
COMP 790.139 (Fall 2016)
Natural Language Processing

(with some vision, robotics, and deep learning)

Sep 7, 2016

Mohit Bansal

(various slides adapted/borrowed from courses by Dan Klein, Richard Socher, Chris Manning, ACL2016 NMT Tutorial)

Announcements

!   Paper reading list on website

!   I sent an email asking for top-3 choices

!   Please send me choices by tomorrow 09/08 and I will create an

assignment

!   Most topics will be presented in groups of two discussion

leaders

NLP Basics and Core Tasks 2

!   Compositional Semantics

!   Sentiment Analysis

!   Language Modeling

!   Machine Translation

!   Q&A and other Generation topics, e.g., Dialogue,

Summarization will be covered separately in next weeks

Note: we will be covering some of these briefly (so as to be
able to reach the paper reading weeks quickly), so definitely
follow up for more details in the prescribed readings and
references, and talk to me in office hours!	

Compositional Semantics I: Logic form

!   Logic-form based, Semantic Parsing

!   Useful for Q&A, IE, grounding, comprehension tasks
(summarization, reading tasks)

!   A lot of focus has been on KB-based Question
Answering in this direction

Question Answering

!   Initial approaches to Q&A: pattern matching, pattern
learning, query rewriting, information extraction

!   Next came a large-scale, open-domain IE system like
IBM Watson	

provide a bit more detail about the various archi-
tectural roles.

Content Acquisition
The first step in any application of DeepQA to
solve a QA problem is content acquisition, or iden-
tifying and gathering the content to use for the
answer and evidence sources shown in figure 6.

Content acquisition is a combination of manu-
al and automatic steps. The first step is to analyze
example questions from the problem space to pro-
duce a description of the kinds of questions that
must be answered and a characterization of the
application domain. Analyzing example questions
is primarily a manual task, while domain analysis
may be informed by automatic or statistical analy-
ses, such as the LAT analysis shown in figure 1.
Given the kinds of questions and broad domain of
the Jeopardy Challenge, the sources for Watson
include a wide range of encyclopedias, dictionar-
ies, thesauri, newswire articles, literary works, and
so on.

Given a reasonable baseline corpus, DeepQA
then applies an automatic corpus expansion
process. The process involves four high-level steps:
(1) identify seed documents and retrieve related
documents from the web; (2) extract self-contained
text nuggets from the related web documents; (3)
score the nuggets based on whether they are

informative with respect to the original seed docu-
ment; and (4) merge the most informative nuggets
into the expanded corpus. The live system itself
uses this expanded corpus and does not have
access to the web during play.

In addition to the content for the answer and
evidence sources, DeepQA leverages other kinds of
semistructured and structured content. Another
step in the content-acquisition process is to identi-
fy and collect these resources, which include data-
bases, taxonomies, and ontologies, such as dbPe-
dia,7 WordNet (Miller 1995), and the Yago8

ontology.

Question Analysis
The first step in the run-time question-answering
process is question analysis. During question
analysis the system attempts to understand what
the question is asking and performs the initial
analyses that determine how the question will be
processed by the rest of the system. The DeepQA
approach encourages a mixture of experts at this
stage, and in the Watson system we produce shal-
low parses, deep parses (McCord 1990), logical
forms, semantic role labels, coreference, relations,
named entities, and so on, as well as specific kinds
of analysis for question answering. Most of these
technologies are well understood and are not dis-
cussed here, but a few require some elaboration.

Articles

FALL 2010 69

Figure 6. DeepQA High-Level Architecture.

[Ferrucci et al., 2010]

Deep Q&A: Semantic Parsing

!   Complex, free-form, multi-clause questions

Deep Q&A: Semantic Parsing

!   Complex, free-form, multi-clause questions

Semantic Parsing: Logic forms

!   Parsing with logic (booleans, individuals, functions) and
lambda forms

Sentence
loves(john,mary)

Noun Phrase
john

Verb Phrase
λx.loves(x,mary)

Name
john

Verb
λy.λx.loves(x,y)

Noun Phrase

Name
mary

“John”
john

“loves”
λy.λx.loves(x,y) “Mary”

mary

Parse tree with associated
semantics

[Wong and Mooney, 2007; Zettlemoyer and Collins, 2007; Poon and Domingos, 2009;
Artzi and Zettlemoyer, 2011, 2013; Kwiatkowski et al., 2013; Cai and Yates, 2013;

Berant et al., 2013; Poon 2013; Berant and Liang, 2014; Iyyer et al., 2014]

Semantic Parsing Ideas

!   Various recent ideas/extensions:

!   unsupervised SP (clustering lambda forms)
!   grounded USP (via databases)
!   Dependency-based compositional semantics (DCS)
!   CCG
!   Bootstrapping w/ conversations
!   On-the-fly ontology matching
!   Question answering on Freebase
!   Paraphrasing

[Wong and Mooney, 2007; Zettlemoyer and Collins, 2007; Poon and Domingos, 2009;
Artzi and Zettlemoyer, 2011, 2013; Kwiatkowski et al., 2013; Cai and Yates, 2013;

Berant et al., 2013; Poon 2013; Berant and Liang, 2014; Iyyer et al., 2014; Yao and Van Durne, 2014]

Semantic Parsing on Freebase

Mapping questions to answers via latent logical forms. To narrow down the logical
predicate space, they use a (i) coarse alignment based on Freebase and a text corpus and
(ii) a bridging operation that generates predicates compatible with neighboring predicates.

[Berant et al., 2013]

Semantic Parsing on Freebase from Question-Answer Pairs

Jonathan Berant Andrew Chou Roy Frostig Percy Liang
Computer Science Department, Stanford University

{joberant,akchou}@stanford.edu {rf,pliang}@cs.stanford.edu

Abstract

In this paper, we train a semantic parser that
scales up to Freebase. Instead of relying on
annotated logical forms, which is especially
expensive to obtain at large scale, we learn
from question-answer pairs. The main chal-
lenge in this setting is narrowing down the
huge number of possible logical predicates for
a given question. We tackle this problem in
two ways: First, we build a coarse mapping
from phrases to predicates using a knowledge
base and a large text corpus. Second, we
use a bridging operation to generate additional
predicates based on neighboring predicates.
On the dataset of Cai and Yates (2013), despite
not having annotated logical forms, our sys-
tem outperforms their state-of-the-art parser.
Additionally, we collected a more realistic and
challenging dataset of question-answer pairs
and improves over a natural baseline.

1 Introduction

We focus on the problem of semantic parsing nat-
ural language utterances into logical forms that can
be executed to produce denotations. Traditional se-
mantic parsers (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Wong and Mooney, 2007;
Kwiatkowski et al., 2010) have two limitations: (i)
they require annotated logical forms as supervision,
and (ii) they operate in limited domains with a small
number of logical predicates. Recent developments
aim to lift these limitations, either by reducing the
amount of supervision (Clarke et al., 2010; Liang et
al., 2011; Goldwasser et al., 2011; Artzi and Zettle-
moyer, 2011) or by increasing the number of logical

Occidental College, Columbia University

Execute on Database

Type.University u Education.BarackObama

Type.University

Education

BarackObama

Which college did Obama go to ?

alignment

alignment

bridging

Figure 1: Our task is to map questions to answers via la-
tent logical forms. To narrow down the space of logical
predicates, we use a (i) coarse alignment based on Free-
base and a text corpus and (ii) a bridging operation that
generates predicates compatible with neighboring predi-
cates.

predicates (Cai and Yates, 2013). The goal of this
paper is to do both: learn a semantic parser with-
out annotated logical forms that scales to the large
number of predicates on Freebase.

At the lexical level, a major challenge in semantic
parsing is mapping natural language phrases (e.g.,
“attend”) to logical predicates (e.g., Education).
While limited-domain semantic parsers are able
to learn the lexicon from per-example supervision
(Kwiatkowski et al., 2011; Liang et al., 2011), at
large scale they have inadequate coverage (Cai and
Yates, 2013). Previous work on semantic parsing on
Freebase uses a combination of manual rules (Yahya
et al., 2012; Unger et al., 2012), distant supervision
(Krishnamurthy and Mitchell, 2012), and schema

Semantic Parsing via Paraphrasing

For each candidate logical form (red), they generate canonical utterances (purple). The
model is trained to paraphrase the input utterance (green) into the canonical utterances
associated with the correct denotation (blue).

