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Part-of-Speech Tagging 



Part-of-Speech Tagging 

!   Basic form of linguistic structure: ‘syntactic word classes’ 
!   Tag sequence of words w/ syntactic categories (noun, verb, prep, etc.) 
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PartsͲofͲSpeech�(English)
� One�basic�kind�of�linguistic�structure:�syntactic�word�classes

Open class (lexical) words

Closed class (functional)

Nouns Verbs

Proper Common

Auxiliary

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

  more

  more

IBM
Italy

cat / cats
snow

see
registered

can
had

yellow

slowly

to with

off up

the some

and or

he its

Numbers

122,312
one



Penn Treebank Tagset 
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CC conjunction, coordinating and both but either or
CD numeral, cardinal mid-1890 nine-thirty 0.5 one
DT determiner a all an every no that the
EX existential there there 
FW foreign word gemeinschaft hund ich jeux
IN preposition or conjunction, subordinating among whether out on by if
JJ adjective or numeral, ordinal third ill-mannered regrettable

JJR adjective, comparative braver cheaper taller
JJS adjective, superlative bravest cheapest tallest
MD modal auxiliary can may might will would 
NN noun, common, singular or mass cabbage thermostat investment subhumanity

NNP noun, proper, singular Motown Cougar Yvette Liverpool
NNPS noun, proper, plural Americans Materials States
NNS noun, common, plural undergraduates bric-a-brac averages
POS genitive marker ' 's 
PRP pronoun, personal hers himself it we them

PRP$ pronoun, possessive her his mine my our ours their thy your 
RB adverb occasionally maddeningly adventurously

RBR adverb, comparative further gloomier heavier less-perfectly
RBS adverb, superlative best biggest nearest worst 
RP particle aboard away back by on open through
TO "to" as preposition or infinitive marker to 
UH interjection huh howdy uh whammo shucks heck
VB verb, base form ask bring fire see take

VBD verb, past tense pleaded swiped registered saw
VBG verb, present participle or gerund stirring focusing approaching erasing
VBN verb, past participle dilapidated imitated reunifed unsettled
VBP verb, present tense, not 3rd person singular twist appear comprise mold postpone
VBZ verb, present tense, 3rd person singular bases reconstructs marks uses
WDT WH-determiner that what whatever which whichever 
WP WH-pronoun that what whatever which who whom

WP$ WH-pronoun, possessive whose 
WRB Wh-adverb however whenever where why 



Part-of-Speech Ambiguities 

!   A word can have multiple parts of speech 

!   Disambiguating features: lexical identity (word), context, 
morphology (suffixes, prefixes), capitalization, 
gazetteers (dictionaries), … 
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PartͲofͲSpeech�Ambiguity
� Words�can�have�multiple�parts�of�speech

� Two�basic�sources�of�constraint:
� Grammatical�environment
� Identity�of�the�current�word

� Many�more�possible�features:
� Suffixes,�capitalization,�name�databases�(gazetteers),�etc…

Fed raises interest rates 0.5 percent
NNP    NNS        NN         NNS    CD      NN
VBN    VBZ        VBP        VBZ
VBD                    VB            



Uses of Part-of-Speech Tagging 

!   Useful in itself: 
!   Text-to-speech: read, lead, record  
!   Lemmatization: saw[v] → see, saw[n] → saw	
!   Shallow Chunking: grep {JJ | NN}* {NN | NNS}	

 

!   Useful for downstream tasks (e.g., in parsing, and as 
features in various word/text classification tasks) 

!   Preprocessing step in parsing: allows fewer parse options if 
less tag ambiguity (but some cases still decided by parser) 

!   Demos: http://nlp.stanford.edu:8080/corenlp/ 



Classic Solution: HMMs 
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Classic�Solution:�HMMs
� We�want�a�model�of�sequences�s�and�observations�w

� Assumptions:
� States�are�tag�nͲgrams
� Usually�a�dedicated�start�and�end�state�/�word
� Tag/state�sequence�is�generated�by�a�markov model
� Words�are�chosen�independently,�conditioned�only�on�the�tag/state
� These�are�totally�broken�assumptions:�why?

s1 s2 sn

w1 w2 wn

s0

!   Generative mode with state sequence and emissions 
at every time step: 

 
!   Several strong independence assumptions! 

!   States = POS tag n-grams 
!   Next tag only depends on k previous tags 
!   Word generated only depends on current tag state 



States 

!   Markov order defines how many states in the history are 
being conditioned on, e.g., 1 = bigrams, 2 = trigrams  
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States
� States�encode�what�is�relevant�about�the�past
� Transitions�P(s|s’)�encode�wellͲformed�tag�sequences

� In�a�bigram�tagger,�states�=�tags

� In�a�trigram�tagger,�states�=�tag�pairs

<i,i>

s1 s2 sn

w1 w2 wn

s0

< i, t1> < t1, t2> < tn-1, tn>

<i>

s1 s2 sn

w1 w2 wn

s0

< t1> < t2> < tn>
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States
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Estimating Transitions 
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Estimating�Transitions

� Use�standard�smoothing�methods�to�estimate�transitions:

� Can�get�a�lot�fancier�(e.g.�KN�smoothing)�or�use�higher�orders,�but�in�this�
case�it�doesn’t�buy�much

� One�option:�encode�more�into�the�state,�e.g.�whether�the�previous�word�
was�capitalized�(Brants 00)

� BIG�IDEA:�The�basic�approach�of�stateͲsplitting�/�refinement�turns�out�to�
be�very�important�in�a�range�of�tasks

)(ˆ)1()|(ˆ),|(ˆ),|( 211121221 iiiiiiiii tPttPtttPtttP OOOO ���� �����

!   For higher order Markov chains, harder to estimate 
transition probabilities 

!   Therefore, can use standard language modeling style 
smoothing techniques like back-off or Kneser-Ney or 
Good-Turing 

!   More effective to have richer info encoded in the states 
themselves, i.e., state splitting/refinement 



Estimating Emissions 
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Estimating�Emissions

� Emissions�are�trickier:
� Words�we’ve�never�seen�before
� Words�which�occur�with�tags�we’ve�never�seen�them�with
� One�option:�break�out�the�fancy�smoothing�(e.g.�KN,�GoodͲTuring)
� Issue:�unknown�words�aren’t�black�boxes:

� Basic�solution:�unknown�words�classes�(affixes�or�shapes)

� Common�approach:�Estimate�P(t|w)�and�invert
� [Brants 00]�used�a�suffix�trie as�its�(inverted)�emission�model

343,127.23            11-year         Minteria         reintroducibly

D+,D+.D+ D+-x+ Xx+ x+-“ly”

!   Unknown and rare words (also unseen word-state pairs) 
big problem is estimating emission probabilities! 

!   Can use word shapes to get unknown word classes, e.g., 
45,698.00 ! D+, D+. D+ 

    30-year ! D+-x+ 

 
!   Another trick: estimate P(t|w) instead and then invert! 



Inference (Viterbi) 
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Disambiguation�(Inference)
� Problem:�find�the�most�likely�(Viterbi)�sequence�under�the�model

� Given�model�parameters,�we�can�score�any�tag�sequence

� In�principle,�we’re�done�– list�all�possible�tag�sequences,�score�each�one,�
pick�the�best�one�(the�Viterbi�state�sequence)�

Fed    raises     interest   rates      0.5      percent    .
NNP        VBZ               NN          NNS           CD             NN           .

P(NNP|<i,i>) P(Fed|NNP) P(VBZ|<NNP,i>) P(raises|VBZ) P(NN|VBZ,NNP) ..

