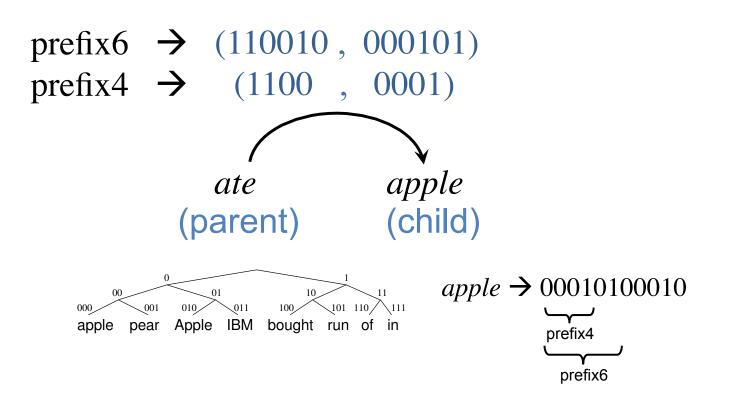
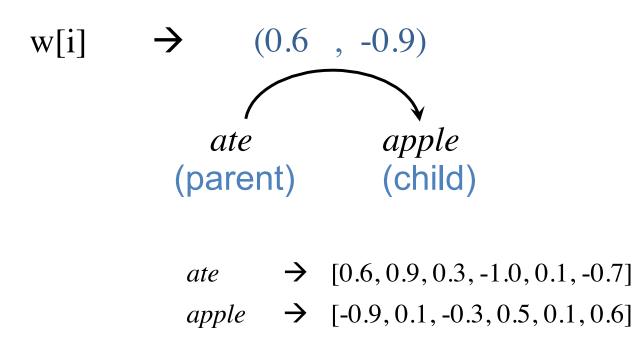
Dependency Link Embeddings: Continuous Representations of Syntactic Substructures


Mohit Bansal

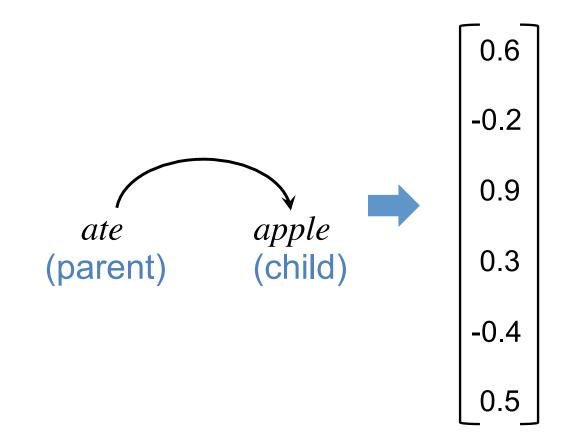
TTI-Chicago

Motivation


(n-ary word cluster/embedding features)

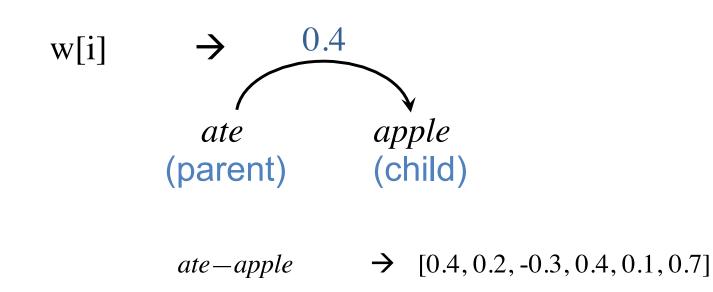
(Lei et al., 2014; Chen and Manning, 2014)

(n-ary)