[Berant and Liang, 2014]

Semantic Parsing via Paraphrasing

Jonathan Berant

Stanford University
joberant@stanford.edu

Percy Liang

Stanford University
pliang@cs.stanford.edu

Abstract

A central challenge in semantic parsing is
handling the myriad ways in which knowl-
edge base predicates can be expressed.
Traditionally, semantic parsers are trained
primarily from text paired with knowledge
base information. Our goal is to exploit
the much larger amounts of raw text not
tied to any knowledge base. In this pa-
per, we turn semantic parsing on its head.
Given an input utterance, we first use a
simple method to deterministically gener-
ate a set of candidate logical forms with
a canonical realization in natural language
for each. Then, we use a paraphrase model
to choose the realization that best para-
phrases the input, and output the corre-
sponding logical form. We present two
simple paraphrase models, an association
model and a vector space model, and train
them jointly from question-answer pairs.
Our system PARASEMPRE improves state-
of-the-art accuracies on two recently re-
leased question-answering datasets.

1 Introduction

We consider the semantic parsing problem of map-
ping natural language utterances into logical forms
to be executed on a knowledge base (KB) (Zelle
and Mooney, 1996; Zettlemoyer and Collins,
2005; Wong and Mooney, 2007; Kwiatkowski
et al., 2010). Scaling semantic parsers to large
knowledge bases has attracted substantial atten-
tion recently (Cai and Yates, 2013; Berant et al.,
2013; Kwiatkowski et al., 2013), since it drives
applications such as question answering (QA) and
information extraction (IE).

Semantic parsers need to somehow associate
natural language phrases with logical predicates,
e.g., they must learn that the constructions “What

What party did Clay establish?

paraphrase model

What political party founded by Henry Clay?
...

What event involved the people Henry Clay?

Type.PoliticalParty u Founder.HenryClay ... Type.Event u Involved.HenryClay

Whig Party

Figure 1: Semantic parsing via paraphrasing: For each
candidate logical form (in red), we generate canonical utter-
ances (in purple). The model is trained to paraphrase the in-
put utterance (in green) into the canonical utterances associ-
ated with the correct denotation (in blue).

does X do for a living?”, “What is X’s profes-
sion?”, and “Who is X?”, should all map to the
logical predicate Profession. To learn these map-
pings, traditional semantic parsers use data which
pairs natural language with the KB. However, this
leaves untapped a vast amount of text not related
to the KB. For instance, the utterances “Where is
ACL in 2014?” and “What is the location of ACL
2014?” cannot be used in traditional semantic
parsing methods, since the KB does not contain
an entity ACL2014, but this pair clearly contains
valuable linguistic information. As another refer-
ence point, out of 500,000 relations extracted by
the ReVerb Open IE system (Fader et al., 2011),
only about 10,000 can be aligned to Freebase (Be-
rant et al., 2013).

In this paper, we present a novel approach for
semantic parsing based on paraphrasing that can
exploit large amounts of text not covered by the
KB (Figure 1). Our approach targets factoid ques-
tions with a modest amount of compositionality.
Given an input utterance, we first use a simple de-
terministic procedure to construct a manageable
set of candidate logical forms (ideally, we would
generate canonical utterances for all possible logi-
cal forms, but this is intractable). Next, we heuris-

Semantic Parsing via Ontology Matching

The main challenge in semantic parsing is the mismatch between language and the
knowledge base. (a) Traditional: map utterances directly to logical forms, (b) Kwiatkowski
et al. (2013): map utterance to intermediate, underspecified logical form, then perform
ontology matching to handle the mismatch, (c) Berant and Liang (2014): generate
intermediate, canonical text utterances for logical forms, then use paraphrase models.

[Kwiatkowski et al., 2013; Berant and Liang, 2014]

utterance

underspecified

logical

form

canonical

utterance

logical

form

ontology

matching

paraphrase

direct

(traditional)

(Kwiatkowski et al. 2013)

(this work)

Figure 2: The main challenge in semantic parsing is cop-
ing with the mismatch between language and the KB. (a)
Traditionally, semantic parsing maps utterances directly to
logical forms. (b) Kwiatkowski et al. (2013) map the utter-
ance to an underspecified logical form, and perform ontology
matching to handle the mismatch. (c) We approach the prob-
lem in the other direction, generating canonical utterances for
logical forms, and use paraphrase models to handle the mis-
match.

tically generate canonical utterances for each log-
ical form based on the text descriptions of predi-
cates from the KB. Finally, we choose the canoni-
cal utterance that best paraphrases the input utter-
ance, and thereby the logical form that generated
it. We use two complementary paraphrase mod-
els: an association model based on aligned phrase
pairs extracted from a monolingual parallel cor-
pus, and a vector space model, which represents
each utterance as a vector and learns a similarity
score between them. The entire system is trained
jointly from question-answer pairs only.

Our work relates to recent lines of research
in semantic parsing and question answering.
Kwiatkowski et al. (2013) first maps utterances to
a domain-independent intermediate logical form,
and then performs ontology matching to produce
the final logical form. In some sense, we ap-
proach the problem from the opposite end, using
an intermediate utterance, which allows us to em-
ploy paraphrasing methods (Figure 2). Fader et
al. (2013) presented a QA system that maps ques-
tions onto simple queries against Open IE extrac-
tions, by learning paraphrases from a large mono-
lingual parallel corpus, and performing a single
paraphrasing step. We adopt the idea of using
paraphrasing for QA, but suggest a more general
paraphrase model and work against a formal KB
(Freebase).

We apply our semantic parser on two datasets:
WEBQUESTIONS (Berant et al., 2013), which
contains 5,810 question-answer pairs with
common questions asked by web users; and

FREE917 (Cai and Yates, 2013), which has
917 questions manually authored by annota-
tors. On WEBQUESTIONS, we obtain a relative
improvement of 12% in accuracy over the
state-of-the-art, and on FREE917 we match the
current best performing system. The source
code of our system PARASEMPRE is released
at http://www-nlp.stanford.edu/
software/sempre/.

2 Setup

Our task is as follows: Given (i) a knowledge
base K, and (ii) a training set of question-answer
pairs {(x

i

, y

i

)}n
i=1, output a semantic parser that

maps new questions x to answers y via latent log-
ical forms z. Let E denote a set of entities (e.g.,
BillGates), and let P denote a set of properties
(e.g., PlaceOfBirth). A knowledge base K is a
set of assertions (e1, p, e2) 2 E ⇥ P ⇥ E (e.g.,
(BillGates, PlaceOfBirth, Seattle)). We use
the Freebase KB (Google, 2013), which has 41M
entities, 19K properties, and 596M assertions.

To query the KB, we use a logical language
called simple �-DCS. In simple �-DCS, an
entity (e.g., Seattle) is a unary predicate
(i.e., a subset of E) denoting a singleton set
containing that entity. A property (which is a
binary predicate) can be joined with a unary
predicate; e.g., Founded.Microsoft denotes
the entities that are Microsoft founders. In
PlaceOfBirth.Seattle u Founded.Microsoft,
an intersection operator allows us to denote
the set of Seattle-born Microsoft founders.
A reverse operator reverses the order of ar-
guments: R[PlaceOfBirth].BillGates

denotes Bill Gates’s birthplace (in con-
trast to PlaceOfBirth.Seattle). Lastly,
count(Founded.Microsoft) denotes set cardinal-
ity, in this case, the number of Microsoft founders.
The denotation of a logical form z with respect to
a KB K is given by JzKK. For a formal description
of simple �-DCS, see Liang (2013) and Berant et
al. (2013).

3 Model overview

We now present the general framework for seman-
tic parsing via paraphrasing, including the model
and the learning algorithm. In Sections 4 and 5,
we provide the details of our implementation.

