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Announcements 

!   Next week: 1st half of class is Colloquium Speaker: 
Claire Cardie (Cornell) – 10-11am (please reach 
FB141 by 9.55am) -- then we will continue class from 
11am-12.30pm in our FB008 room 

!   Chapter section summary were due Sunday Sep24 
midnight  

!   Coding-HW1 (on word vector training+evaluation_
+visualization) has been released (and details emailed) 
last week – due Oct5 midnight (2 weeks total)! 

!   TA Yixin Nie’s office hours: 2.30-3.30pm Wednesdays 
(moved to 2nd floor reading room) 



Semantic Role Labeling 
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Statistical NLP
Spring 2011

Lecture 21: Semantic Roles
Dan Klein – UC Berkeley

Semantic Role Labeling (SRL)

! Characterize clauses as relations with roles:

! Want to more than which NP is the subject (but not much more):
! Relations like subject are syntactic, relations like agent or message

are semantic
! Typical pipeline:

! Parse, then label roles
! Almost all errors locked in by parser
! Really, SRL is quite a lot easier than parsing

!   Role-based relations for the different clauses in the sentence: 

!   More semantic relations (e.g., agent, reason, message) than just 
subject/object style syntactic roles 

!   Typical traditional pipelines involves POS-tagging and parsing, 
and then features extracted on those (plus NER, etc.)…but then 
several errors caused by wrong parse! 



Semantic Role Labeling (SRL) 
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SRL Example

PropBank / FrameNet

! FrameNet: roles shared between verbs
! PropBank: each verb has it’s own roles
! PropBank more used, because it’s layered over the treebank (and 

so has greater coverage, plus parses)
! Note: some linguistic theories postulate even fewer roles than 

FrameNet (e.g. 5-20 total: agent, patient, instrument, etc.)



PropBank vs. FrameNet 
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SRL Example

PropBank / FrameNet

! FrameNet: roles shared between verbs
! PropBank: each verb has it’s own roles
! PropBank more used, because it’s layered over the treebank (and 

so has greater coverage, plus parses)
! Note: some linguistic theories postulate even fewer roles than 

FrameNet (e.g. 5-20 total: agent, patient, instrument, etc.)

! PropBank has each verb get its own roles, whereas FrameNet 
shares roles between verbs (e.g., argue and banter in figure 
below) 

! PropBank more convenient w.r.t. being layered over Treebank 
parses (and hence more coverage) 



PropBank Roles 

!   Based on Dowty, 1991: roles are verb-sense specific in PropBank 
(role definitions depend on specific verb and relation to other roles) 

!   Each verb sense has numbered arguments e.g., ARG-0, ARG-1, 
etc.  
!   ARG-0 is usually PROTO-AGENT 
!   ARG-1 is usually PROTO-PATIENT 
!   ARG-2 is usually benefactive, instrument, attribute 
!   ARG-3 is usually start point, benefactive, instrument, attribute 
!   ARG-4 is usually end point (e.g., for move or push style verbs) 

(ARG-2,3,4 onwards not very consistent and highly depend on 
specific verb and its sense in the sentence, hence labeling of 
PropBank is tricky) 



PropBank Example 1 
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PropBank Example

PropBank Example



PropBank Example 2 

3

PropBank Example

PropBank Example



PropBank Example 3 
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PropBank Example

Shared Arguments



Shared Arguments 

4

PropBank Example

Shared Arguments



Simple SRL Algo 
A)simple)modern)algorithm

22.6 • SEMANTIC ROLE LABELING 9

Recall that the difference between these two models of semantic roles is that
FrameNet (22.27) employs many frame-specific frame elements as roles, while Prop-
Bank (22.28) uses a smaller number of numbered argument labels that can be inter-
preted as verb-specific labels, along with the more general ARGM labels. Some
examples:

(22.27) [You] can’t [blame] [the program] [for being unable to identify it]
COGNIZER TARGET EVALUEE REASON

(22.28) [The San Francisco Examiner] issued [a special edition] [yesterday]
ARG0 TARGET ARG1 ARGM-TMP

A simplified semantic role labeling algorithm is sketched in Fig. 22.4. While
there are a large number of algorithms, many of them use some version of the steps
in this algorithm.

Most algorithms, beginning with the very earliest semantic role analyzers (Sim-
mons, 1973), begin by parsing, using broad-coverage parsers to assign a parse to the
input string. Figure 22.5 shows a parse of (22.28) above. The parse is then traversed
to find all words that are predicates.

For each of these predicates, the algorithm examines each node in the parse tree
and decides the semantic role (if any) it plays for this predicate.

This is generally done by supervised classification. Given a labeled training set
such as PropBank or FrameNet, a feature vector is extracted for each node, using
feature templates described in the next subsection.

A 1-of-N classifier is then trained to predict a semantic role for each constituent
given these features, where N is the number of potential semantic roles plus an
extra NONE role for non-role constituents. Most standard classification algorithms
have been used (logistic regression, SVM, etc). Finally, for each test sentence to be
labeled, the classifier is run on each relevant constituent. We give more details of
the algorithm after we discuss features.

function SEMANTICROLELABEL(words) returns labeled tree

parse PARSE(words)
for each predicate in parse do

for each node in parse do
featurevector EXTRACTFEATURES(node, predicate, parse)
CLASSIFYNODE(node, featurevector, parse)

Figure 22.4 A generic semantic-role-labeling algorithm. CLASSIFYNODE is a 1-of-N clas-
sifier that assigns a semantic role (or NONE for non-role constituents), trained on labeled data
such as FrameNet or PropBank.

Features for Semantic Role Labeling

A wide variety of features can be used for semantic role labeling. Most systems use
some generalization of the core set of features introduced by Gildea and Jurafsky
(2000). A typical set of basic features are based on the following feature templates
(demonstrated on the NP-SBJ constituent The San Francisco Examiner in Fig. 22.5):

• The governing predicate, in this case the verb issued. The predicate is a cru-
cial feature since labels are defined only with respect to a particular predicate.

• The phrase type of the constituent, in this case, NP (or NP-SBJ). Some se-
mantic roles tend to appear as NPs, others as S or PP, and so on.

42



SRL Features 

Features

Headword6of6constituent
Examiner

Headword6POS
NNP

Voice6of6the6clause
Active

Subcategorization of6pred
VP6K>6VBD6NP6PP

45

10 CHAPTER 22 • SEMANTIC ROLE LABELING

S

NP-SBJ = ARG0 VP

DT NNP NNP NNP

The San Francisco Examiner

VBD = TARGET NP = ARG1 PP-TMP = ARGM-TMP

issued DT JJ NN IN NP

a special edition around NN NP-TMP

noon yesterday

Figure 22.5 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line
shows the path feature NP"S#VP#VBD for ARG0, the NP-SBJ constituent The San Francisco Examiner.

• The headword of the constituent, Examiner. The headword of a constituent
can be computed with standard head rules, such as those given in Chapter 11
in Fig. ??. Certain headwords (e.g., pronouns) place strong constraints on the
possible semantic roles they are likely to fill.

• The headword part of speech of the constituent, NNP.
• The path in the parse tree from the constituent to the predicate. This path is

marked by the dotted line in Fig. 22.5. Following Gildea and Jurafsky (2000),
we can use a simple linear representation of the path, NP"S#VP#VBD. " and
# represent upward and downward movement in the tree, respectively. The
path is very useful as a compact representation of many kinds of grammatical
function relationships between the constituent and the predicate.

• The voice of the clause in which the constituent appears, in this case, active
(as contrasted with passive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than do active ones.

