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Class Info/Logistics 

  COMP 786 ‘Natural Language Processing’ 

  **3 UNITS** 

  Instructor: Mohit Bansal (FB246, http://www.cs.unc.edu/~mbansal/) 

  Time: Wed 10.40am-1.10pm ET 

  Room: FB008 ! ZOOM remote 

  Office Hours: Wed 1.10-2.10pm ET (appointment, zoom) 

  Course Webpage: https://www.cs.unc.edu/~mbansal/teaching/nlp-comp786-fall20.html 
 

  **Course Email**: nlpcomp786unc@gmail.com  

  Your email: check/fwd your connectcarolina xyz@email/live.unc.edu 
email for my welcome message and send me your preferred email id! 



About Me 

  Associate Professor, CS, UNC (joined Fall 2016) 
  Research Asst. Professor, TTI-Chicago, 2013-2016 
  PhD, UC Berkeley, 2008-2013 

  Research Interests: 
  Past: Syntactic parsing, coreference resolution, taxonomy 

induction, world knowledge and commonsense induction 
 

  Current: Multimodal and embodied semantics (i.e., language with 
vision and speech, for robotics); human-like language generation 
and Q&A/dialogue; interpretable and structured deep learning 

  Office FB246 

  Webpage: http://www.cs.unc.edu/~mbansal/, Email: mbansal@cs.unc.edu 
  Lab: https://murgelab.cs.unc.edu/  



Your Introductions 

   Please say your:  

  Name 

  Department/degree/major 

  Research interests (Why NLP? Past ML/AI/NLP/CV 
experience? Coding experience?) 

 
  Fun fact ☺ 



About the Course (and its Goals) 

  We will cover lots of interesting NLP topics+chapters+papers, 
brainstorm, & do fun assignments+projects! 

  I will start with some basics of traditional NLP  

  Then I will cover some specific, latest research topics, both 
based on traditional models and newer neural models (also 
some paper readings on certain topics, presented by students) 

  Will also discuss connections of NLP with vision and robotics, 
and several recent deep learning for NLP models 

 

  Some important lectures on ethics/biases in NLP/ML and tips on 
academic/research quality paper writing and reviewing 

  Brainstorm regularly and code + write up fun/novel projects! 



Prerequisites 

  Graduate-level class (with some advanced/senior Ugs) 

  Machine learning (COMP562 equivalent) and coding 
experience is definitely expected and required! (please 
talk to me class if you haven’t yet discussed this with me 
over email) 

Homeworks, projects, paper/chapter summaries, and 
paper presentations will all require solid ML foundations/
clarity and coding skills (e.g., linear algebra, diff eqns, logistic 
regression, supervised/unsup learning setups, classifiers, backprop and 
MLPs/NNs) 

  Moreover, some basic NLP background is highly 
recommended 



Expectations/Grading (tentative) 

  Written homework and programming assignments (20%), 

  Midterm Project write-up and presentation (20%) 

  Final Project write-up and presentation (30%) 

  Paper presentations and written summaries (20%) 

  Class brainstorming and participation (10%) 



Homeworks 

  Coding based assignments 

  On certain topics covered in class, e.g., word embeddings, 
entailment classification, parsing, Q&A, summarization/
translation 

  Code should be written from scratch (acknowledge any 
borrowed pieces) 

  Preferably in tensorflow/python/pytorch 



Chapter/Paper Written Summaries 

  0.5-1 page (per paper) write-up for certain week’s 
subchapters/papers 

  Describe the task 

  Summarize the methods/models 

  Explain the novelty 

  Discuss the next steps or potential improvements 



Paper Presentation 

  Lead discussion for 1-2 subchapters/papers on a topic 
some week (may be done in pairs/groups depending on 
class size) 

  Read related chapters/papers and present background to 
audience 

  Present task and ML details of given chapter/papers 

  Present demo’s of related code, etc. 
 
  Ask interesting questions to initiate brainstorming 

 
  Mention some next steps, future work, extension ideas! 