Canonical utterance construction Given an ut-
terance x and the KB, we construct a set of candi-

(Berant and Liang, 2014)

Compositional Semantics II: NNs

!   Composing, combining word vectors to representations
for longer units: phrases, sentences, paragraphs, …

!   Initial approaches: point-wise sum, multiplication
[Mitchell and Lapata, 2010; Blacoe and Lapata, 2012]

!   Vector-matrix compositionality [Baroni and Zamparelli, 2010;
Zanzotto et al., 2010; Grefenstette and Sadrzadeh, 2011; Socher et al., 2011;
Yessenalina and Cardie, 2011]

!   Linguistic information added via say parses in RvNNs
[Socher et al., 2011b, 2012, 2013a, 2013b, 2014; Hermann and Blunsom, 2013]

!   Now: Sequential RNNs (with GRU/LSTM gates)
 (Simple vector averaging w/ updating sometimes competitive)

Compositional Semantics II: NNs

!   Feed-forward NNs with back-propagation

Softmax (=	logistic	regression)	is	not	very	powerful

4/7/16Richard	Socher29

• Softmax only	linear	decision	boundaries

• à Lame	when	problem
is	complex

• Wouldn’t	it	be	cool	to	
get	these	correct?

NN and backprop slides from CS224d – Richard Socher	

Compositional Semantics II: NNs

!   Feed-forward NNs with back-propagation

Neural	Nets	for	the	Win!

4/7/16Richard	Socher30

• Neural	networks	can	learn	much	more	complex	
functions	and	nonlinear	decision	boundaries!

Compositional Semantics II: NNs

!   Feed-forward NNs with back-propagation

A	neuron	is	essentially	a	binary	logistic	regression	unit

hw,b(x) = f (w
Tx + b)

f (z) = 1
1+ e−z

w,	b are	the	parameters	of	this	neuron
i.e.,	this	logistic	regression	model

33

b:	We	can	have	an	“always	on”	
feature,	which	gives	a	class	prior,	
or	separate	it	out,	as	a	bias	term

Compositional Semantics II: NNs

!   Feed-forward NNs with back-propagation

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
Before	we	know	it,	we	have	a	multilayer	neural	network….

36

Compositional Semantics II: NNs

!   Feed-forward NNs with back-propagation

Training	with	Backpropagation

• Let’s	consider	the	derivative	of	a	single	weight	Wij

• This	only	appears	inside	ai

• For	example:	W23 is	only	
used	to	compute	a2

x1 x2																	x3 +1

a1 a2

s		 U2

W23

19

b2

Compositional Semantics II: NNs

!   Feed-forward NNs with back-propagation

Training	with	Backpropagation

Derivative	of	weight	Wij:

20

x1 x2																	x3 +1

a1 a2

s		 U2

W23

Compositional Semantics II: NNs

!   Feed-forward NNs with back-propagation

where																																																		for	logistic	f

Training	with	Backpropagation

Derivative	of	single	weight	Wij :

Local	error	
signal

Local	input	
signal

21

x1 x2																	x3 +1

a1 a2

s		 U2

W23

Syntactically Recursive Autoencoders

! Socher et al., 2011: Recursive autoencoders
(unsupervised) on constituent parse trees

!   The unfolding autoencoder which tries to reconstruct all

leaf nodes underneath each node.

x1' x2' x3'

x2 x3x1

y2
y1

y1'

We

We

Wd Wd

Figure 2: Two autoencoder models with details of the reconstruction at node y2. For simplicity we
left out the reconstruction layer at the first node y1 which is the same standard autoencoder for both
models. Left: A standard autoencoder that tries to reconstruct only its direct children. Right: The
unfolding autoencoder which tries to reconstruct all leaf nodes underneath each node.

reconstruction layer and then to compute the Euclidean distance between the original input and its
reconstruction:

[c01; c
0
2] = f(Wdp+ bd) Erec(p) = ||[c1; c2]� [c01; c

0
2]||

2
. (2)

In order to apply the autoencoder recursively, the same steps repeat. Now that y1 is given, we can
use Eq. 1 to compute y2 by setting the children to be (c1, c2) = (x1, y1). Again, after computing
the intermediate parent vector p = y2, we can assess how well this vector captures the content of the
children by computing the reconstruction error as in Eq. 2. The process repeats until the full tree is
constructed and each node has an associated reconstruction error.

During training, the goal is to minimize the reconstruction error of all input pairs at nonterminal
nodes p in a given parse tree T :

Erec(T) =
X

p2T
Erec(p) (3)

For the example in Fig. 2 (left), we minimize Erec(T) = Erec(y1) + Erec(y2).

Since the RAE computes the hidden representations it then tries to reconstruct, it could potentially
lower reconstruction error by shrinking the norms of the hidden layers. In order to prevent this, we
add a length normalization layer p = p/||p|| to this RAE model (referred to as the standard RAE).
Another more principled solution is to use a model in which each node tries to reconstruct its entire
subtree and then measure the reconstruction of the original leaf nodes. Such a model is described in
the next section.

2.3 Unfolding Recursive Autoencoder
The unfolding RAE has the same encoding scheme as the standard RAE. The difference is in the
decoding step which tries to reconstruct the entire spanned subtree underneath each node as shown
in Fig. 2 (right). For instance, at node y2, the reconstruction error is the difference between the
leaf nodes underneath that node [x1;x2;x3] and their reconstructed counterparts [x0

1;x
0
2;x

0
3]. The

unfolding produces the reconstructed leaves by starting at y2 and computing

[x0
1; y

0
1] = f(Wdy2 + bd). (4)

Then it recursively splits y01 again to produce vectors

[x0
2;x

0
3] = f(Wdy

0
1 + bd). (5)

In general, we repeatedly use the decoding matrix Wd to unfold each node with the same tree
structure as during encoding. The reconstruction error is then computed from a concatenation of the
word vectors in that node’s span. For a node y that spans words i to j:

Erec(y(i,j)) =
����[xi; . . . ;xj]�

⇥
x

0
i; . . . ;x

0
j

⇤����2
. (6)

The unfolding autoencoder essentially tries to encode each hidden layer such that it best reconstructs
its entire subtree to the leaf nodes. Hence, it will not have the problem of hidden layers shrinking
in norm. Another potential problem of the standard RAE is that it gives equal weight to the last
merged phrases even if one is only a single word (in Fig. 2, x1 and y1 have similar weight in the last
merge). In contrast, the unfolding RAE captures the increased importance of a child when the child
represents a larger subtree.

3

Syntactically Recursive NNs

! Socher et al., 2013a, 2014: RvNNs on constituent and dependency
parse trees

Figure 2: An example tree with a simple Recursive
Neural Network: The same weight matrix is repli-
cated and used to compute all non-terminal node
representations. Leaf nodes are n-dimensional
vector representations of words.

In order to compute a score of how plausible of
a syntactic constituent a parent is the RNN uses a
single-unit linear layer for all i:

s(p

(i)

) = v

T

p

(i)

,

where v 2 Rn is a vector of parameters that need
to be trained. This score will be used to find the
highest scoring tree. For more details on how stan-
dard RNNs can be used for parsing, see Socher et
al. (2011b).

The standard RNN requires a single composi-
tion function to capture all types of compositions:
adjectives and nouns, verbs and nouns, adverbs
and adjectives, etc. Even though this function is
a powerful one, we find a single neural network
weight matrix cannot fully capture the richness of
compositionality. Several extensions are possible:
A two-layered RNN would provide more expres-
sive power, however, it is much harder to train be-
cause the resulting neural network becomes very
deep and suffers from vanishing gradient prob-
lems. Socher et al. (2012) proposed to give ev-
ery single word a matrix and a vector. The ma-
trix is then applied to the sibling node’s vector
during the composition. While this results in a
powerful composition function that essentially de-
pends on the words being combined, the number
of model parameters explodes and the composi-
tion functions do not capture the syntactic com-
monalities between similar POS tags or syntactic
categories.

Based on the above considerations, we propose
the Compositional Vector Grammar (CVG) that
conditions the composition function at each node
on discrete syntactic categories extracted from a

(A, a=) (B, b=) (C, c=)

P(1), p(1)=

 P(2), p(2)=

= f W(B,C) b
c

= f W(A,P) a
p(1)

(1)

Figure 3: Example of a syntactically untied RNN
in which the function to compute a parent vector
depends on the syntactic categories of its children
which we assume are given for now.