• The binary linear position of the constituent with respect to the predicate,
either before or after.

• The subcategorization of the predicate, the set of expected arguments that
appear in the verb phrase. We can extract this information by using the phrase-
structure rule that expands the immediate parent of the predicate; VP ! VBD
NP PP for the predicate in Fig. 22.5.

• The named entity type of the constituent.
• The first words and the last word of the constituent.
The following feature vector thus represents the first NP in our example (recall

that most observations will have the value NONE rather than, for example, ARG0,
since most constituents in the parse tree will not bear a semantic role):

ARG0: [issued, NP, Examiner, NNP, NP"S#VP#VBD, active, before, VP ! NP PP,
ORG, The, Examiner]

Other features are often used in addition, such as sets of n-grams inside the
constituent, or more complex versions of the path features (the upward or downward
halves, or whether particular nodes occur in the path).

It’s also possible to use dependency parses instead of constituency parses as the
basis of features, for example using dependency parse paths instead of constituency
paths.

Named6Entity6type6of6constit
ORGANIZATION

First6and6last6words6of6constit
The,6Examiner

Linear6position,clause re:6predicate

before



Path-based Features for SRL 
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Path Features

Results

! Features:
! Path from target to filler
! Filler’s syntactic type, headword, case
! Target’s identity
! Sentence voice, etc.
! Lots of other second-order features

! Gold vs parsed source trees

! SRL is fairly easy on gold trees

! Harder on automatic parses



Some SRL Results 
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Path Features

Results

! Features:
! Path from target to filler
! Filler’s syntactic type, headword, case
! Target’s identity
! Sentence voice, etc.
! Lots of other second-order features

! Gold vs parsed source trees

! SRL is fairly easy on gold trees

! Harder on automatic parses

!   So major feature categories in traditional feature-based SRL 
models were: 
!   Headword, syntactic type, case, etc. of candidate node/

constituent 
!   Linear and tree path from predicate target to node 
!   Active vs. passive voice 
!   Second order and higher order features 

!   Accuracy for such feature-based SRL models then highly depends 
on accuracy of underlying parse tree! 
!   So quite high SRL results when  
     using ground-truth parses 
!   Much lower results with 
     automatically-predicted parses! 



Schematic of Frame Semantics (FrameNet) 
Schematic)of)Frame)Semantics

Computational Linguistics Volume 40, Number 1

1. Introduction

FrameNet (Fillmore, Johnson, and Petruck 2003) is a linguistic resource storing consider-
able information about lexical and predicate-argument semantics in English. Grounded
in the theory of frame semantics (Fillmore 1982), it suggests—but does not formally
define—a semantic representation that blends representations familiar from word-sense
disambiguation (Ide and Véronis 1998) and semantic role labeling (SRL; Gildea and
Jurafsky 2002). Given the limited size of available resources, accurately producing
richly structured frame-semantic structures with high coverage will require data-driven
techniques beyond simple supervised classification, such as latent variable modeling,
semi-supervised learning, and joint inference.

In this article, we present a computational and statistical model for frame-semantic
parsing, the problem of extracting from text semantic predicate-argument structures
such as those shown in Figure 1. We aim to predict a frame-semantic representation
with two statistical models rather than a collection of local classifiers, unlike earlier ap-
proaches (Baker, Ellsworth, and Erk 2007). We use a probabilistic framework that cleanly
integrates the FrameNet lexicon and limited available training data. The probabilistic
framework we adopt is highly amenable to future extension through new features, more
relaxed independence assumptions, and additional semi-supervised models.

Carefully constructed lexical resources and annotated data sets from FrameNet,
detailed in Section 3, form the basis of the frame structure prediction task. We de-
compose this task into three subproblems: target identification (Section 4), in which
frame-evoking predicates are marked in the sentence; frame identification (Section 5),
in which the evoked frame is selected for each predicate; and argument identification
(Section 6), in which arguments to each frame are identified and labeled with a role from
that frame. Experiments demonstrating favorable performance to the previous state of
the art on SemEval 2007 and FrameNet data sets are described in each section. Some
novel aspects of our approach include a latent-variable model (Section 5.2) and a semi-
supervised extension of the predicate lexicon (Section 5.5) to facilitate disambiguation of
words not in the FrameNet lexicon; a unified model for finding and labeling arguments

Figure 1
An example sentence from the annotations released as part of FrameNet 1.5 with three targets
marked in bold. Note that this annotation is partial because not all potential targets have been
annotated with predicate-argument structures. Each target has its evoked semantic frame
marked above it, enclosed in a distinct shape or border style. For each frame, its semantic roles
are shown enclosed within the same shape or border style, and the spans fulfilling the roles are
connected to the latter using dotted lines. For example, manner evokes the CONDUCT frame, and
has the AGENT and MANNER roles fulfilled by Austria and most un-Viennese, respectively.

10

35 Figure6from6Das6et6al6(2014)

[Das et al., 2014] 



PropBank vs. FrameNet Representations 
FrameNet and)PropBank representations

Computational Linguistics Volume 40, Number 1

(a)

(b)
Figure 2
(a) A phrase-structure tree taken from the Penn Treebank and annotated with PropBank
predicate-argument structures. The verbs created and pushed serve as predicates in this
sentence. Dotted arrows connect each predicate to its semantic arguments (bracketed phrases).
(b) A partial depiction of frame-semantic structures for the same sentence. The words in bold
are targets, which instantiate a (lemmatized and part-of-speech–tagged) lexical unit and evoke
a semantic frame. Every frame annotation is shown enclosed in a distint shape or border style,
and its argument labels are shown together on the same vertical tier below the sentence.
See text for explanation of abbreviations.

phrase-structure syntax trees from the Wall Street Journal section of the Penn Treebank
(Marcus, Marcinkiewicz, and Santorini 1993) annotated with predicate-argument
structures for verbs. In Figure 2(a), the syntax tree for the sentence is marked with
various semantic roles. The two main verbs in the sentence, created and pushed, are
the predicates. For the former, the constituent more than 1.2 million jobs serves as the
semantic role ARG1 and the constituent In that time serves as the role ARGM-TMP. Similarly
for the latter verb, roles ARG1, ARG2, ARGM-DIR, and ARGM-TMP are shown in the figure.
PropBank defines core roles ARG0 through ARG5, which receive different interpretations
for different predicates. Additional modifier roles ARGM-* include ARGM-TMP (temporal)
and ARGM-DIR (directional), as shown in Figure 2(a). The PropBank representation
therefore has a small number of roles, and the training data set comprises some
40,000 sentences, thus making the semantic role labeling task an attractive one from the
perspective of machine learning.

There are many instances of influential work on semantic role labeling using
PropBank conventions. Pradhan et al. (2004) present a system that uses support vector
machines (SVMs) to identify the arguments in a syntax tree that can serve as semantic
roles, followed by classification of the identified arguments to role names via a collection
of binary SVMs. Punyakanok et al. (2004) describe a semantic role labeler that uses inte-
ger linear programming for inference and uses several global constraints to find the best

12

37



Compositional Semantics 



Compositional Semantics I: Logic form 

!   Logic-form based (lambda calculus), Semantic Parsing 

!   Useful for Q&A, IE, grounding, comprehension tasks 
(summarization, reading tasks) 

!   A lot of focus has been on KB-based Question 
Answering in this direction (where input-output training 
data is question-answer pairs, and latent intermediate 
representation is the question’s semantic parse, which 
is ‘executed’ against the KB to get the answer) 



Question Answering 

!   Initial approaches to Q&A: pattern matching, pattern 
learning, query rewriting, information extraction 

!   Next came a large-scale, open-domain IE system like 
IBM Watson	

provide a bit more detail about the various archi-
tectural roles.