Project 

  Students will pick (early) their favorite topic among latest 
cutting-edge research topics covered in class 

  And will try a novel idea (implementing+extending or original) -- 
I am happy to discuss details! 

 
  Midterm and final report + presentation (and possibly some 

intermediate updates) 

  Preferably individual but we can discuss pairing too 

  Use conference style files and aim for high-quality project write-
ups 

 
  Will have a lecture on research-quality paper writing 



Class Participation and Brainstorming 

  Audience students expected to take part in lively discussion in 
every class and after chapter/paper reading! 

  Semi-regularly (i.e., after completing several chapters/papers in 
2-3 weeks), we will have a brainstorming and ‘idea-generation’ 
session! 

  Exact details to be announced soon but students expected to 
submit and discuss novel idea(s) on the whole general topic, 
e.g., new related task or dataset, new approach to existing task, 
combinations of tasks/approaches, etc. 

  Don’t hesitate to propose fancy ideas ☺, but try to keep them 
grounded/feasible and think of how to approach them 
realistically (in terms of datasets, models, speed, memory, etc.) 



Reference Books 

  SLP2: D. Jurafsky & James H. Martin. “Speech and Language 
Processing: An Introduction to Natural Language Processing, 
Computational Linguistics and Speech Recognition”. Prentice Hall, 
Second Edition, 2009.  

  SLP3: Many draft chapters of the third edition are available online at 
https://web.stanford.edu/~jurafsky/slp3/ 

  FSNLP: Chris Manning and Hinrich Schütze, Foundations of 
Statistical Natural Language Processing, MIT Press. Cambridge, MA: 
May 1999. http://nlp.stanford.edu/fsnlp/ 

  ML Background: Andrew Ng’s Coursera Machine Learning course 
https://www.coursera.org/learn/machine-learning  

  Stanford NLP + Deep Learning Class: http://web.stanford.edu/class/cs224n/  
 



Course Syllabus/Topics (tentative) 
•  Language Modeling 
•  Part-of-speech Tagging 
•  Syntactic Parsing: Constituent, Dependency, CCG, others 
•  Coreference Resolution 
•  Distributional Semantics: PMI, neural, CCA 
•  Compositional Semantics: Logical-form, Semantic Parsing, Vector-form, neural (RNNs/

CNNs) 
•  Question Answering: Factoid-based, Passage-based 
•  Sentiment Analysis 
•  Document Summarization 
•  Machine Translation 
•  Dialogue Models 
•  Language and Vision: Image Captioning, Video Captioning, Visual Question Answering 
•  Language and Robotics: Instructions for Navigation, Manipulation, Skill Learning; 

Human-Robot Interaction  
•  Models: Deep+structured, interpretable, adversarial, reward-based (reinforcement 

learning), etc. 
•  Ethics and Bias in NLP/ML Models 
•  How to Write and Review Research Papers 



What is NLP? 

  Question answering 



What is NLP? 

  Question answering 



What is NLP? 

  Question answering 



What is NLP? 

  Machine Translation 



What is NLP? 

  Sentiment Analysis 



What is NLP? 

  Natural Language Generation: Summarization 

-	Lohan	charged	
with	the0	of	
$2,500	necklace	
	

-	Pleaded	not	
guilty	
	

-	Judge	set	bail	at	
$40,000	
	

-	To	reappear	in	
court	on	Feb	23	



What is NLP? 

  Natural Language Generation: Conversation/Dialogue 

A Neural Network Approach to
Context-Sensitive Generation of Conversational Responses⇤

Alessandro Sordoni1†‡ Michel Galley2‡ Michael Auli3† Chris Brockett2
Yangfeng Ji4† Margaret Mitchell2 Jian-Yun Nie1† Jianfeng Gao2 Bill Dolan2

1DIRO, Université de Montréal, Montréal, QC, Canada
2Microsoft Research, Redmond, WA, USA

3Facebook AI Research, Menlo Park, CA, USA
4Georgia Institute of Technology, Atlanta, GA, USA

Abstract

We present a novel response generation sys-
tem that can be trained end to end on large
quantities of unstructured Twitter conversa-
tions. A neural network architecture is used
to address sparsity issues that arise when in-
tegrating contextual information into classic
statistical models, allowing the system to take
into account previous dialog utterances. Our
dynamic-context generative models show con-
sistent gains over both context-sensitive and
non-context-sensitive Machine Translation and
Information Retrieval baselines.