NNP  VBZ   NN  NNS  CD  NN

NNP  NNS  NN  NNS  CD  NN

NNP  VBZ  VB   NNS  CD  NN

logP = -23

logP = -29

logP = -27

<i,i> <i,NNP> <NNP, VBZ> <VBZ, NN> <NN, NNS> <NNS, CD> <CD, NN> <STOP>

!   After estimating all transition and emission probabilities, 
next step is to infer or decode the most-probable 
sequence of states (e.g., POS tags) given the sequence 
of observations (e.g., words) 



Inference (Viterbi) 

!   Viterbi algo: Recursive dynamic program 
! vt(j) cell of trellis represents prob of HMM in state j after 

first t observations & passing through most-prob state 
sequence q0 q1 q2… qt-1 
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Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q0,q1,...,qt�1
. Like other dynamic programming al-

gorithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at time t�1, we compute the Viterbi probability
by taking the most probable of the extensions of the paths that lead to the current
cell. For a given state q j at time t, the value vt( j) is computed as

vt( j) =
N

max
i=1

vt�1(i) ai j b j(ot) (9.19)

The three factors that are multiplied in Eq. 9.19 for extending the previous paths
to compute the Viterbi probability at time t are

vt�1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1] a0,s ⇤ bs(o1)
backpointer[s,1] 0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t] N
max

s0=1
viterbi[s0, t�1] ⇤ as0,s ⇤ bs(ot)

backpointer[s,t] N
argmax

s0=1

viterbi[s0, t�1] ⇤ as0,s

viterbi[qF ,T ] N
max

s=1
viterbi[s,T ] ⇤ as,qF ; termination step

backpointer[qF ,T ] N
argmax

s=1

viterbi[s,T ] ⇤ as,qF ; termination step

return the backtrace path by following backpointers to states back in
time from backpointer[qF ,T ]

Figure 9.11 Viterbi algorithm for finding optimal sequence of hidden states. Given an
observation sequence and an HMM l = (A,B), the algorithm returns the state path through
the HMM that assigns maximum likelihood to the observation sequence. Note that states 0
and qF are non-emitting.

Figure 9.11 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is identical to the forward algorithm except that it takes the max over the
previous path probabilities whereas the forward algorithm takes the sum. Note also
that the Viterbi algorithm has one component that the forward algorithm doesn’t
have: backpointers. The reason is that while the forward algorithm needs to pro-
duce an observation likelihood, the Viterbi algorithm must produce a probability and
also the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. 9.12, and
then at the end backtracing the best path to the beginning (the Viterbi backtrace).Viterbi

backtrace
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[JurafskyMartin-SLP3]	



Inference (Viterbi) 
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[JurafskyMartin-SLP3]	



State Lattice Traversal 

h#ps://en.wikipedia.org/wiki/Viterbi_algorithm		

9.4 • DECODING: THE VITERBI ALGORITHM 11

We might propose to find the best sequence as follows: For each possible hid-
den state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm
and compute the likelihood of the observation sequence given that hidden state se-
quence. Then we could choose the hidden state sequence with the maximum obser-
vation likelihood. It should be clear from the previous section that we cannot do this
because there are an exponentially large number of state sequences.

Instead, the most common decoding algorithms for HMMs is the Viterbi algo-
rithm. Like the forward algorithm, Viterbi is a kind of dynamic programmingViterbi

algorithm
that makes uses of a dynamic programming trellis. Viterbi also strongly resembles
another dynamic programming variant, the minimum edit distance algorithm of
Chapter 3.

start
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v1(2)=.32

v1(1) = .02

v2(2)= max(.32*.12, .02*.08) = .038

v2(1) = max(.32*.15, .02*.25) = .048

start start start

t

C

H

end end endqF

q2

q1

q0

o1 o2 o3

3 1 3

Figure 9.10 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of vt( j) for two states at two time steps. The computation in each
cell follows Eq. 9.19: vt( j) = max1iN�1 vt�1(i) ai j b j(ot). The resulting probability expressed in each cell is
Eq. 9.18: vt( j) = P(q0,q1, . . . ,qt�1,o1,o2, . . . ,ot ,qt = j|l ).

Figure 9.10 shows an example of the Viterbi trellis for computing the best hid-
den state sequence for the observation sequence 3 1 3. The idea is to process the
observation sequence left to right, filling out the trellis. Each cell of the trellis, vt( j),
represents the probability that the HMM is in state j after seeing the first t obser-
vations and passing through the most probable state sequence q0,q1, ...,qt�1, given
the automaton l . The value of each cell vt( j) is computed by recursively taking the
most probable path that could lead us to this cell. Formally, each cell expresses the
probability

vt( j) = max
q0,q1,...,qt�1

P(q0,q1...qt�1,o1,o2 . . .ot ,qt = j|l ) (9.18)

[JurafskyMartin-SLP3]	



Forward-Backward EM Algo for HMM Training 

[JurafskyMartin-SLP3]	

9.5 • HMM TRAINING: THE FORWARD-BACKWARD ALGORITHM 15

1. Initialization:

bT (i) = aiF , 1  i  N (9.28)

2. Recursion (again since states 0 and qF are non-emitting):

bt(i) =
NX

j=1

ai j b j(ot+1) bt+1( j), 1  i  N,1  t < T (9.29)

3. Termination:

P(O|l ) = aT (qF) = b1(q0) =
NX

j=1

a0 j b j(o1) b1( j) (9.30)

Figure 9.13 illustrates the backward induction step.

ot+1
ot

ai1

ai2

aiN

ai3

b1(ot+1)

βt(i)= Σj βt+1(j) aij  bj(ot+1) 

q1

q2

q3

qN

q1

qi

q2

q1

q2

ot-1

q3

qN

βt+1(N)

βt+1(3)

βt+1(2)

βt+1(1)

b2(ot+1)
b3(ot+1)

bN(ot+1)

Figure 9.13 The computation of bt(i) by summing all the successive values bt+1( j)
weighted by their transition probabilities ai j and their observation probabilities b j(ot+1). Start
and end states not shown.

We are now ready to understand how the forward and backward probabilities can
help us compute the transition probability ai j and observation probability bi(ot) from
an observation sequence, even though the actual path taken through the machine is
hidden.

Let’s begin by seeing how to estimate âi j by a variant of Eq. 9.26:

âi j =
expected number of transitions from state i to state j

expected number of transitions from state i
(9.31)

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transition i! j was taken at a particular point
in time t in the observation sequence. If we knew this probability for each particular
time t, we could sum over all times t to estimate the total count for the transition
i ! j.

More formally, let’s define the probability xt as the probability of being in state
i at time t and state j at time t +1, given the observation sequence and of course the
model:

16 CHAPTER 9 • HIDDEN MARKOV MODELS

xt(i, j) = P(qt = i,qt+1 = j|O,l ) (9.32)

To compute xt , we first compute a probability which is similar to xt , but differs
in including the probability of the observation; note the different conditioning of O
from Eq. 9.32:

not-quite-xt(i, j) = P(qt = i,qt+1 = j,O|l ) (9.33)

ot+2ot+1

αt(i)

ot-1 ot

aijbj(ot+1) 

si sj

βt+1(j)

Figure 9.14 Computation of the joint probability of being in state i at time t and state j at
time t + 1. The figure shows the various probabilities that need to be combined to produce
P(qt = i,qt+1 = j,O|l ): the a and b probabilities, the transition probability ai j and the
observation probability b j(ot+1). After Rabiner (1989) which is c�1989 IEEE.