Content Acquisition
The first step in any application of DeepQA to
solve a QA problem is content acquisition, or iden-
tifying and gathering the content to use for the
answer and evidence sources shown in figure 6. 

Content acquisition is a combination of manu-
al and automatic steps. The first step is to analyze
example questions from the problem space to pro-
duce a description of the kinds of questions that
must be answered and a characterization of the
application domain. Analyzing example questions
is primarily a manual task, while domain analysis
may be informed by automatic or statistical analy-
ses, such as the LAT analysis shown in figure 1.
Given the kinds of questions and broad domain of
the Jeopardy Challenge, the sources for Watson
include a wide range of encyclopedias, dictionar-
ies, thesauri, newswire articles, literary works, and
so on. 

Given a reasonable baseline corpus, DeepQA
then applies an automatic corpus expansion
process. The process involves four high-level steps:
(1) identify seed documents and retrieve related
documents from the web; (2) extract self-contained
text nuggets from the related web documents; (3)
score the nuggets based on whether they are

informative with respect to the original seed docu-
ment; and (4) merge the most informative nuggets
into the expanded corpus. The live system itself
uses this expanded corpus and does not have
access to the web during play.

In addition to the content for the answer and
evidence sources, DeepQA leverages other kinds of
semistructured and structured content. Another
step in the content-acquisition process is to identi-
fy and collect these resources, which include data-
bases, taxonomies, and ontologies, such as dbPe-
dia,7 WordNet (Miller 1995), and the Yago8

ontology.

Question Analysis
The first step in the run-time question-answering
process is question analysis. During question
analysis the system attempts to understand what
the question is asking and performs the initial
analyses that determine how the question will be
processed by the rest of the system. The DeepQA
approach encourages a mixture of experts at this
stage, and in the Watson system we produce shal-
low parses, deep parses (McCord 1990), logical
forms, semantic role labels, coreference, relations,
named entities, and so on, as well as specific kinds
of analysis for question answering. Most of these
technologies are well understood and are not dis-
cussed here, but a few require some elaboration.

Articles

FALL 2010  69

Figure 6. DeepQA High-Level Architecture.

[Ferrucci et al., 2010] 



Deep Q&A: Semantic Parsing 

!   Complex, free-form, multi-clause questions 



Deep Q&A: Semantic Parsing 

!   Complex, free-form, multi-clause questions 



Semantic Parsing: Logic forms 

!   Parsing with logic (booleans, individuals, functions) and 
lambda forms 

Sentence 
loves(john,mary) 

Noun Phrase 
john 

Verb Phrase 
λx.loves(x,mary) 

Name 
john 

Verb 
λy.λx.loves(x,y) 

Noun Phrase 

Name 
mary 

“John” 
john 

“loves” 
λy.λx.loves(x,y) “Mary” 

mary 

Parse tree with associated 
semantics 

[Wong and Mooney, 2007; Zettlemoyer and Collins, 2007; Poon and Domingos, 2009;  
Artzi and Zettlemoyer, 2011, 2013; Kwiatkowski et al., 2013; Cai and Yates, 2013;  

Berant et al., 2013; Poon 2013; Berant and Liang, 2014; Iyyer et al., 2014] 



Truth-Conditional Semantics 
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Statistical NLP
Spring 2011

Lecture 22: Compositional Semantics
Dan Klein – UC Berkeley

Truth-Conditional Semantics

! Linguistic expressions:
! “Bob sings”

! Logical translations:
! sings(bob)
! Could be p_1218(e_397)

! Denotation:
! [[bob]] = some specific person (in some context)
! [[sings(bob)]] = ???

! Types on translations:
! bob : e (for entity)
! sings(bob) : t (for truth-value)

S

NP

Bob
bob

VP

sings
λy.sings(y)

sings(bob)
!   Examples like “Bob sings” 

!   Logical translation of this will be 
something like: sings(bob) 

!   Types on these translations are 
entities (e) and truth-values (t), e.g.: 

 bob: e 
 sings(bob): t 



Truth-Conditional Semantics 
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Statistical NLP
Spring 2011

Lecture 22: Compositional Semantics
Dan Klein – UC Berkeley

Truth-Conditional Semantics

! Linguistic expressions:
! “Bob sings”

! Logical translations:
! sings(bob)
! Could be p_1218(e_397)

! Denotation:
! [[bob]] = some specific person (in some context)
! [[sings(bob)]] = ???

! Types on translations:
! bob : e (for entity)
! sings(bob) : t (for truth-value)

S

NP

Bob
bob

VP

sings
λy.sings(y)

sings(bob)
!   For verbs (and verb phrases), sings 

combines with bob to produce 
sings(bob) 

!   In general, we use lambda-calculus or 
λ-calculus, i.e., a notation for functions 
whose arguments have not yet been 
filled/resolved/satisfied 

! λx.sings(x) 

!   This is a ‘predicate’, i.e., a function which take an entity (type 
e) and produces a truth value (type t), denoted as e ! t 



Compositional Semantics 
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Truth-Conditional Semantics
! Proper names:

! Refer directly to some entity in the world
! Bob : bob          [[bob]]W " ???

! Sentences:
! Are either true or false (given

how the world actually is)
! Bob sings : sings(bob)

! So what about verbs (and verb phrases)?
! sings must combine with bob to produce sings(bob)
! The λ-calculus is a notation for functions whose arguments are 

not yet filled.
! sings : λx.sings(x)
! This is predicate – a function which takes an entity (type e) and 

produces a truth value (type t).  We can write its type as e→t.
! Adjectives?

S

NP

Bob
bob

VP

sings
λy.sings(y)

sings(bob)

Compositional Semantics
! So now we have meanings for the words
! How do we know how to combine words?
! Associate a combination rule with each grammar rule:

! S : β(α) → NP : α VP : β (function application)
! VP : λx . α(x) ∧ β(x) → VP : α and : ∅ VP : β (intersection)

! Example:

S

NP VP

Bob VP and

sings

VP

dances
bob

λy.sings(y) λz.dances(z)

λx.sings(x) ∧ dances(x)

[λx.sings(x) ∧ dances(x)](bob)
sings(bob) ∧ dances(bob)

!   Now after we have these meanings for words, we want to 
combine them into meaning for phrases and sentences 

!   For this, we associate a combination rule with each grammar 
rule of the parse tree, e.g.: 
 S: β(α) ! NP: α   VP: β      (function application)   
 VP: λx . α(x) Λ�β(x) ! VP: α    and: �   VP: β  (intersection)
  



Transitive Verbs & Quantifiers 

!   Transitive verbs example is ‘like’ predicate: 

! λx.λy.likes(y,x) 

!   These are two-place predicates hence e!(e!t) 

!   Whereas ‘likes Amy’ = λy.likes(y,amy) is just a one-place 
predicate because x has been satisfied/resolved 



Transitive Verbs & Quantifiers 
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Denotation
! What do we do with logical translations?

! Translation language (logical form) has fewer 
ambiguities

! Can check truth value against a database
! Denotation (“evaluation”) calculated using the database

! More usefully: assert truth and modify a database
! Questions: check whether a statement in a corpus 

entails the (question, answer) pair:
! “Bob sings and dances” → “Who sings?” + “Bob”

! Chain together facts and use them for comprehension

Other Cases

! Transitive verbs:
! likes : λx.λy.likes(y,x)
! Two-place predicates of type e→(e→t).
! likes Amy : λy.likes(y,Amy) is just like a one-place predicate.