1 Introduction

Until recently, the goal of training open-domain con-
versational systems that emulate human conversation
has seemed elusive. However, the vast quantities
of conversational exchanges now available on so-
cial media websites such as Twitter and Reddit raise
the prospect of building data-driven models that can
begin to communicate conversationally. The work
of Ritter et al. (2011), for example, demonstrates that
a response generation system can be constructed from
Twitter conversations using statistical machine trans-
lation techniques, where a status post by a Twitter
user is “translated” into a plausible looking response.

⇤This paper appeared in the proceedings of NAACL-HLT
2015 (submitted December 4, 2014, accepted February 20, 2015,
and presented June 1, 2015).

†The entirety of this work was conducted while at Microsoft
Research.

‡Corresponding authors: Alessandro Sordoni (sor-
donia@iro.umontreal.ca) and Michel Galley (mgal-
ley@microsoft.com).

context
because of your game ?

message
yeah i’m on my 

way nowresponse
ok good luck !

Figure 1: Example of three consecutive utterances occur-
ring between two Twitter users A and B.

However, an approach such as that presented in Rit-
ter et al. (2011) does not address the challenge of
generating responses that are sensitive to the context
of the conversation. Broadly speaking, context may
be linguistic or involve grounding in the physical or
virtual world, but we here focus on linguistic context.
The ability to take into account previous utterances
is key to building dialog systems that can keep con-
versations active and engaging. Figure 1 illustrates
a typical Twitter dialog where the contextual infor-
mation is crucial: the phrase “good luck” is plainly
motivated by the reference to “your game” in the first
utterance. In the MT model, such contextual sensitiv-
ity is difficult to capture; moreover, naive injection
of context information would entail unmanageable
growth of the phrase table at the cost of increased
sparsity, and skew towards rarely-seen context pairs.
In most statistical approaches to machine translation,
phrase pairs do not share statistical weights regard-
less of their intrinsic semantic commonality.

We propose to address the challenge of context-
sensitive response generation by using continuous
representations or embeddings of words and phrases
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What is NLP? 

  Multimodal Natural Language Generation: Image Captioning 

[UToronto]	



What is NLP? 

  Multimodal Natural Language Generation: Video Captioning 

[Pasunuru and Bansal, 2017]	

(a) (b) (c)

Figure 5: Examples of generated video captions on the YouTube2Text dataset: (a) complex examples where the multi-task
model performs better than the baseline; (b) ambiguous examples (i.e., ground truth itself confusing) where multi-task model
still correctly predicts one of the possible categories (c) complex examples where both models perform poorly.

Relevance Coherence
Not Distinguishable 70.7% 92.6%
SotA Baseline Wins 12.3% 1.7%
Multi-Task Wins (M-to-M) 17.0% 5.7%

Table 5: Human evaluation on YouTube2Text video caption-
ing.

Relevance Coherence
Not Distinguishable 84.6% 98.3%
SotA Baseline Wins 6.7% 0.7%
Multi-Task Wins (M-to-1) 8.7% 1.0%

Table 6: Human evaluation on entailment generation.

the multi-task models are always better than the

strongest baseline for both video captioning and

entailment generation, on both relevance and co-

herence, and with similar improvements (2-7%) as

the automatic metrics (shown in Table 1).