PCFG. Hence, CVGs combine discrete, syntactic
rule probabilities and continuous vector composi-
tions. The idea is that the syntactic categories of
the children determine what composition function
to use for computing the vector of their parents.
While not perfect, a dedicated composition func-
tion for each rule RHS can well capture common
composition processes such as adjective or adverb
modification versus noun or clausal complementa-
tion. For instance, it could learn that an NP should
be similar to its head noun and little influenced by
a determiner, whereas in an adjective modification
both words considerably determine the meaning of
a phrase. The original RNN is parameterized by a
single weight matrix W . In contrast, the CVG uses
a syntactically untied RNN (SU-RNN) which has
a set of such weights. The size of this set depends
on the number of sibling category combinations in
the PCFG.

Fig. 3 shows an example SU-RNN that com-
putes parent vectors with syntactically untied
weights. The CVG computes the first parent vec-
tor via the SU-RNN:

p

(1)

= f

✓
W

(B,C)


b

c

�◆
,

where W

(B,C) 2 Rn⇥2n is now a matrix that de-
pends on the categories of the two children. In
this bottom up procedure, the score for each node
consists of summing two elements: First, a single
linear unit that scores the parent vector and sec-
ond, the log probability of the PCFG for the rule
that combines these two children:

s

⇣
p

(1)

⌘
=

�
v

(B,C)

�
T

p

(1)

+ logP (P

1

! B C),

(4)

A man wearing a helmet jumps on his bike near a beach
det

nsubj

partmod det
dobj

root

prep poss
pobj

prep

det
pobj

Figure 2: Example of a full dependency tree for a longer sentence. The DT-RNN will compute vector representations
at every word that represents that word and an arbitrary number of child nodes. The final representation is computed
at the root node, here at the verb jumps. Note that more important activity and object words are higher up in this tree
structure.

supervised model of Huang et al. (2012) which can
learn single word vector representations from both
local and global contexts. The idea is to construct a
neural network that outputs high scores for windows
and documents that occur in a large unlabeled corpus
and low scores for window-document pairs where
one word is replaced by a random word. When
such a network is optimized via gradient descent the
derivatives backpropagate into a word embedding
matrix A which stores word vectors as columns. In
order to predict correct scores the vectors in the ma-
trix capture co-occurrence statistics. We use d = 50

in all our experiments. The embedding matrix X

is then used by finding the column index i of each
word: [w] = i and retrieving the corresponding col-
umn x

w

from X . Henceforth, we represent an input
sentence s as an ordered list of (word,vector) pairs:
s = ((w1, xw1), . . . , (wm

, x

wm)).
Next, the sequence of words (w1, . . . , wm

) is
parsed by the dependency parser of de Marneffe
et al. (2006). Fig. 2 shows an example. We can
represent a dependency tree d of a sentence s as
an ordered list of (child,parent) indices: d(s) =

{(i, j)}, where every child word in the sequence
i = 1, . . . ,m is present and has any word j 2
{1, . . . ,m} [{0} as its parent. The root word has
as its parent 0 and we notice that the same word can
be a parent between zero and m number of times.
Without loss of generality, we assume that these in-
dices form a tree structure. To summarize, the input
to the DT-RNN for each sentence is the pair (s, d):
the words and their vectors and the dependency tree.

3.2 Forward Propagation in DT-RNNs

Given these two inputs, we now illustrate how the
DT-RNN computes parent vectors. We will use the
following sentence as a running example: Students1
ride2 bikes3 at4 night5. Fig. 3 shows its tree
and computed vector representations. The depen-

Students bikes night

ride
at x1

x2

x3

x4
x5

h1

h2

h3

h4

h5

Figure 3: Example of a DT-RNN tree structure for com-
puting a sentence representation in a bottom up fashion.

dency tree for this sentence can be summarized by
the following set of (child, parent) edges: d =

{(1, 2), (2, 0), (3, 2), (4, 2), (5, 4)}.
The DT-RNN model will compute parent vectors

at each word that include all the dependent (chil-
dren) nodes in a bottom up fashion using a com-
positionality function g

✓

which is parameterized by
all the model parameters ✓. To this end, the algo-
rithm searches for nodes in a tree that have either
(i) no children or (ii) whose children have already
been computed and then computes the correspond-
ing vector.

In our example, the words x1, x3, x5 are leaf
nodes and hence, we can compute their correspond-
ing hidden nodes via:

h

c

= g

✓

(x

c

) = f(W

v

x

c

) for c = 1, 3, 5, (1)

where we compute the hidden vector at position c

via our general composition function g

✓

. In the case
of leaf nodes, this composition function becomes
simply a linear layer, parameterized by W

v

2 Rn⇥d,
followed by a nonlinearity. We cross-validate over
using no nonlinearity (f = id), tanh, sigmoid or
rectified linear units (f = max(0, x), but generally
find tanh to perform best.

The final sentence representation we want to com-
pute is at h2, however, since we still do not have h4,

Recurrent NNs

!   Recurrent NNs (RNNs) are non-tree, sequential versions of RvNNs

!   Weights tied together for each time step

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

LSTM RNNs

c
Memory cell

Input gate Output gate

Forget gate

Figure 3: Long Short-term Memory (LSTM) unit.

Our model (Fig. 2) employs LSTMs as the nonlinear func-
tions f and g due to their ability to learn long-term depen-
dencies that exist over the instruction and action sequences,
without suffering from exploding or vanishing gradients.
Our model also integrates multi-level alignment to focus on
parts of the instruction that are more salient to the current
action at multiple levels of abstraction. We next describe
each component of our network in detail.

Encoder Our encoder takes as input the natural lan-
guage route instruction represented as a sequence
x1:N = (x1, x2, . . . , xN), where x1 and xN are the
first and last words in the sentence, respectively. We treat
each word xi as a K-dimensional one-hot vector, where
K is the vocabulary size. We feed this sequence into an
LSTM-RNN that summarizes the temporal relationships
between previous words and returns a sequence of hidden
annotations h1:N = (h1, h2, . . . , hN), where the annotation
hj summarizes the words up to and including xj .

We adopt an LSTM encoder architecture (Fig. 3) similar
to that of Graves, Abdel-rahman, and Hinton (2013),

0

BB@

i

e
j
f

e
j
o

e
j
g

e
j

1

CCA =

0

B@

�

�

�

tanh

1

CAT

e

✓
xj

hj�1

◆
(4a)

c

e
j = f

e
j � c

e
j�1 + i

e
j � g

e
j (4b)

hj = o

e
j � tanh(c

e
j) (4c)

where T

e is an affine transformation, � is the logistic sig-
moid that restricts its input to [0, 1], iej , fe

j , and o

e
j are the

input, output, and forget gates of the LSTM, respectively,
and c

e
j is the memory cell activation vector. The memory

cell cej summarizes the LSTM’s previous memory c

e
j�1 and

the current input, which are modulated by the forget and in-
put gates, respectively. The forget and input gates enable the
LSTM to regulate the extent to which it forgets its previous
memory and the input, while the output gate regulates the
degree to which the memory affects the hidden state.

Our encoder employs bidirectionality, encoding the sen-
tences in both the forward and backward directions, an ap-
proach that has been found to be successful in speech recog-
nition and machine translation (Graves, Abdel-rahman,
and Hinton 2013; Bahdanau, Cho, and Bengio 2014;
Cho et al. 2014). In this way, the hidden annotations

hj = (

�!
h

>
j ;
 �
h

>
j)

> concatenate forward
�!
h j and backward

annotations
 �
h j , each determined using Equation 4c.