Figure 9.14 shows the various probabilities that go into computing not-quite-xt :
the transition probability for the arc in question, the a probability before the arc, the
b probability after the arc, and the observation probability for the symbol just after
the arc. These four are multiplied together to produce not-quite-xt as follows:

not-quite-xt(i, j) = at(i)ai jb j(ot+1)bt+1( j) (9.34)

To compute xt from not-quite-xt , we follow the laws of probability and divide
by P(O|l ), since

P(X |Y,Z) = P(X ,Y |Z)
P(Y |Z) (9.35)

The probability of the observation given the model is simply the forward proba-
bility of the whole utterance (or alternatively, the backward probability of the whole
utterance), which can thus be computed in a number of ways:

P(O|l ) = aT (qF) = bT (q0) =
NX

j=1

at( j)bt( j) (9.36)

So, the final equation for xt is

xt(i, j) =
at(i)ai jb j(ot+1)bt+1( j)

aT (qF)
(9.37)



Overview of Accuracies 
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Overview:�Accuracies
� Roadmap�of�(known�/�unknown)�accuracies:
� Most�freq tag:� ~90%�/�~50%

� Trigram�HMM:� ~95%�/�~55%

� TnT (HMM++):� 96.2%�/�86.0%

� Maxent P(t|w):� 93.7%�/�82.6%
� MEMM�tagger:� 96.9%�/�86.9%
� StateͲofͲtheͲart:� 97+%�/�89+%
� Upper�bound:� ~98%

Most errors 
on unknown 

words

!   Known/Unknown POS-tag accuracy history: 



Better Discriminative Features? 

!   Need richer features (both inside the word and around it)! 

!   Word-based feature examples: 
!   Suffixes (e.g., -ly, -ing, -ed) 
!   Prefixes (e.g., un-, im-, dis-) 
!   Capital vs lower-cased 

!   Just a simple maxent tag-given-word P(t|w) feature-based 
model itself gets 93.7%/82.6% known/unknown POS-
tagging accuracy! 



Better Discriminative Features? 
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Why�Linear�Context�is�Useful
� Lots�of�rich�local�information!

� We�could�fix�this�with�a�feature�that�looked�at�the�next�word

� We�could�fix�this�by�linking�capitalized�words�to�their�lowercase�versions

� Solution:�discriminative�sequence�models�(MEMMs,�CRFs)

� Reality�check:
� Taggers�are�already�pretty�good�on�WSJ�journal�text…
� What�the�world�needs�is�taggers�that�work�on�other�text!
� Though:�other�tasks�like�IE�have�used�the�same�methods�to�good�effect

PRP  VBD   IN RB  IN  PRP    VBD   .
They  left     as soon as   he    arrived .

NNP NNS    VBD          VBN        .
Intrinsic flaws remained undetected  .

RB

JJ

!   Similarly, we also need linear context features, e.g., 
words to the right of the currently-predicted tag 

!   Solution: Discriminative sequence models such as 
CRFs and MEMMs that can incorporate such full-
sentence features! 



MaxEnt Markov Model (MEMM) Tagger 

!   Sequence model adaptation of MaxEnt (multinomial 
logistic regression) classifier 

!   MEMM = discriminative, HMM = generative 

!   Left-to-right local decisions, but can condition of both 
previous tags as well as entire input 

[Ratnaparkhi, 1996]	
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MEMM�Taggers
� Idea:�leftͲtoͲright�local�decisions,�condition�on�previous�tags�

and�also�entire�input

� Train�up�P(ti|w,tiͲ1,tiͲ2)�as�a�normal�maxent�model,�then�use�to�score�
sequences

� This�is�referred�to�as�an�MEMM�tagger�[Ratnaparkhi�96]
� Beam�search�effective!��(Why?)
� What�about�beam�size�1?



MaxEnt Markov Model (MEMM) Tagger 

!   Difference between HMM and MEMM: 
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They use back-off to smooth these probabilities with successively shorter and
shorter suffixes. To capture the fact that unknown words are unlikely to be closed-
class words like prepositions, we can compute suffix probabilities only from the
training set for words whose frequency in the training set is  10, or alternately can
train suffix probabilities only on open-class words. Separate suffix tries are kept for
capitalized and uncapitalized words.

Finally, because Eq. 10.25 gives a posterior estimate p(ti|wi), we can compute
the likelihood p(wi|ti) that HMMs require by using Bayesian inversion (i.e., using
Bayes rule and computation of the two priors P(ti) and P(ti|ln�i+1 . . . ln)).

In addition to using capitalization information for unknown words, Brants (2000)
also uses capitalization for known words by adding a capitalization feature to each
tag. Thus, instead of computing P(ti|ti�1, ti�2) as in Eq. 10.21, the algorithm com-
putes the probability P(ti,ci|ti�1,ci�1, ti�2,ci�2). This is equivalent to having a cap-
italized and uncapitalized version of each tag, essentially doubling the size of the
tagset.

Combining all these features, a state-of-the-art trigram HMM like that of Brants
(2000) has a tagging accuracy of 96.7% on the Penn Treebank.

10.5 Maximum Entropy Markov Models

We turn now to a second sequence model, the maximum entropy Markov model
or MEMM. The MEMM is a sequence model adaptation of the MaxEnt (multino-MEMM
mial logistic regression) classifier. Because it is based on logistic regression, the
MEMM is a discriminative sequence model. By contrast, the HMM is a genera-discriminative
tive sequence model.generative

Let the sequence of words be W = wn
1 and the sequence of tags T = tn

1 . In an
HMM to compute the best tag sequence that maximizes P(T |W ) we rely on Bayes’
rule and the likelihood P(W |T ):

T̂ = argmax
T

P(T |W )

= argmax
T

P(W |T )P(T )

= argmax
T

Y

i

P(wordi|tagi)
Y

i

P(tagi|tagi�1) (10.26)

In an MEMM, by contrast, we compute the posterior P(T |W ) directly, training
it to discriminate among the possible tag sequences:

T̂ = argmax
T

P(T |W )

= argmax
T

Y

i

P(ti|wi, ti�1) (10.27)

We could do this by training a logistic regression classifier to compute the single
probability P(ti|wi, ti�1). Fig. 10.11 shows the intuition of the difference via the
direction of the arrows; HMMs compute likelihood (observation word conditioned
on tags) but MEMMs compute posterior (tags conditioned on observation words).

16 CHAPTER 10 • PART-OF-SPEECH TAGGING

They use back-off to smooth these probabilities with successively shorter and
shorter suffixes. To capture the fact that unknown words are unlikely to be closed-
class words like prepositions, we can compute suffix probabilities only from the
training set for words whose frequency in the training set is  10, or alternately can
train suffix probabilities only on open-class words. Separate suffix tries are kept for
capitalized and uncapitalized words.

Finally, because Eq. 10.25 gives a posterior estimate p(ti|wi), we can compute
the likelihood p(wi|ti) that HMMs require by using Bayesian inversion (i.e., using
Bayes rule and computation of the two priors P(ti) and P(ti|ln�i+1 . . . ln)).

In addition to using capitalization information for unknown words, Brants (2000)
also uses capitalization for known words by adding a capitalization feature to each
tag. Thus, instead of computing P(ti|ti�1, ti�2) as in Eq. 10.21, the algorithm com-
putes the probability P(ti,ci|ti�1,ci�1, ti�2,ci�2). This is equivalent to having a cap-
italized and uncapitalized version of each tag, essentially doubling the size of the
tagset.