5.5 Analysis

Fig. 5 shows video captioning generation re-

sults on the YouTube2Text dataset where our fi-

nal M-to-M multi-task model is compared with

our strongest attention-based baseline model for

three categories of videos: (a) complex examples

where the multi-task model performs better than

Given Premise Generated
Entailment

a man on stilts is playing a tuba for
money on the boardwalk

a man is playing
an instrument

a child that is dressed as spiderman
is ringing the doorbell

a child is dressed
as a superhero

several young people sit at a table
playing poker

people are play-
ing a game

a woman in a dress with two chil-
dren

a woman is wear-
ing a dress

a blue and silver monster truck mak-
ing a huge jump over crushed cars

a truck is being
driven

Table 7: Examples of our multi-task model’s generated en-
tailment hypotheses given a premise.

the baseline; (b) ambiguous examples (i.e., ground

truth itself confusing) where multi-task model still

correctly predicts one of the possible categories

(c) complex examples where both models perform

poorly. Overall, we find that the multi-task model

generates captions that are better at both temporal

action prediction and logical entailment (i.e., cor-

rect subset of full video premise) w.r.t. the ground

truth captions. The supplementary also provides

ablation examples of improvements by the 1-to-M

video prediction based multi-task model alone, as

well as by the M-to-1 entailment based multi-task

model alone (over the baseline).

On analyzing the cases where the baseline is

better than the final M-to-M multi-task model, we

find that these are often scenarios where the multi-

task model’s caption is also correct but the base-

line caption is a bit more specific, e.g., “a man is

holding a gun” vs “a man is shooting a gun”.

Finally, Table 7 presents output examples of our

entailment generation multi-task model (Sec. 5.3),

showing how the model accurately learns to pro-

duce logically implied subsets of the premise.

6 Conclusion

We presented a multimodal, multi-task learning

approach to improve video captioning by incor-

porating temporally and logically directed knowl-

edge via video prediction and entailment genera-

tion tasks. We achieve the best reported results

(and rank) on three datasets, based on multiple au-

tomatic and human evaluations. We also show mu-

tual multi-task improvements on the new entail-

ment generation task. In future work, we are ap-

plying our entailment-based multi-task paradigm

Figure 3: Output examples where our CIDEnt-RL

model produces better entailed captions than the

phrase-matching CIDEr-RL model, which in turn

is better than the baseline cross-entropy model.

captioning metrics achieve a high score even when

the generation does not exactly entail the ground

truth but is just a high phrase overlap. This

can obviously cause issues by inserting a sin-

gle wrong word such as a negation, contradic-

tion, or wrong action/object. On the other hand,

our entailment-enhanced CIDEnt score is only

high when both CIDEr and the entailment classi-

fier achieve high scores. The CIDEr-RL model,

in turn, produces better captions than the base-

line cross-entropy model, which is not aware of

sentence-level matching at all.
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What is NLP? 

  Multimodal NLU: Visual Question Answering 

1

VQA: Visual Question Answering

www.visualqa.org

Aishwarya Agrawal

⇤
, Jiasen Lu

⇤
, Stanislaw Antol

⇤
,

Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural

language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such

as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas

of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a

more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA

is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can

be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers

(www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared

with human performance.

F

1 INTRODUCTION

We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [14], [7], [10], [36], [24],
[22], [51]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [49], [11], [20].
In this paper, we introduce the task of free-form and open-
ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [2] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How
many bikes are there?”), activity recognition (e.g., “Is this man

• ⇤The first three authors contributed equally.
• A. Agrawal, J. Lu, S. Antol, D. Batra and D. Parikh are with Virginia Tech.
• M. Mitchell is with Microsoft Research, Redmond.
• C. L. Zitnick is with Facebook AI Research.

Does it appear to be rainy? 
Does this person have 20/20 vision? 

Is this person expecting company? 
What is just under the tree? 

How many slices of pizza are there? 
Is this a vegetarian pizza? 

What color are her eyes? 
What is the mustache made of? 

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

crying?”), knowledge base reasoning (e.g., “Is this a vegetarian
pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [17], [34], [48], [2] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this paper,
we present both an open-ended answering task and a multiple-
choice task [43], [31]. Unlike the open-ended task that requires
a free-form response, the multiple-choice task only requires an
algorithm to pick from a predefined list of possible answers.
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What is NLP? 

  Multimodal NLU: Video+Subtitle Question Answering 

[Lei et al., 2019]	



What is NLP? 