Multi-level Aligner The context representation of the in-
struction is computed as a weighted sum of the word vectors
xj and encoder states hj . Whereas most previous work align
based only on the hidden annotations hj , we found that also
including the original input word xj in the aligner improves
performance. This multi-level representation allows the de-
coder to not just reason over the high-level, context-based
representation of the input sentence hj , but to also consider
the original low-level word representation xj . By adding xj ,
the model offsets information that is lost in the high-level
abstraction of the instruction. Intuitively, the model is able
to better match the salient words in the input sentence (e.g.,
“easel”) directly to the corresponding landmarks in the cur-
rent world state yt used in the decoder. The context vector
then takes the form

zt =

X

j

↵tj

✓
xj

hj

◆
(5)

The weight ↵tj associated with each pair (xj , hj) is

↵tj = exp(�tj)/

X

j

exp(�tj), (6)

where the alignment term �tj = f(st�1, xj , hj) weighs the
extent to which the word at position j and those around it
match the output at time t. The alignment is modelled as a
one-layer neural perceptron

�tj = v

>
tanh(Wst�1 + Uxj + V hj), (7)

where v, W , U , and V are learned parameters.

Decoder Our architecture uses an LSTM decoder (Fig. 3)
that takes as input the current world state yt, the context
of the instruction zt, and the LSTM’s previous hidden state
st�1. The output is the conditional probability distribution
Pa,t = P (at|a1:t�1, yt, x1:N) over the next action (3), rep-
resented as a deep output layer (Pascanu et al. 2014)

0

BB@

i

d
t

f

d
t

o

d
t

g

d
t

1

CCA =

0

B@

�

�

�

tanh

1

CAT

d

Eyt

st�1

zt

!
(8a)

c

d
t = f

d
t � c

d
t�1 + i

d
t � g

d
t (8b)

st = o

d
t � tanh(c

d
t) (8c)

qt = L0(Eyt + Lsst + Lzzt) (8d)
Pa,t = softmax (qt) (8e)

where E is an embedding matrix and L0, Ls, and Lz are
parameters to be learned.

Training We train the encoder and decoder models so as
to predict the action sequence a

⇤
1:T according to Equation 1

for a given instruction x1:N and world state y1:T from the

4

!   LSTM (Long short term memory) RNNs have gates for forgetting,
allowing learning of longer-term connections by avoiding vanishing/
exploding gradients

Various Applications of such RNNs

!   Classification: Sentiment Analysis

!   Language Modeling

!   Generation: End-to-end MT

!   Others: Parsing, Captioning, Summarization, Q&A,

Dialogue (some will be covered in future weeks)

!   Demos: h#p://deeplearning.net/demos/,	
h#p://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/,	
h#ps://www.metamind.io/

Sentiment Analysis

Sentiment Analysis

!   Earlier methods used bag of words, e.g., lexicons of
positive and negative words and phrases

!   Cannot distinguish tricky cases like:

+ 	white 	blood 	cells 	destroying 	an 	infection	
− 	an 	infection	 	destroying 	white 	blood 	cells	
	
	
+ 	There are slow and repetitive parts but it has just enough
spice to keep it interesting.	
− 	Stealing Harvard doesn’t care about cleverness, wit or any
other kind of intelligent humor. 	

Sentiment Analysis

!   Even simpler issues like negation hard to understand

! Socher et al., 2013b present new compositional
training data and new composition model

Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng and Christopher Potts

Stanford University, Stanford, CA 94305, USA
richard@socher.org,{aperelyg,jcchuang,ang}@cs.stanford.edu

{jeaneis,manning,cgpotts}@stanford.edu

Abstract

Semantic word spaces have been very use-
ful but cannot express the meaning of longer
phrases in a principled way. Further progress
towards understanding compositionality in
tasks such as sentiment detection requires
richer supervised training and evaluation re-
sources and more powerful models of com-
position. To remedy this, we introduce a
Sentiment Treebank. It includes fine grained
sentiment labels for 215,154 phrases in the
parse trees of 11,855 sentences and presents
new challenges for sentiment composition-
ality. To address them, we introduce the
Recursive Neural Tensor Network. When
trained on the new treebank, this model out-
performs all previous methods on several met-
rics. It pushes the state of the art in single
sentence positive/negative classification from
80% up to 85.4%. The accuracy of predicting
fine-grained sentiment labels for all phrases
reaches 80.7%, an improvement of 9.7% over
bag of features baselines. Lastly, it is the only
model that can accurately capture the effects
of negation and its scope at various tree levels
for both positive and negative phrases.

1 Introduction

Semantic vector spaces for single words have been
widely used as features (Turney and Pantel, 2010).
Because they cannot capture the meaning of longer
phrases properly, compositionality in semantic vec-
tor spaces has recently received a lot of attention
(Mitchell and Lapata, 2010; Socher et al., 2010;
Zanzotto et al., 2010; Yessenalina and Cardie, 2011;
Socher et al., 2012; Grefenstette et al., 2013). How-
ever, progress is held back by the current lack of
large and labeled compositionality resources and

–

0

0

This

0

film

–

–

–

0

does

0

n’t

0

+

care

+

0

about

+

+

+

+

+

cleverness

0

,

0

wit

0

or

+

0

0

any

0

0

other

+

kind

+

0

of

+

+

intelligent

+ +

humor

0

.

Figure 1: Example of the Recursive Neural Tensor Net-
work accurately predicting 5 sentiment classes, very neg-
ative to very positive (– –, –, 0, +, + +), at every node of a
parse tree and capturing the negation and its scope in this
sentence.

models to accurately capture the underlying phe-
nomena presented in such data. To address this need,
we introduce the Stanford Sentiment Treebank and
a powerful Recursive Neural Tensor Network that
can accurately predict the compositional semantic
effects present in this new corpus.

The Stanford Sentiment Treebank is the first cor-
pus with fully labeled parse trees that allows for a
complete analysis of the compositional effects of
sentiment in language. The corpus is based on
the dataset introduced by Pang and Lee (2005) and
consists of 11,855 single sentences extracted from
movie reviews. It was parsed with the Stanford
parser (Klein and Manning, 2003) and includes a
total of 215,154 unique phrases from those parse
trees, each annotated by 3 human judges. This new
dataset allows us to analyze the intricacies of senti-
ment and to capture complex linguistic phenomena.
Fig. 1 shows one of the many examples with clear
compositional structure. The granularity and size of

Sentiment Analysis

!   Even simpler issues like negation hard to understand

! Socher et al., 2013b present new compositional
training data and new composition model 1.	New	Sentiment	Treebank	

Sentiment Analysis

!   Sentiment Compositionality: 1.	New	Sentiment	Treebank	

• Parse	trees	of	11,855	sentences
• 215,154	phrases	with	labels
• Allows	training	and	evaluating	

with	compositional	information

Sentiment Analysis

!   Better Models: Recursive Neural Tensor Network
(RNTN)

Recursive	Neural	Tensor	Network
Recursive	Deep	Models	 for	Semantic	Compositionality	Over	a	Sentiment	Treebank	
Socher	et	al.	2013

Sentiment Analysis

!   Better Models: Tree-based LSTM-RNNs

Tree	LSTMs

• We	can	use	those	ideas	in	
grammatical	tree	structures!

• Paper:	Tai	et	al.	2015:
Improved	Semantic	Representations	From
Tree-Structured	Long	Short-Term	Memory	Networks	

• Idea:	Sum	the	child	vectors
in	a	tree	structure

• Each	child	has	its	own	
forget	gate

• Same	softmax on	h

5/5/16Richard	SocherLecture	1,	Slide	 40

Sentiment Compositionality

!   Demos: h#p://nlp.stanford.edu:8080/sen=ment/rntnDemo.html
[Yessenalina and Cardie, 2011; Socher et al., 2013b]

Results	on	Stanford	Sentiment	Treebank	

Method Fine-grained Binary

RAE (Socher et al., 2013) 43.2 82.4
MV-RNN (Socher et al., 2013) 44.4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DRNN (Irsoy and Cardie, 2014) 49.8 86.6

LSTM 45.8 86.7
Bidirectional LSTM 49.1 86.8
2-layer LSTM 47.5 85.5
2-layer Bidirectional LSTM 46.2 84.8

Constituency Tree LSTM (no tuning) 46.7 86.6
Constituency Tree LSTM 50.6 86.9

Table 2: Test set accuracies on the Stanford Senti-
ment Treebank. Fine-grained: 5-class sentiment
classification. Binary: positive/negative senti-
ment classification. We give results for Tree-
LSTM models with and without fine-tuning of
word representations.