Combining all these features, a state-of-the-art trigram HMM like that of Brants
(2000) has a tagging accuracy of 96.7% on the Penn Treebank.

10.5 Maximum Entropy Markov Models

We turn now to a second sequence model, the maximum entropy Markov model
or MEMM. The MEMM is a sequence model adaptation of the MaxEnt (multino-MEMM
mial logistic regression) classifier. Because it is based on logistic regression, the
MEMM is a discriminative sequence model. By contrast, the HMM is a genera-discriminative
tive sequence model.generative

Let the sequence of words be W = wn
1 and the sequence of tags T = tn

1 . In an
HMM to compute the best tag sequence that maximizes P(T |W ) we rely on Bayes’
rule and the likelihood P(W |T ):

T̂ = argmax
T

P(T |W )

= argmax
T

P(W |T )P(T )

= argmax
T

Y

i

P(wordi|tagi)
Y

i

P(tagi|tagi�1) (10.26)

In an MEMM, by contrast, we compute the posterior P(T |W ) directly, training
it to discriminate among the possible tag sequences:

T̂ = argmax
T

P(T |W )

= argmax
T

Y

i

P(ti|wi, ti�1) (10.27)

We could do this by training a logistic regression classifier to compute the single
probability P(ti|wi, ti�1). Fig. 10.11 shows the intuition of the difference via the
direction of the arrows; HMMs compute likelihood (observation word conditioned
on tags) but MEMMs compute posterior (tags conditioned on observation words).

10.5 • MAXIMUM ENTROPY MARKOV MODELS 17

will

MD VB DT NN

Janet back the bill

NNP

will

MD VB DT NN

Janet back the bill

NNP

Figure 10.11 A schematic view of the HMM (top) and MEMM (bottom) representation of
the probability computation for the correct sequence of tags for the back sentence. The HMM
computes the likelihood of the observation given the hidden state, while the MEMM computes
the posterior of each state, conditioned on the previous state and current observation.

10.5.1 Features in a MEMM
Oops. We lied in Eq. 10.27. We actually don’t build MEMMs that condition just on
wi and ti�1. In fact, an MEMM conditioned on just these two features (the observed
word and the previous tag), as shown in Fig. 10.11 and Eq. 10.27 is no more accurate
than the generative HMM model and in fact may be less accurate.

The reason to use a discriminative sequence model is that discriminative models
make it easier to incorporate a much wider variety of features. Because in HMMs
all computation is based on the two probabilities P(tag|tag) and P(word|tag), if we
want to include some source of knowledge into the tagging process, we must find
a way to encode the knowledge into one of these two probabilities. We saw in the
previous section that it was possible to model capitalization or word endings by
cleverly fitting in probabilities like P(capitalization|tag), P(suffix|tag), and so on
into an HMM-style model. But each time we add a feature we have to do a lot of
complicated conditioning which gets harder and harder as we have more and more
such features and, as we’ll see, there are lots more features we can add. Figure 10.12
shows a graphical intuition of some of these additional features.

will

MD VB

Janet back the bill

NNP

<s>

wi wi+1wi-1

ti-1ti-2

wi-1

Figure 10.12 An MEMM for part-of-speech tagging showing the ability to condition on
more features.

A basic MEMM part-of-speech tagger conditions on the observation word it-
self, neighboring words, and previous tags, and various combinations, using feature
templates like the following:templates

hti,wi�2i,hti,wi�1i,hti,wii,hti,wi+1i,hti,wi+2i
hti, ti�1i,hti, ti�2, ti�1i,

hti, ti�1,wii,hti,wi�1,wiihti,wi,wi+1i, (10.28)
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HMM 	 MEMM 	

[JurafskyMartin-SLP3]	



MEMM Features 

!   MEMM can condition on several richer features, e.g., 
from words in entire input sentence 

!   Word shapes, tag-word n-gram templates, etc. 

[JurafskyMartin-SLP3]	
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Perceptron Tagger 
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Perceptron�Taggers
� Linear�models:

� …�that�decompose�along�the�sequence

� …�allow�us�to�predict�with�the�Viterbi�algorithm

� …�which�means�we�can�train�with�the�perceptron�algorithm�
(or�related�updates,�like�MIRA)

[Collins 01]
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� …�allow�us�to�predict�with�the�Viterbi�algorithm

� …�which�means�we�can�train�with�the�perceptron�algorithm�
(or�related�updates,�like�MIRA)

[Collins 01]

!   For log-linear models, score of tags-given-words has 
the formulation of: 

!   This can be decomposed into sum of features: 

!   Hence, we can use perceptron or MIRA style algorithms 
to train these models and learn the feature weights! 



Perceptron Training Algorithm 
[Collins 2001]	



Conditional Random Field (CRF) Tagger 
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Conditional�Random�Fields
� Make�a�maxent�model�over�entire�taggings

� MEMM

� CRF



CRF Training 

28

CRFs
� Like�any�maxent model,�derivative�is:

� So�all�we�need�is�to�be�able�to�compute�the�expectation�of�each�feature�
(for�example�the�number�of�times�the�label�pair�DTͲNN�occurs,�or�the�
number�of�times�NNͲinterest�occurs)�under�the�model�distribution

� Critical�quantity:�counts�of�posterior�marginals:��
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CRFs
� Like�any�maxent model,�derivative�is:

� So�all�we�need�is�to�be�able�to�compute�the�expectation�of�each�feature�
(for�example�the�number�of�times�the�label�pair�DTͲNN�occurs,�or�the�
number�of�times�NNͲinterest�occurs)�under�the�model�distribution

� Critical�quantity:�counts�of�posterior�marginals:��

!   Derivatives needed have the form of “feature counts 
minus expected feature counts”: 

!   These expected feature counts (under model 
distribution) in turn need posterior marginals: 



Posterior Marginals 

29

Computing�Posterior�Marginals

� How�many�(expected)�times�is�word�w�tagged�with�s?

� How�to�compute�that�marginal?
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START       Fed           raises       interest         rates         END

!   And these posterior marginals in turn need the state 
trellis traversal similar to forward-backward discussed 
for HMM training: 



POS Tagging: Other Models 

!   Universal POS tagset for multilingual and cross-lingual 
tagging and parsing [Petrov et al., 2012] 

 12 tags: NOUN, VERB, ADJ, ADV, PRON, DET, ADP, NUM, CONJ, PRT, ., X 
 
 
 
!   Unsupervised tagging also works reasonably well! 

[Yarowsky et al., 2001; Xi and Hwa, 2005; Berg-Kirkpatrick et al., 2010; 
Christodoulopoulos et al., 2010; Das and Petrov, 2011] 



RNN-based POS-Tagger 

!   Context captured by bidirectional LSTM; softmax on tag labels 

[Ling et al., 2015 (and others)] 

increased John Noahshire phding
reduced Richard Nottinghamshire mixing

improved George Bucharest modelling
expected James Saxony styling
decreased Robert Johannesburg blaming
targeted Edward Gloucestershire christening

Table 2: Most-similar in-vocabular words under
the C2W model; the two query words on the left
are in the training vocabulary, those on the right
are nonce (invented) words.

in-vocabulary words and two nonce words1.This
makes our model generalize significantly better
than lookup tables that generally use unknown to-
kens for OOV words. Furthermore, this ability to
generalize is much more similar to that of human
beings, who are able to infer meanings for new
words based on its form.