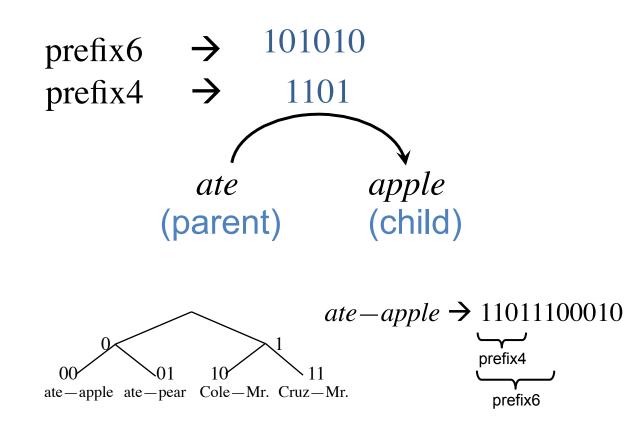


	(n-ary)	Baseline	Cluster-based
		ht, mt	hc4, mc4
		hw, mw	hc6,mc6
		hw, ht, mt	hc*, mc*
w[i]	\rightarrow (0.6 , -0.9)	hw, ht, mw	hc4, mt
vv [1]	(0.0, -0.)	ht, mw, mt	ht,mc4
nrefix6	\rightarrow (110010, 000101)	hw, mw, mt	hc6,mt
L		hw, ht, mw, mt	ht,mc6
prefix4	\rightarrow (1100 , 0001)	•••	hc4,mw
			hw,mc4
		ht,mt,st	hc4,mc4,sc4
		ht,mt,gt	hc6,mc6,sc6
	ate apple		ht,mc4,sc4
	11		hc4,mc4,gc4
	(parent) (child)		
		(McDonald et al., 2005;	

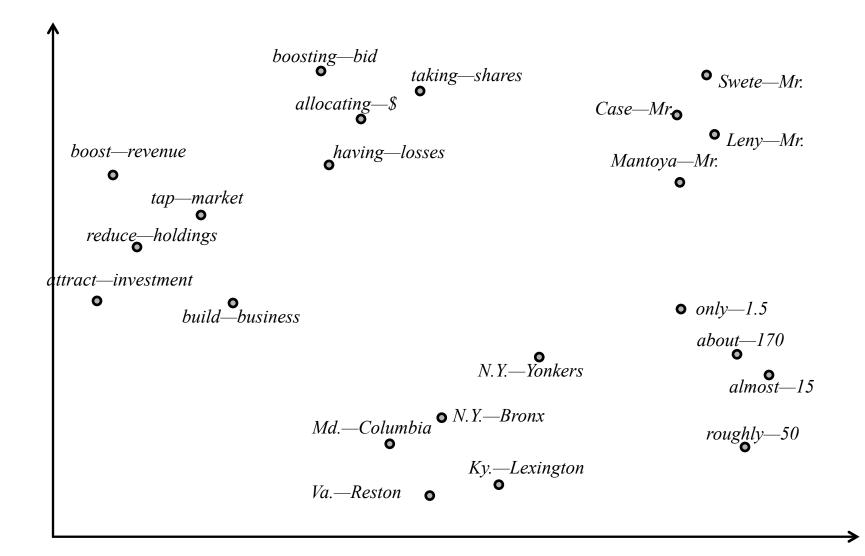
IcDonald et al., 2005; Koo et al., 2008)



Train link embeddings on tons of auto-parsed data (*min-count thresholded to get only the popular links*)



(unary)



(unary)

Motivation

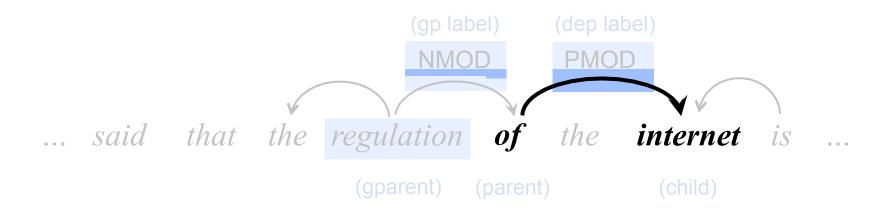
Motivation

dense syntactic features

NLP System

ate—apple: ate—pear: had—water:	[0.2, -0.9, 0.4, -0.1, 0.3] [0.6, -0.2, 0.1, -0.4, 0.1] [0.1, 0.9, -0.2 -0.1, 0.5]
under—tree:	 [0.1, -0.9, 0.2, -0.8, 0.7] [0.9, -0.4, 0.4, 0.5, -0.3] [-0.3, 0.9, -0.4, 0.2, 0.2]

Much fewer, simpler unary features vs. millions of template-based, n-ary word-cluster features


Directly work with higher-order, substructure embeddings that task factors on, and their hidden relationships

Portable as off-the-shelf, dense, syntactic features (instead of lexicalized or word embedding features)

Parse a large corpus with baseline parser

Tuples consist of a dependency link and its context (Bansal et al., 2014; Levy and Goldberg, 2014)