! Quantifiers:
! What does “Everyone” mean here?
! Everyone : λf.∀x.f(x)
! Mostly works, but some problems

! Have to change our NP/VP rule.
! Won’t work for “Amy likes everyone.”

! “Everyone likes someone.”
! This gets tricky quickly!

S

NP VP

Everyone VBP NP

Amylikes
λx.λy.likes(y,x)

λy.likes(y,amy)

amy

λf.∀x.f(x)

[λf.∀x.f(x)](λy.likes(y,amy))
∀x.likes(x,amy)

!   What about the ‘everyone’ 
quantifier, e.g., “Everyone 
likes Amy”? 

!   Everyone = λf.�x.f(x) 

!   See example figure on how 
this works ! 

!   Gets tricky for examples like: 
“Amy likes everyone” and 
“Everyone likes someone” 



Indefinites 
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Indefinites
! First try

! “Bob ate a waffle” : ate(bob,waffle)
! “Amy ate a waffle” : ate(amy,waffle)

! Can’t be right!
! ∃ x : waffle(x) ∧ ate(bob,x)
! What does the translation

of “a” have to be?
! What about “the”?
! What about “every”?

S

NP VP

Bob VBD NP

a waffleate

Grounding

! Grounding
! So why does the translation likes : λx.λy.likes(y,x) have anything 

to do with actual liking?
! It doesn’t (unless the denotation model says so)
! Sometimes that’s enough: wire up bought to the appropriate 

entry in a database

! Meaning postulates
! Insist, e.g ∀x,y.likes(y,x) → knows(y,x)
! This gets into lexical semantics issues

! Statistical version?

!   If we say “Bob ate a waffle” and 
“Amy ate a waffle”, then using: 
 ate(bob, waffle) 
 ate(amy, waffle) 

!   Doesn’t seem correct for ‘a waffle’ 

!   More correct seems to use ‘there 
exists’ operator: 

!   �x: waffle(x) Λ�ate(bob, x) 

!   And what about ‘the’ and ‘every’? 



Tense and Events 

!   We need event variables because just verbs don’t get us far! 
 

!   Example: “Bob sang” 
!   sang(bob)? 
!   �e: singing(e) Λ�agent(e, bob) Λ�(time(e) < now) 

!   Hence, these event variable e help us represent complex 
tense and aspect structures: 

 

!   Example: “Bob had been singing when Mary coughed” 
!   �e, e’: singing(e) Λ�agent(e, bob) Λ��

       coughing(e’) Λ�agent(e’, mary) Λ��
       (start(e) < start(e’) Λ�end(e) = end(e’)) Λ� 
       (time(e’) < now) 



Adverbs 
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Tense and Events
! In general, you don’t get far with verbs as predicates
! Better to have event variables e

! “Alice danced” : danced(alice)
! ∃ e : dance(e) ∧ agent(e,alice) ∧ (time(e) < now)

! Event variables let you talk about non-trivial tense / 
aspect structures
! “Alice had been dancing when Bob sneezed”
! ∃ e, e’ : dance(e) ∧ agent(e,alice) ∧

sneeze(e’) ∧ agent(e’,bob) ∧
(start(e) < start(e’) ∧ end(e) = end(e’)) ∧
(time(e’) < now)

Adverbs
! What about adverbs?

! “Bob sings terribly”
! terribly(sings(bob))?
! (terribly(sings))(bob)?
! ∃e present(e) ∧

type(e, singing) ∧
agent(e,bob) ∧
manner(e, terrible) ?

! It’s really not this 
simple..

S

NP VP

Bob VBP ADVP

terriblysings

!   Example: “Bob sings terribly” 

!   terribly(sings(bob))? 

!   (terribly(sings))(bob)? 

!   �e: present(e) Λ�type(e, singing) 
Λ agent(e, bob) Λ�manner(e, 
terrible)? 

!   Gets tricky pretty quickly… 



CCG Parsing 
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CCG�Parsing

� Combinatory�
Categorial�Grammar
� Fully�(monoͲ)�

lexicalized�grammar
� Categories�encode�

argument�sequences
� Very�closely�related�

to�the�lambda�
calculus�(more�later)

� Can�have�spurious�
ambiguities�(why?)

!   Combinatory Categorial 
Grammars: 

!   Each category encodes an argument 
sequence (fwd/bwd slashes specify 
argument order/direction) 

!   Closely related to lambda calculus 

!   Captures both syntactic and semantic 
info 

 
!   Naturally allows meaning 

representation and semantic parsing 
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Mapping to LF: Zettlemoyer & Collins 05/07

Given training examples like:
Input: List one way flights to Prague.

Output:  λx.flight(x)∧ one_way(x)∧ to(x,PRG)

Challenging Learning Problem:
• Derivations (or parses) are not annotated
• Approach: [Zettlemoyer & Collins 2005]
• Learn a lexicon and parameters for a weighted 

Combinatory Categorial Grammar (CCG)

[Slides from Luke Zettlemoyer]

Background

• Combinatory Categorial Grammar (CCG)

• Weighted CCGs 

• Learning lexical entries: GENLEX

!   Given training examples with paired sentences/questions and 
their logical-form lambda calculus,  

!   This is a tricky learning problem because the derivations are not 
annotated, so we learn lexicon and parameters for a weighted 
CCG (e.g., based on [Zettlemoyer and Collins, 2005]) 



CCG Lexicon 

10

CCG Lexicon

Words Category

flights N : λx.flight(x)

to (N\N)/NP : λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York city NP : NYC

… …

Parsing Rules (Combinators)

Application
• X/Y : f      Y : a  =>   X : f(a)

• Y : a    X\Y : f  =>   X : f(a)

Composition
• X/Y : f   Y/Z : g   =>  X/Z : λx.f(g(x))

• Z\Y : f   X\Y : g   =>  X\Z : λx.f(g(x))

Additional rules:
• Type Raising
• Crossed Composition
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CCG Lexicon

Words Category

flights N : λx.flight(x)

to (N\N)/NP : λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York city NP : NYC

… …

Parsing Rules (Combinators)

Application
• X/Y : f      Y : a  =>   X : f(a)

• Y : a    X\Y : f  =>   X : f(a)

Composition
• X/Y : f   Y/Z : g   =>  X/Z : λx.f(g(x))

• Z\Y : f   X\Y : g   =>  X\Z : λx.f(g(x))

Additional rules:
• Type Raising
• Crossed Composition

Y \ Z 

!   Application Unary Rules: 

!   Composition Rules: 

!   Type Raising 

!   Crossed Composition 

10

CCG Lexicon

Words Category

flights N : λx.flight(x)

to (N\N)/NP : λx.λf.λy.f(x) ∧ to(y,x)

Prague NP : PRG

New York city NP : NYC

… …

Parsing Rules (Combinators)

Application
• X/Y : f      Y : a  =>   X : f(a)

• Y : a    X\Y : f  =>   X : f(a)

Composition
• X/Y : f   Y/Z : g   =>  X/Z : λx.f(g(x))

• Z\Y : f   X\Y : g   =>  X\Z : λx.f(g(x))

Additional rules:
• Type Raising
• Crossed Composition
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CCG Parsing

to Pragueflights

N\N
λλλλf.λλλλx.f(x)∧∧∧∧to(x,PRG)

N
λλλλx.flight(x)∧∧∧∧to(x,PRG)

Show me

N
λλλλx.flight(x)