5 Experiments: Part-of-speech Tagging

As a second illustration of the utility of our model,
we turn to POS tagging. As morphology is a
strong indicator for syntax in many languages,
a much effort has been spent engineering fea-
tures (Nakagawa et al., 2001; Mueller et al., 2013).
We now show that some of these features can be
learnt automatically using our model.

5.1 Bi-LSTM Tagging Model

Our tagging model is likewise novel, but very
straightforward. It builds a Bi-LSTM over words
as illustrated in Figure 3. The input of the model
is a sequence of features f(w1), . . . , f(wn
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Figure 3: Illustration of our neural network for
POS tagging.

5.2 Experiments

Datasets For English, we conduct experiments
on the Wall Street Journal of the Penn Treebank
dataset (Marcus et al., 1993), using the standard
splits (sections 1–18 for train, 19–21 for tuning
and 22–24 for testing). We also perform tests on
4 other languages, which we obtained from the
CoNLL shared tasks (Martı́ et al., 2007; Brants
et al., 2002; Afonso et al., 2002; Atalay et al.,
2003). While the PTB dataset provides standard
train, tuning and test splits, there are no tuning sets
in the datasets in other languages, so we withdraw
the last 100 sentences from the training dataset and
use them for tuning.

Setup The POS model requires two sets of hy-
perparameters. Firstly, words must be converted
into continuous representations and the same hy-
perparametrization as in language modeling (Sec-
tion 4) is used. Secondly, words representations
are combined to encode context. Our POS tagger
has three hyperparameters df

WS

, db
WS

and d
WS

,
which correspond to the sizes of LSTM states, and
are all set to 50. As for the learning algorithm,
use the same setup (learning rate, momentum and



Char-RNN-based POS-Tagger 

!   Use character-based RNNs to compose word embeddings (to learn 
function) 

[Ling et al., 2015 (and others)] 
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Char-RNN-based POS-Tagger 

!   Use character-based RNNs to compose word embeddings (to learn 
function) 

[Ling et al., 2015 (and others)] 

forms and their meanings is non-trivial (de Saus-
sure, 1916). While some compositional relation-
ships exist, e.g., morphological processes such as
adding -ing or -ly to a stem have relatively reg-
ular effects, many words with lexical similarities
convey different meanings, such as, the word pairs
lesson () lessen and coarse () course.

3 C2W Model

Our compositional character to word (C2W)
model is based on bidirectional LSTMs (Graves
and Schmidhuber, 2005), which are able to
learn complex non-local dependencies in sequence
models. An illustration is shown in Figure 1. The
input of the C2W model (illustrated on bottom) is
a single word type w, and we wish to obtain is
a d-dimensional vector used to represent w. This
model shares the same input and output of a word
lookup table (illustrated on top), allowing it to eas-
ily replace then in any network.

As input, we define an alphabet of characters
C. For English, this vocabulary would contain an
entry for each uppercase and lowercase letter as
well as numbers and punctuation. The input word
w is decomposed into a sequence of characters
c1, . . . , cm, where m is the length of w. Each c

i

is defined as a one hot vector 1
ci , with one on the

index of c
i

in vocabulary M . We define a projec-
tion layer P

C

2 RdC⇥|C|, where d
C

is the number
of parameters for each character in the character
set C. This of course just a character lookup table,
and is used to capture similarities between charac-
ters in a language (e.g., vowels vs. consonants).
Thus, we write the projection of each input char-
acter c

i

as e
ci = P

C

· 1
ci .

Given the input vectors x1, . . . ,xm

, a LSTM
computes the state sequence h1, . . . ,hm+1 by it-
eratively applying the following updates:
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where � is the component-wise logistic sig-
moid function, and � is the component-wise
(Hadamard) product. LSTMs define an extra cell
memory c

t

, which is combined linearly at each
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Figure 1: Illustration of the word lookup tables
(top) and the lexical Composition Model (bottom).
Square boxes represent vectors of neuron activa-
tions. Shaded boxes indicate that a non-linearity.
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,
while the backward LSTM receives as input the re-
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, . . . , sb0. Both
LSTMs use a different set of parameters Wf and
Wb. The representation of the word w is obtained
by combining the forward and backward states:
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Other Sequence Labeling Tasks 

!   Named Entity Recognition 

!   Spelling Correction 

!   Word Alignment 

!   Noun Phrase Chunking 

!   Supersense Tagging 

!   Multiword Expressions 



Named Entity Recognition 

!   Label proper nouns as person, location, organization, other 

!   Also prefers rich contextual features 

!   CRF models perform strongly for this 

! Neural+CRF versions even stronger ! 

[Bikel et al., 1999] 
22

FeatureͲRich�Sequence�Models

� Problem:�HMMs�make�it�hard�to�work�with�arbitrary�features�
of�a�sentence

� Example:�name�entity�recognition�(NER)

Prev Cur Next
State Other ??? ???
Word at Grace Road
Tag IN NNP NNP
Sig x Xx Xx

Local Context

Tim Boon has signed a contract extension with Leicestershire which will keep him at Grace Road .

PER PER O        O O O O O ORG       O      O O O O LOC  LOC O

[Lample et al., 2016] 

where A is a matrix of transition scores such that
A

i,j

represents the score of a transition from the
tag i to tag j. y0 and y

n

are the start and end
tags of a sentence, that we add to the set of possi-
ble tags. A is therefore a square matrix of size k+2.

A softmax over all possible tag sequences yields a
probability for the sequence y:

p(y|X) =

es(X,y)

P
ey2YX

es(X,

ey) .

During training, we maximize the log-probability of
the correct tag sequence:

log(p(y|X)) = s(X,y)� log

0

@
X

ey2YX

es(X,

ey)

1

A

= s(X,y)� logadd

ey2YX

s(X, ey), (1)

where YX represents all possible tag sequences
(even those that do not verify the IOB format) for
a sentence X. From the formulation above, it is ev-
ident that we encourage our network to produce a
valid sequence of output labels. While decoding, we
predict the output sequence that obtains the maxi-
mum score given by:

y

⇤
= argmax

ey2YX

s(X, ey). (2)

Since we are only modeling bigram interactions
between outputs, both the summation in Eq. 1 and
the maximum a posteriori sequence y

⇤ in Eq. 2 can
be computed using dynamic programming.

2.3 Parameterization and Training
The scores associated with each tagging decision
for each token (i.e., the P

i,y

’s) are defined to be
the dot product between the embedding of a word-
in-context computed with a bidirectional LSTM—
exactly the same as the POS tagging model of Ling
et al. (2015b) and these are combined with bigram
compatibility scores (i.e., the A

y,y

0’s). This archi-
tecture is shown in figure 1. Circles represent ob-
served variables, diamonds are deterministic func-
tions of their parents, and double circles are random
variables.

Figure 1: Main architecture of the network. Word embeddings
are given to a bidirectional LSTM. li represents the word i and
its left context, ri represents the word i and its right context.
Concatenating these two vectors yields a representation of the
word i in its context, ci.

The parameters of this model are thus the matrix
of bigram compatibility scores A, and the parame-
ters that give rise to the matrix P, namely the param-
eters of the bidirectional LSTM, the linear feature
weights, and the word embeddings. As in part 2.2,
let x

i

denote the sequence of word embeddings for
every word in a sentence, and y

i

be their associated
tags. We return to a discussion of how the embed-
dings x

i

are modeled in Section 4. The sequence of
word embeddings is given as input to a bidirectional
LSTM, which returns a representation of the left and
right context for each word as explained in 2.1.