Robotics+NLP 

[Anderson et al., 2017; Chen et al., 2019]	

Room-to-Room Navigation Task

(a) Turn right and (b) go up 
the steps. (c) Walk to the right 
behind the 2 desks. (d) Stop 
when reach the long wooden 
table beside the ping pong 
table. (e)

(a) (b) 

(c) (d) (e) 



What is NLP? 

  Automatic Speech Recognition 



Some Exciting NLP Challenges 



Human-like Ambiguous Language 

You:  I am under the weather today.
Siri:  Here is the weather today… 50 F

  Non-literal: Idioms, Metaphors 



Human-like Ambiguous Language 

Break a leg!

  Non-literal: Idioms, Metaphors 



Human-like Ambiguous Language 

Yeah, right!

  Humor, Sarcasm, Politeness/Rudeness 

I bet I can stop 
gambling!

Please do not …



Human-like Ambiguous Language 

Clean the dishes 
in the sink.

  Prepositional Attachment, Coreference Ambiguities 



Human-like Ambiguous Language 

  Prepositional Attachment, Coreference Ambiguities 



Visually Grounded Language 

Get the mug on the 
table with black stripes.

  Text-Image Alignment: Most of our daily communication 
language points to several objects in the visual world 



Visually Grounded Language 

Is there milk in the 
refrigerator?

  Visual Question Answering: Humans asking machines about 
pictures/videos, e.g., for visually impaired, in remote/
dangerous scenarios, in household service settings 



Embodied Language (Robot Instructions) 

Turn right at the 
butterfly painting, then 
go to the end of the hall

  Task-based instructions, e.g., navigation, grasping, 
manipulation, skill learning 



Embodied Language (Robot Instructions) 

Cut some onions, and 
add to broth, stir it

  Task-based instructions, e.g., navigation, grasping, 
manipulation, skill learning 



Grounded Language Generation/Dialogue 

  Both for answering human questions, and to ask 
questions back, and for casual chit-chat 

What food is in the 
refrigerator?

Apples and 
oranges



Grounded Language Generation/Dialogue 

  Both for answering human questions, and to ask 
questions back, and for casual chit-chat 

Crack the 
window!

You mean open it 
or break it?



10-min break?	



Language Modeling and Generation 

(some slides adapted/borrowed from courses by Dan Klein, Chris Manning, Richard Socher) 



Language Modeling 

  A language model is a distribution over sequences of 
words (sentences) 

    P(w) = P(w1 … wn) 

  Purpose is to usually assign high weights to plausible 
sentences, e.g., in speech recognition or machine 
translation 

  Also used for language generation now (predict next 
word given previous words), esp. w/ new RNN models 



Traditional N-gram LMs 

2

Translation:�Codebreaking?

“Also knowing nothing official about, but having guessed
and inferred considerable about, the powerful new
mechanized methods in cryptography—methods which I
believe succeed even when one does not know what
language has been coded—one naturally wonders if the
problem of translation could conceivably be treated as a
problem in cryptography. When I look at an article in
Russian, I say: ‘This is really written in English, but it has
been coded in some strange symbols. I will now proceed to
decode.’ ”

Warren�Weaver�(1947)

source
P(e) e f

decoder
observed�����

argmax�P(e|f)�=�argmax�P(f|e)P(e)
e e

e f
best

channel
P(f|e)

Language Model Translation Model

MT�System�Components

Other�Noisy�Channel�Models?

� We’re�not�doing�this�only�for�ASR�(and�MT)
� Grammar�/�spelling�correction
� Handwriting�recognition,�OCR
� Document�summarization
� Dialog�generation
� Linguistic�decipherment
� …

NͲGram�Models

NͲGram Models
� Use�chain�rule�to�generate�words�leftͲtoͲright

� Can’t�condition�on�the�entire�left�context

� NͲgram�models�make�a�Markov�assumption

P(???�|�Turn�to�page�134�and�look�at�the�picture�of�the)

Empirical NͲGrams
� How�do�we�know�P(w�|�history)?
� Use�statistics�from�data�(examples�using�Google�NͲGrams)
� E.g.�what�is�P(door�|�the)?