(N\N)/NP
λλλλy.λλλλf.λλλλx.f(y)∧∧∧∧to(x,y)

NP
PRG

S/N
λλλλf.f

S
λλλλx.flight(x)∧∧∧∧to(x,PRG)

Weighted CCG

Given a log-linear model with a CCG lexicon Λ, 
a feature vector f, and weights w.
! The best parse is:

Where we consider all possible parses y for the 
sentence x given the lexicon Λ.

y* = argmax
y

w ⋅ f (x,y)
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CCG Parsing

to Pragueflights

N\N
λλλλf.λλλλx.f(x)∧∧∧∧to(x,PRG)

N
λλλλx.flight(x)∧∧∧∧to(x,PRG)

Show me

N
λλλλx.flight(x)

(N\N)/NP
λλλλy.λλλλf.λλλλx.f(y)∧∧∧∧to(x,y)

NP
PRG

S/N
λλλλf.f

S
λλλλx.flight(x)∧∧∧∧to(x,PRG)

Weighted CCG

Given a log-linear model with a CCG lexicon Λ, 
a feature vector f, and weights w.
! The best parse is:

Where we consider all possible parses y for the 
sentence x given the lexicon Λ.

y* = argmax
y

w ⋅ f (x,y)

!   Given a log-linear model with a CCG lexicon L, a feature vector 
f , and weights w , the best parse is 

!   Where y is the set of all parses for sentence x based on lexicon L 



Lexicon Problem and Factored Lexicons 

!   Lexicon is key component of CCG 

!   But same word often paired with many different categories 

!   Difficult to learn with limited sentence-logicform data 

!   Factored Lexicons is one solution: lexical entries share info; 
decomposition leads to more compact lexicons 

[Artzi-FitzGerald-Zettlemoyer CCG tutorial]	



Weak Supervision 

!   Instead of relying on sentence-logicform pairs as training data, we can 
learn from query-answer pairs 

!   Logical forms are latent, and we can check which one gets the correct 
answer on being executed against a knowledge base (KB) 

[Clarke et al. 2010; Liang et al. 2011]	

Weak Supervision 
Learning from Query Answers

What is the largest state that borders Texas?

New Mexico

argmax(�x.state(x)

^ border(x, TX),�y.size(y))

argmax(�x.river(x)

^ in(x, TX),�y.size(y))

New Mexico

Rio Grande

[Clarke et al. 2010; Liang et al. 2011]



Weak Supervision 

[Chen and Mooney 2011; Kim and Mooney 2012;Artzi and Zettlemoyer 2013b]	

!   Learning from Instruction-Demonstration Pairs 



Weak Supervision 

[Artzi and Zettlemoyer 2011]	

!   Learning from Conversation Logs 

Weak Supervision 
Learning from Conversation Logs

SYSTEM how can I help you ? (OPEN_TASK)
USER i ‘ d like to fly to new york
SYSTEM flying to new york . (CONFIRM: from(fl, ATL)) leaving what city ? 

(ASK: λx.from(fl,x))
USER from boston on june seven with american airlines
SYSTEM flying to new york . (CONFIRM: to(fl, NYC)) what date would you 

like to depart boston ? (ASK: λx.date(fl,x)∧to(fl, BOS))
USER june seventh
[CONVERSATION CONTINUES]

[Artzi and Zettlemoyer 2011]



Other Semantic Parsing Ideas 

!   Various recent ideas/extensions:  

!   Dependency-based compositional semantics (DCS) 
!   Bootstrapping w/ conversations 
!   On-the-fly ontology matching 
!   Question answering on Freebase 
!   Paraphrasing 
!   Unsupervised SP (clustering lambda forms) 
!   Grounded USP (via databases) 

[Wong and Mooney, 2007; Zettlemoyer and Collins, 2007; Poon and Domingos, 2009;  
Artzi and Zettlemoyer, 2011, 2013; Kwiatkowski et al., 2013; Cai and Yates, 2013;  

Berant et al., 2013; Poon 2013; Berant and Liang, 2014; Iyyer et al., 2014; Yao and Van Durne, 2014] 



Dependency-based Compositional Semantics (DCS) 

[Liang et al., 2013] 
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Abstract

Compositional question answering begins by
mapping questions to logical forms, but train-
ing a semantic parser to perform this mapping
typically requires the costly annotation of the
target logical forms. In this paper, we learn
to map questions to answers via latent log-
ical forms, which are induced automatically
from question-answer pairs. In tackling this
challenging learning problem, we introduce a
new semantic representation which highlights
a parallel between dependency syntax and effi-
cient evaluation of logical forms. On two stan-
dard semantic parsing benchmarks (GEO and
JOBS), our system obtains the highest pub-
lished accuracies, despite requiring no anno-
tated logical forms.

1 Introduction

What is the total population of the ten largest cap-
itals in the US? Answering these types of complex
questions compositionally involves first mapping the
questions into logical forms (semantic parsing). Su-
pervised semantic parsers (Zelle and Mooney, 1996;
Tang and Mooney, 2001; Ge and Mooney, 2005;
Zettlemoyer and Collins, 2005; Kate and Mooney,
2007; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007; Kwiatkowski et al., 2010) rely on
manual annotation of logical forms, which is expen-
sive. On the other hand, existing unsupervised se-
mantic parsers (Poon and Domingos, 2009) do not
handle deeper linguistic phenomena such as quan-
tification, negation, and superlatives.

As in Clarke et al. (2010), we obviate the need
for annotated logical forms by considering the end-
to-end problem of mapping questions to answers.
However, we still model the logical form (now as a
latent variable) to capture the complexities of lan-
guage. Figure 1 shows our probabilistic model:

(parameters) (world)

✓ w

x

z y

(question) (logical form) (answer)

state with the
largest area

x1x1

1

1

cc

argmax

area

state

⇤⇤ Alaska

z ⇠ p✓(z | x)

y = JzKw

Semantic Parsing Evaluation

Figure 1: Our probabilistic model: a question x is
mapped to a latent logical form z, which is then evaluated
with respect to a world w (database of facts), producing
an answer y. We represent logical forms z as labeled
trees, induced automatically from (x, y) pairs.

We want to induce latent logical forms z (and pa-
rameters ✓) given only question-answer pairs (x, y),
which is much cheaper to obtain than (x, z) pairs.

The core problem that arises in this setting is pro-
gram induction: finding a logical form z (over an
exponentially large space of possibilities) that pro-
duces the target answer y. Unlike standard semantic
parsing, our end goal is only to generate the correct
y, so we are free to choose the representation for z.
Which one should we use?

The dominant paradigm in compositional se-
mantics is Montague semantics, which constructs
lambda calculus forms in a bottom-up manner. CCG
is one instantiation (Steedman, 2000), which is used
by many semantic parsers, e.g., Zettlemoyer and
Collins (2005). However, the logical forms there
can become quite complex, and in the context of
program induction, this would lead to an unwieldy
search space. At the same time, representations such
as FunQL (Kate et al., 2005), which was used in
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Clarke et al. (2010), are simpler but lack the full ex-
pressive power of lambda calculus.

The main technical contribution of this work is
a new semantic representation, dependency-based
compositional semantics (DCS), which is both sim-
ple and expressive (Section 2). The logical forms in
this framework are trees, which is desirable for two
reasons: (i) they parallel syntactic dependency trees,
which facilitates parsing and learning; and (ii) eval-
uating them to obtain the answer is computationally
efficient.

We trained our model using an EM-like algorithm
(Section 3) on two benchmarks, GEO and JOBS
(Section 4). Our system outperforms all existing
systems despite using no annotated logical forms.