Sec. 4.2. For the similarity prediction network
(Eqs. 15) we use a hidden layer of size 50. We
compare two Tree-LSTM architectures for com-
posing sentence representations: the Child-Sum
Tree-LSTM architecture (Sec. 3.1) on dependency
trees (Chen and Manning, 2014) and the Binary
Tree-LSTM (Sec. 3.2) on binarized constituency
trees (Klein and Manning, 2003).

5.3 Hyperparameters and Training Details
The hyperparameters for our models were tuned
on the development set for each task.

We initialized our word representations using
publicly available 300-dimensional Glove vectors
(Pennington et al., 2014). For the sentiment classi-
fication task, word representations were fine-tuned
during training with a learning rate of 0.1; no fine-
tuning was performed for the semantic relatedness
task.

Our models were trained using AdaGrad (Duchi
et al., 2011) with a learning rate of 0.05 and a
minibatch size of 25. The model parameters were
regularized with a per-minibatch L2 regularization
strength of 10�4. The sentiment classifier was ad-
ditionally regularized using dropout (Hinton et al.,
2012).

6 Results

6.1 Sentiment Classification
Our results are summarized in Table 2. As was the
case with the convolutional neural network model

Method r ⇢ MSE

Mean vectors 0.8046 0.7294 0.3595
DT-RNN (Socher et al., 2014) 0.7863 0.7305 0.3983
SDT-RNN (Socher et al., 2014) 0.7886 0.7280 0.3859

Illinois-LH (Lai and Hockenmaier, 2014) 0.7993 0.7538 0.3692
UNAL-NLP (Jimenez et al., 2014) 0.8070 0.7489 0.3550
Meaning Factory (Bjerva et al., 2014) 0.8268 0.7721 0.3224
ECNU (Zhao et al., 2014) 0.8414 – –

LSTM 0.8477 0.7921 0.2949
Bidirectional LSTM 0.8522 0.7952 0.2850
2-layer LSTM 0.8411 0.7849 0.2980
2-layer Bidirectional LSTM 0.8488 0.7926 0.2893

Constituency Tree LSTM 0.8491 0.7873 0.2852
Dependency Tree LSTM 0.8627 0.8032 0.2635

Table 3: Test set results on the SICK semantic
relatedness subtask. The evaluation metrics are
Pearson’s r, Spearman’s ⇢, and mean squared er-
ror. Results are grouped as follows: (1) Our own
baselines; (2) SemEval 2014 submissions; (3) Se-
quential LSTM variants.

described by Kim (2014), we found that tuning
word representations yielded a significant boost in
performance on the fine-grained classification sub-
task, in contrast to the minor gains observed on the
binary classification subtask. This suggests that
fine-tuning helps distinguish positive/negative vs.
neutral, strongly positive vs. positive, and strongly
negative vs. negative, as opposed to positive vs.
negative in the binary case.

The Bidirectional LSTM significantly outper-
formed the standard LSTM on the fine-grained
subtask. Note that this result is achieved with-
out introducing any additional parameters in the
LSTM transition function since the forward and
backward parameters are shared. This indicates
that sentence length becomes a limiting factor
for the (unidirectional) LSTM on the fine-grained
subtask. Somewhat surprisingly, we do not ob-
serve a corresponding improvement on the binary
subtask (indeed, we achieve similar results on all
our single-layer LSTM models). We conjecture
that the state that needs to be retained by the net-
work in order to make a correct binary prediction
is easily preserved by both the LSTM and Bidi-
rectional LSTM models, whereas the fine-grained
case requires more complex interactions between
the input word representations and the hidden state
of the LSTM unit.

The Tree-LSTM over constituency trees outper-
forms existing systems on the fine-grained classi-
fication subtask.

5/5/16Richard	SocherLecture	1,	Slide	 41

of	word	vectors

Language Modeling

!   A language model is a distribution over sequences of
words (sentences)

 P(w) = P(w1 … wn)

!   Purpose it to usually assign high weights to plausible
sentences, e.g., in speech recognition or machine
translation

!   Also used for language generation now (predict next
word given previous words), esp. w/ new RNN models

Traditional N-gram LMs

2

Translation:�Codebreaking?

“Also knowing nothing official about, but having guessed
and inferred considerable about, the powerful new
mechanized methods in cryptography—methods which I
believe succeed even when one does not know what
language has been coded—one naturally wonders if the
problem of translation could conceivably be treated as a
problem in cryptography. When I look at an article in
Russian, I say: ‘This is really written in English, but it has
been coded in some strange symbols. I will now proceed to
decode.’ ”

Warren�Weaver�(1947)

source
P(e) e f

decoder
observed�����

argmax�P(e|f)�=�argmax�P(f|e)P(e)
e e

e f
best

channel
P(f|e)

Language Model Translation Model

MT�System�Components

Other�Noisy�Channel�Models?

� We’re�not�doing�this�only�for�ASR�(and�MT)
� Grammar�/�spelling�correction
� Handwriting�recognition,�OCR
� Document�summarization
� Dialog�generation
� Linguistic�decipherment
� …

NͲGram�Models

NͲGram Models
� Use�chain�rule�to�generate�words�leftͲtoͲright

� Can’t�condition�on�the�entire�left�context

� NͲgram�models�make�a�Markov�assumption

P(???�|�Turn�to�page�134�and�look�at�the�picture�of�the)

Empirical NͲGrams
� How�do�we�know�P(w�|�history)?
� Use�statistics�from�data�(examples�using�Google�NͲGrams)
� E.g.�what�is�P(door�|�the)?

� This�is�the�maximum�likelihood�estimate

198015222 the first
194623024 the same
168504105 the following
158562063 the world

14112454 the door

23135851162 the *

Tr
ai

ni
ng

 C
ou

nt
s

Traditional N-gram LMs

2

Translation:�Codebreaking?

“Also knowing nothing official about, but having guessed
and inferred considerable about, the powerful new
mechanized methods in cryptography—methods which I
believe succeed even when one does not know what
language has been coded—one naturally wonders if the
problem of translation could conceivably be treated as a
problem in cryptography. When I look at an article in
Russian, I say: ‘This is really written in English, but it has
been coded in some strange symbols. I will now proceed to
decode.’ ”

Warren�Weaver�(1947)

source
P(e) e f

decoder
observed�����

argmax�P(e|f)�=�argmax�P(f|e)P(e)
e e

e f
best

channel
P(f|e)

Language Model Translation Model

MT�System�Components

Other�Noisy�Channel�Models?

� We’re�not�doing�this�only�for�ASR�(and�MT)
� Grammar�/�spelling�correction
� Handwriting�recognition,�OCR
� Document�summarization
� Dialog�generation
� Linguistic�decipherment
� …

NͲGram�Models

NͲGram Models
� Use�chain�rule�to�generate�words�leftͲtoͲright

� Can’t�condition�on�the�entire�left�context

� NͲgram�models�make�a�Markov�assumption

P(???�|�Turn�to�page�134�and�look�at�the�picture�of�the)

Empirical NͲGrams
� How�do�we�know�P(w�|�history)?
� Use�statistics�from�data�(examples�using�Google�NͲGrams)
� E.g.�what�is�P(door�|�the)?

� This�is�the�maximum�likelihood�estimate

198015222 the first
194623024 the same
168504105 the following
158562063 the world

14112454 the door

23135851162 the *

Tr
ai

ni
ng

 C
ou

nt
s

Sparsity Issue & Parameter Estimation

!   New words all the time (antidisestablishmentarianism,
kakorrhaphiophobia,, www.xyzabc156.com)….worse for new bigrams
and trigrams!

10

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000

Number of Words

Fr
ac

tio
n

Se
en

Unigrams
Bigrams
Rules

Sparsity
! Problems with n-gram models:

! New words appear all the time:
! Synaptitute
! 132,701.03
! multidisciplinarization

! New bigrams: even more often
! Trigrams or more – still worse!

! Zipf’s Law
! Types (words) vs. tokens (word occurences)
! Broadly: most word types are rare ones
! Specifically:

! Rank word types by token frequency
! Frequency inversely proportional to rank

! Not special to language: randomly generated character strings
have this property (try it!)