These representations are concatenated (c
i

) and
linearly projected onto a layer whose size is equal
to the number of distinct tags. Instead of using the
softmax output from this layer, we use a CRF as pre-
viously described to take into account neighboring
tags, yielding the final predictions for every word
y
i

. Additionally, we observed that adding a hidden
layer between c

i

and the CRF layer marginally im-
proved our results. All results reported with this
model incorporate this extra-layer. The parameters
are trained to maximize Eq. 1 of observed sequences
of NER tags in an annotated corpus, given the ob-
served words.



Fine-Grained NER 

[Gillick et al., 2014] 

PERSON

artist
actor
author
director
music

education
student
teacher

athlete
business
coach
doctor
legal
military
political figure
religious leader
title

LOCATION

structure
airport
government
hospital
hotel
restaurant
sports facility
theatre

geography
body of water
island
mountain

transit
bridge
railway
road

celestial
city
country
park

ORGANIZATION

company
broadcast
news

education
government
military
music
political party
sports league
sports team
stock exchange
transit

OTHER

art
broadcast
film
music
stage
writing

event
accident
election
holiday
natural disaster
protest
sports event
violent conflict

health
malady
treatment

award
body part
currency

language
programming

language

living thing
animal

product
camera
car
computer
mobile phone
software
weapon

food
heritage
internet
legal
religion
scientific
sports & leisure
supernatural

Figure 1: Our type taxonomy includes types at three levels, e.g. PERSON (level 1), artist (level 2),
actor (level 3). Each assigned type (such as artist) also implies the more general ancestor types (such as
PERSON). The top level types were chosen to align with the most common type set used in traditional
entity tagging systems.

labels at level 1 (e.g. person), but are 10 times
as common as labels at level 3. The main reason
for this is that we allow labels to be partial paths
in the hierarchy tree (i.e. root to internal node,
as opposed to root to leaf), and some of the level
3 labels rarely occur in the training data. Further-
more, many of the level 2 types have no sub-types;
for example person/athlete does not have separate
sub-categories for swimmers and runners.

We built an interactive web interface for anno-
tators to quickly apply types to mentions (includ-
ing named, nominal, and pronominal mentions);
on average, this task took about 10 minutes per
document. Six annotators independently labeled
each document and we kept the labels with support
from at least two of the annotators (about 1 of ev-
ery 4 labels was pruned as a result). It is worth dis-
tinguishing between two kinds of label disagree-
ments. Specificity disagreements arise from dif-
fering interpretations of the appropriate depth for
a label, like person/artist vs. person/artist/actor.
More problematic are type disagreements arising
from differing interpretations of a mention in con-
text or of the type definitions.

Applying the agreement pruning reduces the to-
tal number of pairwise disagreements from 3900
to 1303 (specificity) and 3700 to 774 (type). The
most common remaining disagreements are shown

in Table 2. Some of these could probably be elim-
inated by extra documentation. For example, in
the sentence “Olivetti has denied that it violated
Cocom rules”, the mention “rules” is labeled as
both other and other/legal. While it is clear from
context that this is indeed a legal issue, the ex-
amples provided in the annotation guidelines are
more specific to laws and courts (“5th Amend-
ment”, “Treaty of Versailles”, “Roe v. Wade”).
In other cases, the assignment of multiple types
may well be correct: “Syrians” in “...whose lob-
bies and hallways were decorated with murals of
ancient Syrians...” is labeled with both person and
other/heritage.

We assessed the difficulty of the annotation task
using average annotator precision, recall and F1
relative to the consensus (pruned) types, shown in
Table 3. As expected, there is less agreement over
types that are deeper in the hierarchy, but the high
precision (92% at depth 2 and 89% at depth 3) re-
assures us that the context-dependent annotation
task is reasonably well defined.

Finally, we compared the manual annotations to
the labels obtained automatically from Freebase
for the resolved entities in our data. The over-
all recall was fairly high (80%), which is unsur-
prising since Freebase-mapped types are typically
a superset of the context-specific type. However,



Fine-Grained NER 

[Ling and Weld, 2012] 

which identifies references to entities in natural language
text and labels them with appropriate tags.

• We compare FIGER with two state-of-the-art baselines,
showing that 1) FIGER has excellent overall accuracy
and dominates other approaches for uncommon entities,
and 2) when used as features, our fine-grained tags can
significantly improve the performance of relation extrac-
tion by 93% in F1.

• We make the implementation of FIGER and its data
available as open source for researchers to use and ex-
tend1.

In the next section we present the design of our system, in-
cluding tag set curation, generation of heuristically-labeled
data and the learning algorithms. We then present our ex-
perimental results, discuss related work and conclude with a
discussion of future directions.

2 Fine-Grained Entity Recognition
Before describing the whole system, we state the problem
at hand. Our task is to uncover the type information of
the entity mentions from natural language sentences. For-
mally speaking, we need to identify the entity mentions
{m1, . . . ,mk}, such that each mi is a subsequence of s,as
well as associate the correct entity types, ti with each mi.

2.1 Overview
Figure 1 is the overview diagram of our system, FIGER. We
divide the whole process into a pipeline. Given a sentence in
plain text as input, we first segment the sentence and find
the candidates for tagging. Second, we apply a classifier
to the identified segments and output their tags. Traditional
NER systems (Finkel, Grenager, and Manning 2005) use a
sequence model for the whole task, usually a linear-chain
Conditional Random Field (CRF) (Lafferty, McCallum, and
Pereira 2001). In a sequence model, each token has a cor-
responding hidden variable indicating its type label. Con-
secutive tokens with the same type label are treated as one
mention with its type. Here the state space of the hidden
variables is linear to the size of the type set. However, if one
segment is allowed to have multiple labels, the state space
will grow exponentially. In practice, this is computationally
infeasible when the tag set grows to more than a hundred
tags. The pipeline approach avoids this problem and empir-
ically it works reasonably well (Collins and Singer 1999;
Elsner, Charniak, and Johnson 2009; Ritter et al. 2011). The
models for segmentation and tagging are trained offline.

2.2 Fine-Grained Tag Set
The first step in entity tagging is defining the set of types.
While there have been a few efforts at creating a comprehen-
sive tag set (Sekine 2008), no consensus has been reached
by the research community. On the other hand, a collabra-
tive knowledge base, such as Freebase, provides thousands
of types that are used to annotate each entry/entity in the

1http://ai.cs.washington.edu/pubs/310

Figure 2: 112 tags used in FIGER. The bold-faced tag is a
rough summary of each box. The box at the bottom right
corner contains mixed tags that are hard to be categorized.

website2. Compared to the type set in (Sekine 2008), the
advantages of Freebase types are 1) broader coverage of en-
tities in the world and 2) allowance of an entity bearing mul-
tiple overlapping types. For instance, Clint Eastwood could
be annotated as both actor and director.

While Freebase tags are comprehensive, they are
also noisy (often created by non-expert users). As a
result, we need to filter irrelevant types to reduce the
data noise. We only keep well-maintained types (the
ones with curated names, e.g. /location/city)
with more than 5 ground instances in Freebase. We
further refine the types by manually merging too spe-
cific types, e.g. /olympics/olympic games and
/soccer/football world cup are merged into
Sports Event. In the end, 112 types remain for use as our
tag set, denoted as T (shown in Figure 2).