2 Semantic Representation

We first present a basic version (Section 2.1) of
dependency-based compositional semantics (DCS),
which captures the core idea of using trees to rep-
resent formal semantics. We then introduce the full
version (Section 2.2), which handles linguistic phe-
nomena such as quantification, where syntactic and
semantic scope diverge.

We start with some definitions, using US geogra-
phy as an example domain. Let V be the set of all
values, which includes primitives (e.g., 3, CA 2 V)
as well as sets and tuples formed from other values
(e.g., 3, {3, 4, 7}, (CA, {5}) 2 V). Let P be a set
of predicates (e.g., state, count 2 P), which are
just symbols.

A world w is mapping from each predicate p 2
P to a set of tuples; for example, w(state) =

{(CA), (OR), . . . }. Conceptually, a world is a rela-
tional database where each predicate is a relation
(possibly infinite). Define a special predicate ø with
w(ø) = V . We represent functions by a set of input-
output pairs, e.g., w(count) = {(S, n) : n = |S|}.
As another example, w(average) = {(S, x̄) :

x̄ = |S1|�1P
x2S1

S(x)}, where a set of pairs S

is treated as a set-valued function S(x) = {y :

(x, y) 2 S} with domain S1 = {x : (x, y) 2 S}.
The logical forms in DCS are called DCS trees,

where nodes are labeled with predicates, and edges
are labeled with relations. Formally:

Definition 1 (DCS trees) Let Z be the set of DCS
trees, where each z 2 Z consists of (i) a predicate

Relations R
j

j

0 (join) E (extract)
⌃ (aggregate) Q (quantify)
X
i

(execute) C (compare)

Table 1: Possible relations appearing on the edges of a
DCS tree. Here, j, j0 2 {1, 2, . . . } and i 2 {1, 2, . . . }⇤.

z.p 2 P and (ii) a sequence of edges z.e1, . . . , z.em,
each edge e consisting of a relation e.r 2 R (see
Table 1) and a child tree e.c 2 Z .
We write a DCS tree z as hp; r1 : c1; . . . ; rm : c

m

i.
Figure 2(a) shows an example of a DCS tree. Al-
though a DCS tree is a logical form, note that it looks
like a syntactic dependency tree with predicates in
place of words. It is this transparency between syn-
tax and semantics provided by DCS which leads to
a simple and streamlined compositional semantics
suitable for program induction.

2.1 Basic Version

The basic version of DCS restricts R to join and ag-
gregate relations (see Table 1). Let us start by con-
sidering a DCS tree z with only join relations. Such
a z defines a constraint satisfaction problem (CSP)
with nodes as variables. The CSP has two types of
constraints: (i) x 2 w(p) for each node x labeled
with predicate p 2 P; and (ii) x

j

= y

j

0 (the j-th
component of x must equal the j

0-th component of
y) for each edge (x, y) labeled with j

j

0 2 R.
A solution to the CSP is an assignment of nodes

to values that satisfies all the constraints. We say a
value v is consistent for a node x if there exists a
solution that assigns v to x. The denotation JzK

w

(z
evaluated on w) is the set of consistent values of the
root node (see Figure 2 for an example).

Computation We can compute the denotation
JzK

w

of a DCS tree z by exploiting dynamic pro-
gramming on trees (Dechter, 2003). The recurrence
is as follows:

J
D
p;

j1
j

0
1
:c1; · · · ; jm

j

0
m
:c

m

E
K
w

(1)

= w(p) \
m\

i=1

{v : v

ji = t

j

0
i
, t 2 Jc

i

K
w

}.

At each node, we compute the set of tuples v consis-
tent with the predicate at that node (v 2 w(p)), and
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Example: major city in California

z = hcity; 1
1 :hmajori ;

1
1 :hloc; 2

1 :hCAiii

1

1

1

1

major

2

1

CA

loc

city

�c9m9`9s .
city(c) ^ major(m)^
loc(`) ^ CA(s)^
c1 = m1 ^ c1 = `1 ^ `2 = s1

(a) DCS tree (b) Lambda calculus formula

(c) Denotation: JzKw = {SF, LA, . . . }

Figure 2: (a) An example of a DCS tree (written in both
the mathematical and graphical notation). Each node is
labeled with a predicate, and each edge is labeled with a
relation. (b) A DCS tree z with only join relations en-
codes a constraint satisfaction problem. (c) The denota-
tion of z is the set of consistent values for the root node.

for each child i, the j
i

-th component of v must equal
the j

0
i

-th component of some t in the child’s deno-
tation (t 2 Jc

i

K
w

). This algorithm is linear in the
number of nodes times the size of the denotations.1

Now the dual importance of trees in DCS is clear:
We have seen that trees parallel syntactic depen-
dency structure, which will facilitate parsing. In
addition, trees enable efficient computation, thereby
establishing a new connection between dependency
syntax and efficient semantic evaluation.

Aggregate relation DCS trees that only use join
relations can represent arbitrarily complex compo-
sitional structures, but they cannot capture higher-
order phenomena in language. For example, con-
sider the phrase number of major cities, and suppose
that number corresponds to the count predicate.
It is impossible to represent the semantics of this
phrase with just a CSP, so we introduce a new ag-
gregate relation, notated ⌃. Consider a tree h⌃ :ci,
whose root is connected to a child c via ⌃. If the de-
notation of c is a set of values s, the parent’s denota-
tion is then a singleton set containing s. Formally:

Jh⌃ :ciK
w

= {JcK
w

}. (2)

Figure 3(a) shows the DCS tree for our running
example. The denotation of the middle node is {s},

1Infinite denotations (such as J<Kw) are represented as im-
plicit sets on which we can perform membership queries. The
intersection of two sets can be performed as long as at least one
of the sets is finite.

number of

major cities

1

2

1

1

⌃⌃

1

1

major

city

⇤⇤

count

⇤⇤

average population of

major cities

1

2

1

1

⌃⌃

1

1

1

1

major

city

population

⇤⇤

average

⇤⇤

(a) Counting (b) Averaging

Figure 3: Examples of DCS trees that use the aggregate
relation (⌃) to (a) compute the cardinality of a set and (b)
take the average over a set.

where s is all major cities. Having instantiated s as
a value, everything above this node is an ordinary
CSP: s constrains the count node, which in turns
constrains the root node to |s|.

A DCS tree that contains only join and aggre-
gate relations can be viewed as a collection of tree-
structured CSPs connected via aggregate relations.
The tree structure still enables us to compute deno-
tations efficiently based on (1) and (2).

2.2 Full Version

The basic version of DCS described thus far han-
dles a core subset of language. But consider Fig-
ure 4: (a) is headed by borders, but states needs
to be extracted; in (b), the quantifier no is syntacti-
cally dominated by the head verb borders but needs
to take wider scope. We now present the full ver-
sion of DCS which handles this type of divergence
between syntactic and semantic scope.