Γ_

Tuples consist of a dependency link and its context

$$d_{\langle D \rangle} gl_{\langle GL \rangle} p-c l_{\langle L \rangle} d_{\langle D \rangle}$$

dist. gp label parent—child link dep label dist.
[-2 NMOD_{\langle GL \rangle} of-internet PMOD_{\langle L \rangle} -2]

Tuples consist of a dependency link and its context

$$[gl_{\langle GL \rangle} gp_p p p_c d_{\langle D \rangle} l_{\langle L \rangle}$$

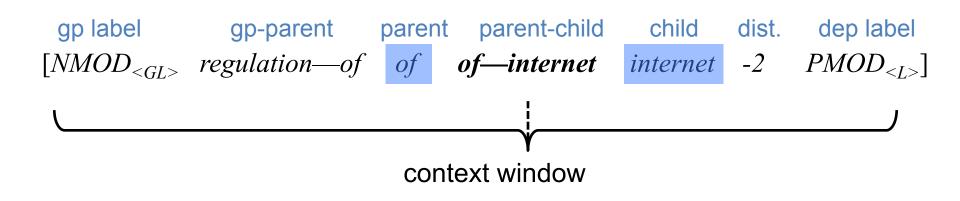
$$gp \ [abel gp-parent link parent-child link dist. dep \ [abel [NMOD_{\langle GL \rangle} regulation_of of_internet -2 PMOD_{\langle L \rangle}]$$

$$context window$$

$$[NPUT PROJECTION OUTPUT w(t-2)]$$

$$Run \ SKIP-gram \ model \ to \ predict \ context$$

w(t)


w(t+1)

w(t+2)

Threshold of 4 to get a vocab of just 92K (and then backoff to word/unk features)

Tried other context versions, e.g., for link to be able to predict the individual words (for backing off to word-level shared info)

Finds useful groups and subtle distinctions at link level

[N.Y.–Yonkers, Md.–Columbia, N.Y.–Bronx, Va.–Reston, Ky.–Lexington, Mich.– Kalamazoo, Calif.–Calabasas, ...]

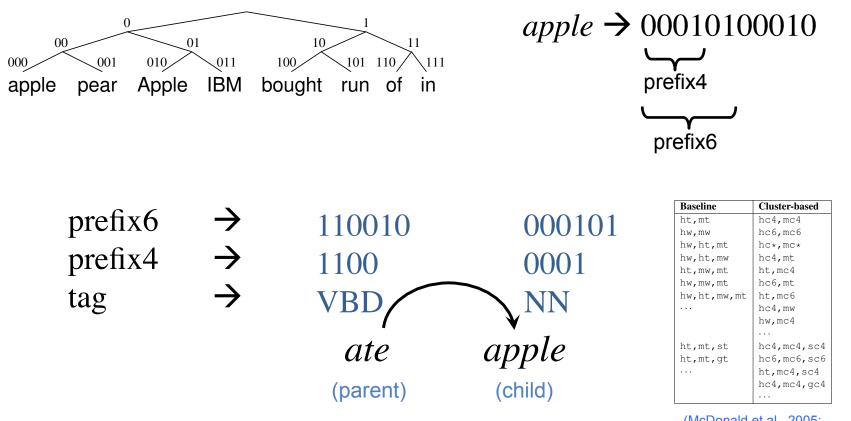
[boost-revenue, tap-markets, take-losses, launch-fight, reduce-holdings, terminatecontract, identify-bidders, ...]

[boosting-bid, meeting-schedules, obtaining-order, having-losses, completingreview, governing-industry, ...]

[began–Meanwhile, was–Since, are–Often, would–Now, had–During, were–Over, was–Late, have–Until, ...]

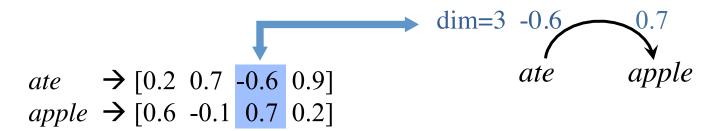
Finds useful groups and subtle distinctions at link level

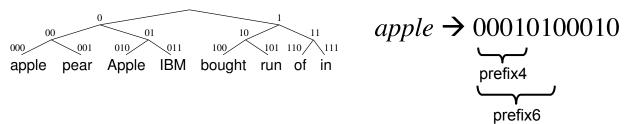
[*says*-*mean*, *adds*-*may*, *explains*-*have*, *contend*-*has*, *recalls*-*had*, *figures*-*is*, *asserted*-*is*, *notes*-*would*, ...]