2.3 Automatically Labeling Data
To effectively learn the tagger, we need a massive amount
of labeled data. For this newly defined tag set, there does
not exist such a set of labeled data. Previous researchers
have hand-labeled each mention in a corpus with the entity
types under consideration, but this process is so expensive
that only a small training corpus is practical. Instead, we use
distant supervision, which is fully automatic and hence scal-
able (Lengauer et al. 1999). Specifically, we utilize the in-
formation encoded in anchor links from Wikipedia text3 in
a manner similar to that of Nothman et al. (2008). For each
linked segment m in a sentence, we found the corresponding
Wikipedia entry em via its anchor link, got its types from

2Wikipedia.com also annotates each article with a set of cate-
gories; however, the catogories are too noisy to be effectively used
without further processing (Nastase et al. 2010).

3We use the Wikipedia dump as of 20110513.



Coreference Resolution 



Coreference Resolution 

!   Mentions to entity/event clusters 

!   Demos: h#p://nlp.stanford.edu:8080/corenlp/process 

President Barack Obama received the Serve America 
Act after congress’ vote. He signed the bill last 
Thursday. The president said it would greatly increase 
service opportunities for the American people. 



President Barack Obama   received   the   Serve America Act    after   congress’     vote .   He    signed   the bill   …  

Mention-pair Models 

ma3

(a1, m)	 Pair-wise 
classifier 

coref(a1, m)Features	f	

[Soon et al. 2001, Ng and Cardie 2002; Bengtson and Roth, 2008; Stoyanov et al., 2010] 

wTf	

a2 a1

A(m)

Pair-wise classification approach:	



Mention-pair Model 

For each mention m, 

m

[Soon et al. 2001, Ng and Cardie 2002; Bengtson and Roth, 2008; Stoyanov et al., 2010] 



Standard features 

Type Feature Description 
LEXICAL SOON_STR Do the strings match after removing determiners ? 

GRAMMATICAL 

NUMBER Do NPi and NPj agree in number ? 

GENDER Do NPi and NPj agree in gender ? 

APPOSITIVE Are the NPs in an appositive relationship ? 

SEMANTIC 
WORDNET_CLASS Do NPi and NPj have the same WordNet class ? 

ALIAS Is one NP an alias of the other ? 
POSITIONAL SENTNUM Distance between the NPs in terms of # of sentences 

NPi NPj 

!   Weaknesses: All pairs, Transitivity/Independence errors 
(He – Obama – She), Insufficient information 

[Soon et al. 2001, Ng and Cardie 2002; Bengtson and Roth, 2008; Stoyanov et al., 2010] 



Entity-centric Models 

!   Each coreference decision is globally informed by 
previously clustered mentions and their shared attributes 

Lee et al. Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules

Figure 1
The architecture of our coreference system.

Crucially, our approach is entity-centric—that is, our architecture allows each coref-
erence decision to be globally informed by the previously clustered mentions and their
shared attributes. In particular, each deterministic rule is run on the entire discourse,
using and extending clusters (i.e., groups of mentions pointing to the same real-world
entity, built by models in previous tiers). Thus, for example, in deciding whether two
mentions i and j should corefer, our system can consider not just the local features of
i and j but also any information (head word, named entity type, gender, or number)
about the other mentions already linked to i and j in previous steps.

Finally, the architecture is highly modular, which means that additional coreference
resolution models can be easily integrated.

The two stage architecture offers a powerful way to balance both high recall and
precision in the system and make use of entity-level information with rule-based
architecture. The mention detection stage heavily favors recall, and the following sieves
favor precision. Our results here and in our earlier papers (Raghunathan et al. 2010;
Lee et al. 2011) show that this design leads to state-of-the-art performance despite the
simplicity of the individual components, and that the lack of language-specific lexical
features makes the system easy to port to other languages. The intuition is not new; in
addition to the prior coreference work mentioned earlier and discussed in Section 6, we
draw on classic ideas that have proved to be important again and again in the history of
natural language processing. The idea of beginning with the most accurate models or
starting with smaller subproblems that allow for high-precision solutions combines the
intuitions of “shaping” or “successive approximations” first proposed for learning by
Skinner (1938), and widely used in NLP (e.g., the successively trained IBM MT models
of Brown et al. [1993]) and the “islands of reliability” approaches to parsing and speech
recognition [Borghesi and Favareto 1982; Corazza et al. 1991]). The idea of beginning
with a high-recall list of candidates that are followed by a series of high-precision filters
dates back to one of the earliest architectures in natural language processing, the part of
speech tagging algorithm of the Computational Grammar Coder (Klein and Simmons

887

[Haghighi and Klein, 2009; Lee et al., 2013; Durrett et al., 2013] 

!   Lee et al., 2013’s 
deterministic (rule-based) 
system: multiple, cautious 
sieves from high to low 
precision 

 
! Durrett et al., 2013’s 

entity-level model is 
discriminative, 
probabilistic using factor 
graphs and BP 



Mention-Ranking Models (Learned) 

!   Log-linear model to select at most 1 antecedent for each mention 
or determine that it begins a new cluster 

!   Recent work (Wiseman et al., 2016, Clark & Manning, 2016) has used NNs for 
non-linear and vector-space coreference features to achieve SoA! 

[Denis and Baldridge, 2008; Durrett and Klein, 2013] 

1
2

New
1

New

Men9on\Ranking%Architecture

[Voters]1%agree%when%[they]1%are%given%[a%chance]2%to%decide%if%[they]1%...%

1
2

New New

3

Denis%and%Baldridge%(2008),%Durre4%et%al.%(2013)

[1STWORD=a]
[LENGTH=2]

...

[Voters;they]
[NOM\PRONOUN]

...

A1 A2 A3 A4

Pr(Ai = a|x) / exp(w

>
f(i, a, x))



Adding Knowledge to Coref 

!   External corpora: Web, Wikipedia, YAGO, FrameNet, Gender/
Number/Person lists/classifiers, 3D Images, Videos 

!   Methods:  
!   Self-training, Bootstrapping 

!   Co-occurrence, Distributional, and Pattern-based Features 
!   Entity Linking 

!   Visual Cues from 3D Images and Videos 
 
! Daumé III and Marcu, 2005; Markert and Nissim, 2005; Bergsma and Lin, 

2006; Ponzetto and Strube, 2006; Haghighi and Klein, 2009; Kobdani et 
al., 2011; Rahman and Ng, 2011; Bansal and Klein, 2012; Durrett and 
Klein, 2014; Kong et al., 2014; Ramanathan et al., 2014 



Web Features for Coreference 

When Obama met Jobs , the president discussed the …	

count(Obama * president)    vs   count(Jobs * president)	

[Bansal and Klein, 2012] 



Web Features for Coreference 

[Bansal and Klein, 2012] 

When Obama met Jobs , the … He signed bills that …	

count(Obama signed bills)   vs   count(Jobs signed bills)	

Results 
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Setup: Standard train/dev/test splits on ACE 2004, 2005 

[Bansal and Klein, ACL 2012] 
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Visual Cues for Coreference 

[Kong, Lin, Bansal, Urtasun, and Fidler, 2014] 

What are you talking about? Text-to-Image Coreference

Chen Kong1 Dahua Lin3 Mohit Bansal3 Raquel Urtasun2,3 Sanja Fidler2,3
1Tsinghua University, 2University of Toronto, 3TTI Chicago

kc10@mails.tsinghua.edu.cn, {dhlin,mbansal}@ttic.edu,{fidler,urtasun}@cs.toronto.edu

Abstract
In this paper we exploit natural sentential descriptions

of RGB-D scenes in order to improve 3D semantic parsing.
Importantly, in doing so, we reason about which particular
object each noun/pronoun is referring to in the image. This
allows us to utilize visual information in order to disam-
biguate the so-called coreference resolution problem that
arises in text. Towards this goal, we propose a structure
prediction model that exploits potentials computed from text
and RGB-D imagery to reason about the class of the 3D ob-
jects, the scene type, as well as to align the nouns/pronouns
with the referred visual objects. We demonstrate the effec-
tiveness of our approach on the challenging NYU-RGBD v2
dataset, which we enrich with natural lingual descriptions.
We show that our approach significantly improves 3D de-
tection and scene classification accuracy, and is able to re-
liably estimate the text-to-image alignment. Furthermore,
by using textual and visual information, we are also able to
successfully deal with coreference in text, improving upon
the state-of-the-art Stanford coreference system [15].