The key idea that allows us to give semantically-
scoped denotations to syntactically-scoped trees is
as follows: We mark a node low in the tree with a
mark relation (one of E, Q, or C). Then higher up in
the tree, we invoke it with an execute relation X

i

to
create the desired semantic scope.2

This mark-execute construct acts non-locally, so
to maintain compositionality, we must augment the

2Our mark-execute construct is analogous to Montague’s
quantifying in, Cooper storage, and Carpenter’s scoping con-
structor (Carpenter, 1998).
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California borders which states?

x1x1

2

1

1

1

CA

ee

⇤⇤

state

border

⇤⇤
Alaska borders no states.

x1x1

2

1

1

1

AK

qq

no

state

border

⇤⇤
Some river traverses every city.

x12x12

2

1

1

1

qq

some

river

qq

every

city

traverse

⇤⇤
x21x21

2

1

1

1

qq

some

river

qq

every

city

traverse

⇤⇤

(narrow) (wide)

city traversed by no rivers

x12x12

1

2

ee

⇤⇤
1

1

qq

no

river

traverse

city

⇤⇤

(a) Extraction (e) (b) Quantification (q) (c) Quantifier ambiguity (q,q) (d) Quantification (q,e)

state bordering

the most states

x12x12

1

1

ee

⇤⇤
2

1

cc

argmax

state

border

state

⇤⇤

state bordering

more states than Texas

x12x12

1

1

ee

⇤⇤
2

1

cc

3

1

TX

more

state

border

state

⇤⇤

state bordering

the largest state

1

1

2

1

x12x12

1

1

ee

⇤⇤
cc

argmax

size

state

⇤⇤

border

state

x12x12

1

1

ee

⇤⇤
2

1

1

1

cc

argmax

size

state

border

state

⇤⇤

(absolute) (relative)

Every state’s

largest city is major.

x1x1

x2x2

1

1

1

1

2

1

qq

every

state

loc

cc

argmax

size

city

major

⇤⇤

(e) Superlative (c) (f) Comparative (c) (g) Superlative ambiguity (c) (h) Quantification+Superlative (q,c)

Figure 4: Example DCS trees for utterances in which syntactic and semantic scope diverge. These trees reflect the
syntactic structure, which facilitates parsing, but importantly, these trees also precisely encode the correct semantic
scope. The main mechanism is using a mark relation (E, Q, or C) low in the tree paired with an execute relation (Xi)
higher up at the desired semantic point.

denotation d = JzK
w

to include any information
about the marked nodes in z that can be accessed
by an execute relation later on. In the basic ver-
sion, d was simply the consistent assignments to the
root. Now d contains the consistent joint assign-
ments to the active nodes (which include the root
and all marked nodes), as well as information stored
about each marked node. Think of d as consisting
of n columns, one for each active node according to
a pre-order traversal of z. Column 1 always corre-
sponds to the root node. Formally, a denotation is
defined as follows (see Figure 5 for an example):
Definition 2 (Denotations) Let D be the set of de-
notations, where each d 2 D consists of

• a set of arrays d.A, where each array a =

[a1, . . . , an] 2 d.A is a sequence of n tuples
(a

i

2 V⇤); and

• a list of n stores d.↵ = (d.↵1, . . . , d.↵n

),

where each store ↵ contains a mark relation
↵.r 2 {E, Q, C, ø}, a base denotation ↵.b 2
D[{ø}, and a child denotation ↵.c 2 D[{ø}.

We write d as hhA; (r1, b1, c1); . . . ; (rn, bn, cn)ii. We
use d{r

i

= x} to mean d with d.r

i

= d.↵

i

.r = x

(similar definitions apply for d{↵
i

= x}, d{b
i

= x},
and d{c

i

= x}).
The denotation of a DCS tree can now be defined

recursively:

JhpiK
w

= hh{[v] : v 2 w(p)}; øii, (3)

J
D
p; e;

j

j

0 :c

E
K
w

= Jp; eK
w

./

j,j

0 JcK
w

, (4)

Jhp; e;⌃ :ciK
w

= Jp; eK
w

./⇤,⇤ ⌃ (JcK
w

) , (5)
Jhp; e; X

i

:ciK
w

= Jp; eK
w

./⇤,⇤ X
i

(JcK
w

), (6)
Jhp; e; E :ciK

w

= M(Jp; eK
w

, E, c), (7)
Jhp; e; C :ciK

w

= M(Jp; eK
w

, C, c), (8)
Jhp; Q :c; eiK

w

= M(Jp; eK
w

, Q, c). (9)
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Mapping questions to answers via latent logical forms. To narrow down the logical 
predicate space, they use a (i) coarse alignment based on Freebase and a text corpus and 
(ii) a bridging operation that generates predicates compatible with neighboring predicates.  

[Berant et al., 2013] 

Semantic Parsing on Freebase from Question-Answer Pairs

Jonathan Berant Andrew Chou Roy Frostig Percy Liang
Computer Science Department, Stanford University

{joberant,akchou}@stanford.edu {rf,pliang}@cs.stanford.edu

Abstract

In this paper, we train a semantic parser that
scales up to Freebase. Instead of relying on
annotated logical forms, which is especially
expensive to obtain at large scale, we learn
from question-answer pairs. The main chal-
lenge in this setting is narrowing down the
huge number of possible logical predicates for
a given question. We tackle this problem in
two ways: First, we build a coarse mapping
from phrases to predicates using a knowledge
base and a large text corpus. Second, we
use a bridging operation to generate additional
predicates based on neighboring predicates.
On the dataset of Cai and Yates (2013), despite
not having annotated logical forms, our sys-
tem outperforms their state-of-the-art parser.
Additionally, we collected a more realistic and
challenging dataset of question-answer pairs
and improves over a natural baseline.

1 Introduction

We focus on the problem of semantic parsing nat-
ural language utterances into logical forms that can
be executed to produce denotations. Traditional se-
mantic parsers (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Wong and Mooney, 2007;
Kwiatkowski et al., 2010) have two limitations: (i)
they require annotated logical forms as supervision,
and (ii) they operate in limited domains with a small
number of logical predicates. Recent developments
aim to lift these limitations, either by reducing the
amount of supervision (Clarke et al., 2010; Liang et
al., 2011; Goldwasser et al., 2011; Artzi and Zettle-
moyer, 2011) or by increasing the number of logical

Occidental College, Columbia University

Execute on Database

Type.University u Education.BarackObama

Type.University

Education

BarackObama

Which college did Obama go to ?

alignment

alignment

bridging

Figure 1: Our task is to map questions to answers via la-
tent logical forms. To narrow down the space of logical
predicates, we use a (i) coarse alignment based on Free-
base and a text corpus and (ii) a bridging operation that
generates predicates compatible with neighboring predi-
cates.

predicates (Cai and Yates, 2013). The goal of this
paper is to do both: learn a semantic parser with-
out annotated logical forms that scales to the large
number of predicates on Freebase.

At the lexical level, a major challenge in semantic
parsing is mapping natural language phrases (e.g.,
“attend”) to logical predicates (e.g., Education).
While limited-domain semantic parsers are able
to learn the lexicon from per-example supervision
(Kwiatkowski et al., 2011; Liang et al., 2011), at
large scale they have inadequate coverage (Cai and
Yates, 2013). Previous work on semantic parsing on
Freebase uses a combination of manual rules (Yahya
et al., 2012; Unger et al., 2012), distant supervision
(Krishnamurthy and Mitchell, 2012), and schema



Semantic Parsing via Paraphrasing 

 

 
 
 
 
 
 
 
 
For each candidate logical form (red), they generate canonical utterances (purple). The 
model is trained to paraphrase the input utterance (green) into the canonical utterances 
associated with the correct denotation (blue).  