[would–Based, is–Besides, was–Like, is–From, are–Despite, said–Besides, says– Despite, reported–As, ...]

[*Catsimatidis–Mr., Swete–Mr., Case–Mr., Montoya–Mr., Byerlein–Mr., Heard–Mr., Leny–Mr., Graham–Mrs., …*]

[only-1.5, about-170, nearly-eight, approximately-10, almost-15, some-80, Onlytwo, about-23, roughly-50, ...]

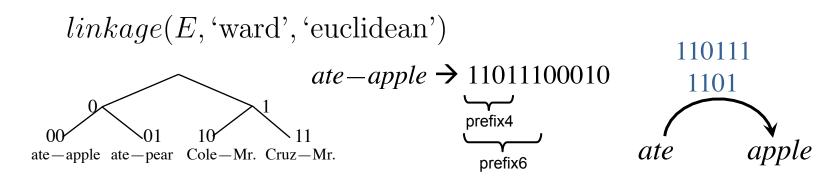

Brown cluster **n-ary** features (Koo et al., 2008):


(McDonald et al., 2005; Koo et al., 2008)

- Word embedding n-ary features (Bansal et al., 2014):
 - Per-dimension bucket features:

Hierarchical clustering (bit string) features: linkage(E, 'ward', 'euclidean')

Baseline	Cluster-based	
ht,mt	hc4,mc4	
hw,mw	hc6,mc6	
hw,ht,mt	hc*,mc*	
hw,ht,mw	hc4,mt	
ht,mw,mt	ht,mc4	
hw,mw,mt	hc6,mt	
hw,ht,mw,mt	ht,mc6	
	hc4,mw	
	hw,mc4	
ht,mt,st	hc4,mc4,sc4	
ht,mt,gt	hc6,mc6,sc6	
	ht,mc4,sc4	
	hc4,mc4,gc4	


(McDonald et al., 2005; Koo et al., 2008)

- Link embedding unary features (this work):
 - Per-dimension bucket features:

$$ate-apple \rightarrow [-0.5 \ 0.3 \ 0.6 \ 0.8] \qquad dim=3 \qquad \underbrace{0.6}_{ate} \qquad ate \qquad apple$$

Hierarchical clustering (bit string) features:

Feature Comparison (Memory, Speed)

- Setup: MSTParser (2nd order), standard data splits, parameters, preprocessing, threshold (Bansal et al., 2014)
- Much fewer features compared to n-ary, word-based
- Quicker to train these SKIP-based link features

System	Number of features]
Baseline	5M	
BROWN	13M	(2.5 days)
Bansal et al. (2014)	30M]
Bucket	15K	(15 mins.)
Bit-string	1 M	(1 day)

Stat-equal improvements as Brown and stat-significant stacking, at much fewer, simpler, quicker features

System	Test		
Baseline	91.9		
+ Brown	92.7		
+ Bucket	92.3		
+ Bit-string	92.6		
+ BROWN + Bucket	93.0		
+ BROWN + Bit-string	93.1		

- Similar improvements and stacking for out-of-domain
- Allows practical, accurate per-dimension features

- Portable as simple, dense, syntactic features
- E.g., on constituent reranking, stat-equal improvements as global reranking features and stat-signif. stacking (Bansal and Klein, 2011)

	Test	
Parsing Model	F1	EX
Baseline (1-best)	90.2	37.3
Baseline (log $p(t w)$)	89.9	37.3
+ Config	91.1	40.6
+ Bit-string	90.9	40.6
+ Config + Bit-string	91.4	42.0

- Dense dependency link embeddings allow simpler, fewer (unary) features in dependency parsing
- Get similar improvements to n-ary template-based word cluster/embedding features
- Portable as useful, dense, syntactic features to downstream tasks, e.g., constituent reranking

- Export to other extrinsic tasks, e.g., sentence classification or initial units in vector-space composition
- Newer, better representation learning tools, e.g., deeper NNs, GloVe (Pennington et al., 2014)
- Training on larger quantities of automatically-parsed data
- Other back-off approaches for unknown links, e.g., tag-based links (tag1—tag2) and one-sided links (UNK-word or UNK-tag)
- Compare to approaches like relation matrices on dependency labels, concatenation+SVD of head and argument vectors

Thank you!

Data (link embeddings and features) at:

ttic.uchicago.edu/~mbansal/codedata/linkEmbeddings-skiplink.zip