Parameter Estimation
! Maximum likelihood estimates won’t get us very far

! Need to smooth these estimates

! General method (procedurally)
! Take your empirical counts
! Modify them in various ways to improve estimates

! General method (mathematically)
! Often can give estimators a formal statistical interpretation
! … but not always
! Approaches that are mathematically obvious aren’t always what works

3516 wipe off the excess
1034 wipe off the dust
547 wipe off the sweat
518 wipe off the mouthpiece
…
120 wipe off the grease
0 wipe off the sauce
0 wipe off the mice

28048 wipe off the *

Smoothing Techniques

11

Smoothing
! We often want to make estimates from sparse statistics:

! Smoothing flattens spiky distributions so they generalize better

! Very important all over NLP, but easy to do badly!
! We’ll illustrate with bigrams today (h = previous word, could be anything).

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

al
le

ga
tio

ns

ch
ar

ge
s

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cla
im

s

ch
ar

ge
s

re
qu

es
t

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

re
qu

es
t

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Smoothing: Add-One, Etc.
! Classic solution: add counts (Laplace smoothing / Dirichlet prior)

! Add-one smoothing especially often talked about

! For a bigram distribution, can add counts shaped like the unigram:

! Can consider hierarchical formulations: trigram is recursively
centered on smoothed bigram estimate, etc [MacKay and Peto, 94]

! Can be derived from Dirichlet / multinomial conjugacy: prior shape
shows up as pseudo-counts

! Problem: works quite poorly!

Smoothing Techniques

!   Classic Solution: add-one or add small priors to numer/denom

!   Backing off to smaller n-grams

!   Held-out Reweighting: Important to optimize/estimate how models
generalize! So use held-out data to estimate the map of old count
to new count

! Kneser-Ney Discounting: two successful ideas:

!   Idea 1: observed n-grams occur more in training than they will later

!   Idea 2: Type-based fertility (based on how common the word type is)

!   Read Chen and Goodman, 1996 for various details and graphs!

RNN Language Models

!   Avoid huge number of n-grams; Memory requirement only scales
with #words

!   Can condition on all previous history (with forget gates)

!   Loss function on identity of predicted word at each time step

!   But harder/slower to train and reach optimum?

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Machine Translation

!   Useful for tons of companies, online traffic, and our international
communication!

Traditional Machine Translation
Current	statistical	machine	translation	systems

• Source	language	f,	e.g.	French
• Target	language	e,	e.g.	English
• Probabilistic	formulation	(using	Bayes	rule)

• Translation	model	p(f|e)	trained	on	parallel	corpus
• Language	model	p(e)	trained	on	English	only	corpus	(lots,	free!)

4/26/16Richard	Socher10

TranslationModel
p(f|e)French	à à Pieces	of	English	à Language	Model

p(e)

Decoder
argmax p(f|e)p(e) à Proper	English

Traditional MT slides from CS224d (Richard Socher)	

Traditional Machine Translation

Step	1:	Alignment	

4/26/16Richard	Socher11

Goal:	know	which	word	or	phrases	in	source	language	
would	translate	to	what	words	or	phrases	in	target	
language?	à Hard	already!

Alignment	examples	from	Chris	Manning/CS224n

9/24/14

4

Statistical MT

Pioneered at IBM in the early 1990s

Let’s make a probabilistic model of translation
P(e | f)

Suppose f is de rien
P(you’re welcome | de rien) = 0.45
P(nothing | de rien) = 0.13
P(piddling | de rien) = 0.01
P(underpants | de rien) = 0.000000001

Hieroglyphs

Statistical Solution

•  Parallel Texts
– Rosetta Stone

Demotic

Greek

Statistical Solution

–  Instruction Manuals
–  Hong Kong/Macao

Legislation
–  Canadian Parliament

Hansards
–  United Nations Reports
–  Official Journal

of the European
Communities

–  Translated news

•  Parallel Texts Hmm, every time one sees
“banco”, translation is
�bank” or “bench” …
If it’s “banco de…”, it
always becomes “bank”,
never “bench”…

A Division of Labor

Spanish Broken
English

English

Spanish/English
Bilingual Text

English
Text

Statistical Analysis Statistical Analysis

Que hambre tengo yo I am so hungry

Translation
Model P(f|e)

Language
Model P(e)

Decoding algorithm
argmax P(f|e) * P(e)
 e

What hunger have I,
Hungry I am so,
I am so hungry,
Have I that hunger …

Fidelity Fluency

Alignments
We can factor the translation model P(f | e)
by identifying alignments (correspondences)
between words in f and words in e

Japan
shaken

by
two

new
quakes

Le
Japon
secoué
par
deux
nouveaux
séismes

Japan
shaken

by
two

new
quakes

Le

Ja
po

n
se

co
ué

pa

r
de

ux

no
uv

ea
ux

sé

is
m

es

�spurious�
word

Alignments: harder

And
the

program
has

been
implemented

Le
programme
a
été
mis
en
application

�zero fertility� word
not translated

And
the

program
has

been
implemented

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

one-to-many
alignment

Traditional Machine Translation

Step	1:	Alignment	

4/26/16Richard	Socher12

9/24/14

4

Statistical MT

Pioneered at IBM in the early 1990s

Let’s make a probabilistic model of translation
P(e | f)

Suppose f is de rien
P(you’re welcome | de rien) = 0.45
P(nothing | de rien) = 0.13
P(piddling | de rien) = 0.01
P(underpants | de rien) = 0.000000001

Hieroglyphs

Statistical Solution

•  Parallel Texts
– Rosetta Stone

Demotic

Greek

Statistical Solution

–  Instruction Manuals
–  Hong Kong/Macao

Legislation
–  Canadian Parliament

Hansards
–  United Nations Reports
–  Official Journal

of the European
Communities

–  Translated news

•  Parallel Texts Hmm, every time one sees
“banco”, translation is
�bank” or “bench” …
If it’s “banco de…”, it
always becomes “bank”,
never “bench”…

A Division of Labor

Spanish Broken
English

English

Spanish/English
Bilingual Text

English
Text

Statistical Analysis Statistical Analysis

Que hambre tengo yo I am so hungry

Translation
Model P(f|e)

Language
Model P(e)

Decoding algorithm
argmax P(f|e) * P(e)
 e

What hunger have I,
Hungry I am so,
I am so hungry,
Have I that hunger …

Fidelity Fluency

Alignments
We can factor the translation model P(f | e)
by identifying alignments (correspondences)
between words in f and words in e

Japan
shaken

by
two

new
quakes

Le
Japon
secoué
par
deux
nouveaux
séismes

Japan
shaken

by
two

new
quakes

Le

Ja
po

n
se

co
ué

pa

r
de

ux

no
uv

ea
ux

sé

is
m

es

�spurious�
word

Alignments: harder

And
the

program
has

been
implemented

Le
programme
a
été
mis
en
application

�zero fertility� word
not translated

And
the

program
has

been
implemented

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

one-to-many
alignment

Traditional Machine Translation

Step	1:	Alignment	

4/26/16Richard	Socher13

9/24/14

5

Alignments: harder

The
balance

was
the

territory
of

the
aboriginal

people

Le
reste

appartenait

aux

autochtones

many-to-one
alignments

The
balance

was
the

territory

of
the

aboriginal
people

 L
e

re
st

e

ap
pa

rte
na

it
au

x

au
to

ch
to

ne
s

Alignments: hardest

The
poor
don’t
have

any
money

Les
pauvres
sont
démunis

many-to-many
alignment

The
poor

don�t
have

any

money

Le
s

pa
uv

re
s

so
nt

dé

m
un

is

phrase
alignment

Alignment as a vector

Mary
did
not

slap

the
green
witch

1
2
3
4

5
6
7

Maria
no
daba
una
botefada
a
la
bruja
verde

1
2
3
4
5
6
7
8
9

i j

1
3
4
4
4
0
5
7
6

aj=i
•  used in all IBM models
•  a is vector of length J
•  maps indexes j to indexes i
•  each aj
 {0, 1 … I}
•  aj = 0 	 fj is �spurious�
•  no one-to-many alignments
•  no many-to-many alignments
•  but provides foundation for

phrase-based alignment

IBM Model 1 generative story

And
the

program
has

been
implemented

aj

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6

Choose length J for French sentence

For each j in 1 to J:

–  Choose aj uniformly from 0, 1, … I

–  Choose fj by translating eaj

Given English sentence e1, e2, … eI

We want to learn
how to do this

Want: P(f|e)

IBM Model 1 parameters

And
the

program
has

been
implemented

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6 aj

Applying Model 1*

As translation model

As alignment model

P(f, a | e) can be used as a translation model or an alignment model

* Actually, any P(f, a | e), e.g., any IBM model

Really	hard	:/	

Traditional Machine Translation

Step	1:	Alignment	

4/26/16Richard	Socher14

9/24/14

5

Alignments: harder

The
balance

was
the

territory
of

the
aboriginal

people

Le
reste

appartenait

aux

autochtones

many-to-one
alignments

The
balance

was
the

territory

of
the

aboriginal
people

 L
e

re
st

e

ap
pa

rte
na

it
au

x

au
to

ch
to

ne
s

Alignments: hardest

The
poor
don’t
have

any
money

Les
pauvres
sont
démunis

many-to-many
alignment

The
poor

don�t
have

any

money

Le
s

pa
uv

re
s

so
nt

dé

m
un

is

phrase
alignment

Alignment as a vector

Mary
did
not

slap

the
green
witch

1
2
3
4

5
6
7

Maria
no
daba
una
botefada
a
la
bruja
verde

1
2
3
4
5
6
7
8
9

i j

1
3
4
4
4
0
5
7
6

aj=i
•  used in all IBM models
•  a is vector of length J
•  maps indexes j to indexes i
•  each aj
 {0, 1 … I}
•  aj = 0 	 fj is �spurious�
•  no one-to-many alignments
•  no many-to-many alignments
•  but provides foundation for

phrase-based alignment

IBM Model 1 generative story

And
the

program
has

been
implemented

aj

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6

Choose length J for French sentence

For each j in 1 to J:

–  Choose aj uniformly from 0, 1, … I

–  Choose fj by translating eaj

Given English sentence e1, e2, … eI

We want to learn
how to do this

Want: P(f|e)

IBM Model 1 parameters

And
the

program
has

been
implemented

Le

pr
og

ra
m

m
e

a ét
é

m
is

en

ap

pl
ic

at
io

n

2 3 4 5 6 6 6 aj

Applying Model 1*

As translation model

As alignment model

P(f, a | e) can be used as a translation model or an alignment model

* Actually, any P(f, a | e), e.g., any IBM model

Traditional Machine Translation

Step	1:	Alignment	

4/26/16Richard	Socher15

• We	could	spend	an	entire	lecture	on	alignment	models

• Not	only	single	words	but	could	use	phrases,	syntax

• Then	consider	reordering	of	translated	phrases

Example	from	Philipp	Koehn

Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

er geht ja nicht nach hause

he does not go home

• Pick phrase in input, translate

Chapter 6: Decoding 6

!   Next Step: Reordering Model

Traditional Machine Translation

!   After many steps…“Phrase Table” After	many	steps

4/26/16Richard	Socher16

Each	phrase	in	source	language	has	many	possible	
translations	resulting	in	large	search	space:

Translation Options

he

er geht ja nicht nach hause

it
, it

, he

is
are

goes
go

yes
is

, of course

not
do not

does not
is not

after
to

according to
in

house
home

chamber
at home

not
is not

does not
do not

home
under house
return home

do not

it is
he will be

it goes
he goes

is
are

is after all
does

to
following
not after

not to

,

not
is not

are not
is not a

• Many translation options to choose from

– in Europarl phrase table: 2727 matching phrase pairs for this sentence
– by pruning to the top 20 per phrase, 202 translation options remain

Chapter 6: Decoding 8

Traditional Machine Translation

Decode:	Search	for	best	of	many	hypotheses

4/26/16Richard	Socher17

Hard	search	problem	that	also	includes	language	model
Decoding: Find Best Path

er geht ja nicht nach hause

are

it

he
goes

does not

yes

go

to

home

home

backtrack from highest scoring complete hypothesis

Chapter 6: Decoding 15

Traditional Machine Translation

!   Lots of feature engineering

!   Very complex pipeline systems with multiple steps

!   Incentive to do it end to end and jointly

!   Can neural models be a powerful enough alternative to do so?

Machine Translation Progress

7
NMT slides from ACL 2016 Tutorial (Luong, Cho, Manning)	

Neural Machine Translation

Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated over the weekend

0.2
0.6

-0.1
-0.7
0.1

0.4
-0.6
0.2

-0.3
0.4

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1

-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.1
0.3

-0.1
-0.7
0.1

-0.2
0.6
0.1
0.3
0.1

-0.4
0.5

-0.5
0.4
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.2
-0.1
0.1
0.1

0.2
0.6

-0.1
-0.7
0.1

0.1
0.3

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.4
0.1

0.2
-0.8
-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
0.3
0.1

-0.1
0.6

-0.1
0.3
0.1

0.2
0.4

-0.1
0.2
0.1

0.3
0.6

-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.1
-0.1
-0.7
0.1

0.1
0.3
0.1

-0.4
0.2

0.2
0.6

-0.1
-0.7
0.1

0.4
0.4
0.3

-0.2
-0.3

0.5
0.5
0.9

-0.3
-0.2

0.2
0.6

-0.1
-0.5
0.1

-0.1
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.3
0.6

-0.1
-0.7
0.1

0.4
0.4

-0.1
-0.7
0.1

-0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

-0.3
0.5

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

The protests escalated over the weekend <EOS>

Modern Sequence Models for NMT
[Sutskever et al. 2014, Bahdanau et al. 2014, et seq.]
following [Jordan 1986] and more closely [Elman 1990]

Sentence
meaning

is built up

Source
sentence

Translation
generated

Feeding in
last word

A deep recurrent neural network

!   Encoder-Decoder RNN models:

Improvement Sources

!   Stacking multiple layers

! Bidirectionality

!   Better memory units, e.g., GRUs

!   Pre-trained language models on tons of monolingual data

!   Ensembles

!   Attention/Alignment models

Alignment/Attention Models

!   Translating longer sentences better, e.g., via attention/alignment
module between encoder and decoder to jointly learn alignments
and translations end-to-end

• Simplified mechanism & more functions:
Bilinear form:
well-adopted.

142

Attention Mechanisms+

Alignment/Attention Models

!   Translating longer sentences better, e.g., via attention/alignment
module between encoder and decoder to jointly learn alignments
and translations end-to-end

Dzmitry Bahdanau, KyungHuyn Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Translate and Align. ICLR’15.132

Learning both
translation & alignment

Linguistics Insights

Constraints on “distortion”
(displacement) and fertility
� Constraints on attention [Cohn, Hoang, Vymolova, Yao,
Dyer & Haffari NAACL 2016; Feng, Liu, Li, Zhou 2016 arXiv;
Yang, Hu, Deng, Dyer, Smola 2016 arXiv].

Linguistics Insights

Extend to NMT – Linguistic insights

• [Cohn, Hoang, Vymolova, Yao, Dyer, Haffari,
NAACL’16]: position (IBM2) + Markov (HMM) +
fertility (IBM3-5) + alignment symmetry
(BerkeleyAligner).

• [Tu, Lu, Liu, Liu, Li, ACL’16]: linguistic & NN-based
coverage models.

151

Source word fertilityPer source word

Other New Ideas/Improvements

!   Extending vocabulary coverage and handling rare/unseen words

!   Handling more language variations, e.g., via character-level
models to capture morphology

!   Utilize more data resources, e.g., multilingual models (one to many,
many to one, many to many), multi-task learning (combine with
other encoder-decoder tasks with shared sides)

!   See ACL 2016 tutorial: https://sites.google.com/site/acl16nmt/

Next Class

!   We will start paper reading from next class!

!   Summary Writing every week and Discussion Leaders

!   Class participation in discussions and brainstorming!

!   First topic will be Question Answering

!   Please send me top-3 week/topic choices by tomorrow 5pm.

!   Will finalize discussion leaders and email everyone