1. Introduction
Imagine a scenario where you wake up late on a Satur-

day morning and all you want is for your personal robot to
bring you a shot of bloody mary. You could say “It is in the
upper cabinet in the kitchen just above the stove. I think it is
hidden behind the box of cookies, which, please, bring to me
as well.” For a human, finding the mentioned items based
on this information should be an easy task. The description
tells us that there are at least two cabinets in the kitchen, one
in the upper part. There is also a stove and above it is a cab-
inet holding a box and the desired item should be behind it.
For autonomous systems, sentential descriptions can serve
as rich source of information. Text can help us parse the
visual scene in a more informed way, and can facilitate for
example new ways of active labeling and learning.

Understanding descriptions and linking them to visual
content is fundamental to enable applications such as se-
mantic visual search and human-robot interaction. Using
language to provide annotations and guide an automatic

Figure 1. Our model uses lingual descriptions (a string of depen-
dent sentences) to improve visual scene parsing as well as to de-
termine which visual objects the text is referring to. We also deal
with coreference within text (e.g., pronouns like “it” or “them”).

system is key for the deployment of such systems. To date,
however, attempts to utilize more complex natural descrip-
tions are rare. This is due to the inherent difficulties of both
natural language processing and visual recognition, as well
as the lack of datasets that contain such image descriptions
linked to visual annotations (e.g., segmentation, detection).

Most recent approaches that employ text and images fo-
cus on generation tasks, where given an image one is inter-
ested in generating a lingual description of the scene [8, 12,
21, 2], or given a sentence, retrieving related images [29].
An exception is [9], which employed nouns and preposi-
tions extracted from short sentences to boost the perfor-
mance of object detection and semantic segmentation.

In this paper we are interested in exploiting natural lin-
gual descriptions of RGB-D scenes in order to improve 3D
object detection as well as to determine which particular
object each noun/pronoun is referring to in the image. In
order to do so, we need to solve the text to image alignment

1

# sent # words min # sent max sent min words max words
3.2 39.1 1 10 6 144

# nouns of interest # pronouns # scene mentioned scene correct
3.4 0.53 0.48 83%

Table 2. Statistics per description.
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Figure 3. Scene classif. accuracy with respect to NYU annotation.
We evaluate acc. only when a scene is mentioned in a description.

4. RGB-D Dataset with Complex Descriptions

Having rich data is important in order to enable auto-
matic systems to properly ground language to visual con-
cepts. Towards this goal, we took the NYUv2 dataset [27]
that contains 1449 RGB-D images of indoor scenes, and
collected sentential descriptions for each image. We asked
the annotators (MTurkers) to describe an image to someone
who does not see it to give her/him a vivid impression of
what the scene looks like. The annotators were only shown
the image and had no idea of what the classes of interest
were. For quality control, we checked all descriptions, and
fixed those that were grammatically incorrect, while pre-
serving the content. The collected descriptions go beyond
current datasets where typically only a short sentence is
available. They vary from one to ten sentences per anno-
tator per image, and typically contain rich information and
multiple mentions to objects. Fig. 6 shows examples.

We collected two types of ground-truth annotations. The
first one is visual, where we linked the nouns and pronouns
to the visual objects they describe. This gives us ground-
truth alignments between text and images. We used in-
house annotators to ensure quality. We took a conservative
approach and labeled only the non-ambiguous referrals. For
plural forms we linked the (pro)noun to multiple objects.

The second annotation is text based. Here, the anno-
tators were shown only text and not the image, and thus
had to make a decision based on the syntactic and seman-
tic textual information alone. For all nouns that refer to the
classes of interest we annotated which object class it is, tak-
ing into account synonyms. All other nouns were marked
as background. For each noun we also annotated attributes
(i.e., color and size) that refer to it. We also annotated co-
referrals in cases where different words talk about the same
entity by linking the head (representative) noun in a descrip-
tion to all its noun/pronoun occurrences. We annotated at-

precision recall F-measure
object class 94.7% 94.2% 94.4%

scene 85.7% 85.7% 85.7%
color 64.2% 93.0% 75.9%
size 55.8% 96.0% 70.6%

Table 3. Parser accuracy (based on Stanford’s parser [31])

MUC B3

Method precision recall F1 precision recall F1
Stanford [15] 61.56 62.59 62.07 75.05 76.15 75.59
Ours 83.69 51.08 63.44 88.42 70.02 78.15

Table 4. Co-reference accuracy of [15] and our model.

tributes for the linked pronouns as well. Our annotation
was semi-automatic, where we generated candidates using
the Stanford parser [31, 15] and manually corrected the mis-
takes. We used WordNet to generate synonyms.

We analyze our dataset next. Table 2 shows simple statis-
tics: there are on average 3 sentences per description where
each description has on average 39 words. Descriptions
contain up to 10 sentences and 144 words. A pronoun be-
longing to a class of interest appears in every second de-
scription. Scene type is explicitly mentioned in half of the
descriptions. Table 1 shows per class statistics, e.g. percent-
age of times a noun refers to a visual object with respect to
the number of all visual objects of that class. Interestingly, a
“toilet” is talked about 91% of times it is visible in a scene,
while “curtains” are talked about only 23% of times. Fig. 4
shows size histograms for the mentioned objects, where
size is the square root of the number of pixels which the
linked object region contains. We separate the statistics into
whether the noun was mentioned in the first, second, third,
or fourth and higher sentence. An interesting observation
is that the sizes of mentioned objects become smaller with
the sentence ID. This is reasonable as the most salient (typ-
ically bigger) objects are described first. We also show a
plot for sizes of objects that are mentioned more than once
per description. We can see that the histogram is pushed
to the right, meaning that people corefer to bigger objects
more often. As shown in Fig. 5, people first describe the
closer and centered objects, and start describing other parts
of the scene in later sentences. Finally, in Fig. 3 we evaluate
human scene classification accuracy against NYU ground-
truth. We evaluate accuracy only when a scene is explicitly
mentioned in a description. While “bathroom” is always a
“bathroom”, there is confusion for some other scenes, e.g. a
“playroom” is typically mentioned to be a “living room”.

5. Experimental Evaluation
We test our model on the NYUv2 dataset augmented

with our descriptions. For 3D object detection we use the
same class set of 21 objects as in [18], where ground-truth
has been obtained by robust fitting of cuboids around object
regions projected to 3D via depth. For each image NYU
also has a scene label, with 13 scene classes altogether.

!   Joint coreference and 3D image recognition 



Neural Models for Coreference 

!   Mention-pair model as simple feed-forward network: 

[Clark and Manning, 2016; Wiseman et al., 2015] 

Neural	Mention-Pair	Model
• Standard	feed-forward	neural	network	

• From	(Clark	and	Manning,	2016);	similar	to	Wiseman	et	al.	(2015)
• Input	layer:	word	embeddings	and	a	few	categorical	features
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