[Berant and Liang, 2014] 

Semantic Parsing via Paraphrasing

Jonathan Berant

Stanford University
joberant@stanford.edu

Percy Liang

Stanford University
pliang@cs.stanford.edu

Abstract

A central challenge in semantic parsing is
handling the myriad ways in which knowl-
edge base predicates can be expressed.
Traditionally, semantic parsers are trained
primarily from text paired with knowledge
base information. Our goal is to exploit
the much larger amounts of raw text not
tied to any knowledge base. In this pa-
per, we turn semantic parsing on its head.
Given an input utterance, we first use a
simple method to deterministically gener-
ate a set of candidate logical forms with
a canonical realization in natural language
for each. Then, we use a paraphrase model
to choose the realization that best para-
phrases the input, and output the corre-
sponding logical form. We present two
simple paraphrase models, an association
model and a vector space model, and train
them jointly from question-answer pairs.
Our system PARASEMPRE improves state-
of-the-art accuracies on two recently re-
leased question-answering datasets.

1 Introduction

We consider the semantic parsing problem of map-
ping natural language utterances into logical forms
to be executed on a knowledge base (KB) (Zelle
and Mooney, 1996; Zettlemoyer and Collins,
2005; Wong and Mooney, 2007; Kwiatkowski
et al., 2010). Scaling semantic parsers to large
knowledge bases has attracted substantial atten-
tion recently (Cai and Yates, 2013; Berant et al.,
2013; Kwiatkowski et al., 2013), since it drives
applications such as question answering (QA) and
information extraction (IE).

Semantic parsers need to somehow associate
natural language phrases with logical predicates,
e.g., they must learn that the constructions “What

What party did Clay establish?

paraphrase model

What political party founded by Henry Clay?
...

What event involved the people Henry Clay?

Type.PoliticalParty u Founder.HenryClay ... Type.Event u Involved.HenryClay

Whig Party

Figure 1: Semantic parsing via paraphrasing: For each
candidate logical form (in red), we generate canonical utter-
ances (in purple). The model is trained to paraphrase the in-
put utterance (in green) into the canonical utterances associ-
ated with the correct denotation (in blue).

does X do for a living?”, “What is X’s profes-
sion?”, and “Who is X?”, should all map to the
logical predicate Profession. To learn these map-
pings, traditional semantic parsers use data which
pairs natural language with the KB. However, this
leaves untapped a vast amount of text not related
to the KB. For instance, the utterances “Where is
ACL in 2014?” and “What is the location of ACL
2014?” cannot be used in traditional semantic
parsing methods, since the KB does not contain
an entity ACL2014, but this pair clearly contains
valuable linguistic information. As another refer-
ence point, out of 500,000 relations extracted by
the ReVerb Open IE system (Fader et al., 2011),
only about 10,000 can be aligned to Freebase (Be-
rant et al., 2013).

In this paper, we present a novel approach for
semantic parsing based on paraphrasing that can
exploit large amounts of text not covered by the
KB (Figure 1). Our approach targets factoid ques-
tions with a modest amount of compositionality.
Given an input utterance, we first use a simple de-
terministic procedure to construct a manageable
set of candidate logical forms (ideally, we would
generate canonical utterances for all possible logi-
cal forms, but this is intractable). Next, we heuris-



Semantic Parsing via Ontology Matching 

 

 
 
 
 
 
 
 
The main challenge in semantic parsing is the mismatch between language and the 
knowledge base. (a) Traditional: map utterances directly to logical forms, (b) Kwiatkowski 
et al. (2013): map utterance to intermediate, underspecified logical form, then perform 
ontology matching to handle the mismatch, (c) Berant and Liang (2014): generate 
intermediate, canonical text utterances for logical forms, then use paraphrase models. 

[Kwiatkowski et al., 2013; Berant and Liang, 2014] 

utterance

underspecified

logical

form

canonical

utterance

logical

form

ontology

matching

paraphrase

direct

(traditional)

(Kwiatkowski et al. 2013)

(this work)

Figure 2: The main challenge in semantic parsing is cop-
ing with the mismatch between language and the KB. (a)
Traditionally, semantic parsing maps utterances directly to
logical forms. (b) Kwiatkowski et al. (2013) map the utter-
ance to an underspecified logical form, and perform ontology
matching to handle the mismatch. (c) We approach the prob-
lem in the other direction, generating canonical utterances for
logical forms, and use paraphrase models to handle the mis-
match.

tically generate canonical utterances for each log-
ical form based on the text descriptions of predi-
cates from the KB. Finally, we choose the canoni-
cal utterance that best paraphrases the input utter-
ance, and thereby the logical form that generated
it. We use two complementary paraphrase mod-
els: an association model based on aligned phrase
pairs extracted from a monolingual parallel cor-
pus, and a vector space model, which represents
each utterance as a vector and learns a similarity
score between them. The entire system is trained
jointly from question-answer pairs only.

Our work relates to recent lines of research
in semantic parsing and question answering.
Kwiatkowski et al. (2013) first maps utterances to
a domain-independent intermediate logical form,
and then performs ontology matching to produce
the final logical form. In some sense, we ap-
proach the problem from the opposite end, using
an intermediate utterance, which allows us to em-
ploy paraphrasing methods (Figure 2). Fader et
al. (2013) presented a QA system that maps ques-
tions onto simple queries against Open IE extrac-
tions, by learning paraphrases from a large mono-
lingual parallel corpus, and performing a single
paraphrasing step. We adopt the idea of using
paraphrasing for QA, but suggest a more general
paraphrase model and work against a formal KB
(Freebase).

We apply our semantic parser on two datasets:
WEBQUESTIONS (Berant et al., 2013), which
contains 5,810 question-answer pairs with
common questions asked by web users; and

FREE917 (Cai and Yates, 2013), which has
917 questions manually authored by annota-
tors. On WEBQUESTIONS, we obtain a relative
improvement of 12% in accuracy over the
state-of-the-art, and on FREE917 we match the
current best performing system. The source
code of our system PARASEMPRE is released
at http://www-nlp.stanford.edu/
software/sempre/.

2 Setup

Our task is as follows: Given (i) a knowledge
base K, and (ii) a training set of question-answer
pairs {(x

i

, y

i

)}n
i=1, output a semantic parser that

maps new questions x to answers y via latent log-
ical forms z. Let E denote a set of entities (e.g.,
BillGates), and let P denote a set of properties
(e.g., PlaceOfBirth). A knowledge base K is a
set of assertions (e1, p, e2) 2 E ⇥ P ⇥ E (e.g.,
(BillGates, PlaceOfBirth, Seattle)). We use
the Freebase KB (Google, 2013), which has 41M
entities, 19K properties, and 596M assertions.

To query the KB, we use a logical language
called simple �-DCS. In simple �-DCS, an
entity (e.g., Seattle) is a unary predicate
(i.e., a subset of E) denoting a singleton set
containing that entity. A property (which is a
binary predicate) can be joined with a unary
predicate; e.g., Founded.Microsoft denotes
the entities that are Microsoft founders. In
PlaceOfBirth.Seattle u Founded.Microsoft,
an intersection operator allows us to denote
the set of Seattle-born Microsoft founders.
A reverse operator reverses the order of ar-
guments: R[PlaceOfBirth].BillGates

denotes Bill Gates’s birthplace (in con-
trast to PlaceOfBirth.Seattle). Lastly,
count(Founded.Microsoft) denotes set cardinal-
ity, in this case, the number of Microsoft founders.
The denotation of a logical form z with respect to
a KB K is given by JzKK. For a formal description
of simple �-DCS, see Liang (2013) and Berant et
al. (2013).

3 Model overview

We now present the general framework for seman-
tic parsing via paraphrasing, including the model
and the learning algorithm. In Sections 4 and 5,
we provide the details of our implementation.

Canonical utterance construction Given an ut-
terance x and the KB, we construct a set of candi-

(Berant and Liang, 2014) 