� This�is�the�maximum�likelihood�estimate

198015222 the first
194623024 the same
168504105 the following
158562063 the world
 
14112454 the door
-----------------
23135851162 the *
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168504105 the following
158562063 the world
 
14112454 the door
-----------------
23135851162 the *
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Sparsity Issue & Parameter Estimation 

  New words all the time (antidisestablishmentarianism, 
kakorrhaphiophobia,, www.xyzabc156.com)….worse for new bigrams 
and trigrams! 
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Sparsity
! Problems with n-gram models:

! New words appear all the time:
! Synaptitute
! 132,701.03
! multidisciplinarization

! New bigrams: even more often
! Trigrams or more – still worse!

! Zipf’s Law
! Types (words) vs. tokens (word occurences)
! Broadly: most word types are rare ones
! Specifically: 

! Rank word types by token frequency
! Frequency inversely proportional to rank

! Not special to language: randomly generated character strings 
have this property (try it!)

Parameter Estimation
! Maximum likelihood estimates won’t get us very far

! Need to smooth these estimates

! General method (procedurally)
! Take your empirical counts
! Modify them in various ways to improve estimates

! General method (mathematically)
! Often can give estimators a formal statistical interpretation
! … but not always
! Approaches that are mathematically obvious aren’t always what works

3516 wipe off the excess 
1034 wipe off the dust
547 wipe off the sweat
518 wipe off the mouthpiece
…
120 wipe off the grease
0 wipe off the sauce
0 wipe off the mice
-----------------
28048 wipe off the *



Smoothing Techniques 
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Smoothing
! We often want to make estimates from sparse statistics:

! Smoothing flattens spiky distributions so they generalize better

! Very important all over NLP, but easy to do badly!
! We’ll illustrate with bigrams today (h = previous word, could be anything).

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total
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P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Smoothing: Add-One, Etc.
! Classic solution: add counts (Laplace smoothing / Dirichlet prior)

! Add-one smoothing especially often talked about

! For a bigram distribution, can add counts shaped like the unigram:

! Can consider hierarchical formulations: trigram is recursively 
centered on smoothed bigram estimate, etc [MacKay and Peto, 94]

! Can be derived from Dirichlet / multinomial conjugacy: prior shape 
shows up as pseudo-counts

! Problem: works quite poorly!



Smoothing Techniques 

  Classic Solution: add-one or add small priors to numer/denom 

  Backing off to smaller n-grams 

  Held-out Reweighting: Important to optimize/estimate how models 
generalize! So use held-out data to estimate the map of old count 
to new count 

 
Kneser-Ney Discounting: two successful ideas: 

  Idea 1: observed n-grams occur more in training than they will later 

  Idea 2: Type-based fertility (based on how common the word type is) 

  Read Chen and Goodman, 1996 for various details and graphs! 



RNN Language Models 

  Avoid huge number of n-grams; Memory requirement only scales 
with #words 

  Can condition on all previous history (with forget gates) 

  Loss function on identity of predicted word at each time step 

  But harder/slower to train and reach optimum (and less 
interpretable)? 

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1



Distributional Semantics 

  Words occurring in similar context have similar linguistic 
behavior (meaning) [Harris, 1954; Firth, 1957] 

  Traditional approach: context-counting vectors 
  Count left and right context in window 
  Reweight with PMI or LLR 
  Reduce dimensionality with SVD or NNMF 

 

 [Pereira et al., 1993; Lund & Burgess, 1996; Lin, 1998; Lin and Pantel, 2001; 
 Sahlgren, 2006; Pado & Lapata, 2007; Turney and Pantel, 2010; Baroni and 
 Lenci, 2010] 

 
  More word representations: hierarchical clustering based on 

bigram LM LL  
      [Brown et al., 1992] 

Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The
tree contains a special token “*” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based
features, Section 4 presents our experimental results,
Section 5 discusses related work, and Section 6 con-
cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre
et al., 2007) has focused on dependency parsing.
Dependency syntax represents syntactic informa-
tion as a network of head-modifier dependency arcs,
typically restricted to be a directed tree (see Fig-
ure 1 for an example). Dependency parsing depends
critically on predicting head-modifier relationships,
which can be difficult due to the statistical sparsity
of these word-to-word interactions. Bilexical depen-
dencies are thus ideal candidates for the application
of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured
classification approach to dependency parsing. For a
given sentence x, let Y(x) denote the set of possible
dependency structures spanning x, where each y �
Y(x) decomposes into a set of “parts” r � y. In the
simplest case, these parts are the dependency arcs
themselves, yielding a first-order or “edge-factored”
dependency parsing model. In higher-order parsing
models, the parts can consist of interactions between
more than two words. For example, the parser of
McDonald and Pereira (2006) defines parts for sib-
ling interactions, such as the trio “plays”, “Elianti”,
and “.” in Figure 1. The Carreras (2007) parser
has parts for both sibling interactions and grandpar-
ent interactions, such as the trio “*”, “plays”, and
“Haag” in Figure 1. These kinds of higher-order
factorizations allow dependency parsers to obtain a
limited form of context-sensitivity.

Given a factorization of dependency structures
into parts, we restate dependency parsing as the fol-

apple pear Apple IBM bought run of in
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11

Figure 2: An example of a Brown word-cluster hierarchy.
Each node in the tree is labeled with a bit-string indicat-
ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y�Y(x)

X

r�y

w · f(x, r)

Above, we have assumed that each part is scored
by a linear model with parameters w and feature-
mapping f(·). For many different part factoriza-
tions and structure domains Y(·), it is possible to
solve the above maximization efficiently, and several
recent efforts have concentrated on designing new
maximization algorithms with increased context-
sensitivity (Eisner, 2000; McDonald et al., 2005b;
McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-
iments, we used the Brown clustering algorithm
(Brown et al., 1992). We chose to work with the
Brown algorithm due to its simplicity and prior suc-
cess in other NLP applications (Miller et al., 2004;
Liang, 2005). However, we expect that our approach
can function with other clustering algorithms (as in,
e.g., Li and McCallum (2005)). We briefly describe
the Brown algorithm below.

The input to the algorithm is a vocabulary of
words to be clustered and a corpus of text containing
these words. Initially, each word in the vocabulary
is considered to be in its own distinct cluster. The al-
gorithm then repeatedly merges the pair of clusters
which causes the smallest decrease in the likelihood
of the text corpus, according to a class-based bigram
language model defined on the word clusters. By
tracing the pairwise merge operations, one obtains
a hierarchical clustering of the words, which can be
represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified
by its path from the root, and this path can be com-
pactly represented with a bit string, as in Figure 2.
In order to obtain a clustering of the words, we se-
lect all nodes at a certain depth from the root of the

food
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Unsupervised Embeddings 

  Vector space representations learned on unlabeled linear context 
(i.e., left/right words): distributional semantics (Harris, 1954; Firth, 1957) 



Distributional Semantics -- NNs 

  Newer approach: context-predicting vectors (NNs) 
  SENNA [Collobert and Weston, 2008; Collobert et al., 2011]: Multi-layer 

DNN w/ ranking-loss objective; BoW and sentence-level feature 
layers, followed by std. NN layers. Similar to [Bengio et al., 2003]. 

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142



Distributional Semantics -- NNs 

  CBOW, SKIP, word2vec [Mikolov et al., 2013]: Simple, super-fast NN w/ no 
hidden layer. Continuous BoW model predicts word given context, skip-
gram model predicts surrounding context words given current word 

 
 

  Other: [Mnih and Hinton, 2007; Turian et al., 2010] 

  Demos: hDps://code.google.com/p/word2vec,	
hDp://metaopJmize.com/projects/wordreprs/, hDp://ml.nec-labs.com/senna/	

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

       INPUT         PROJECTION         OUTPUT

w(t)

          INPUT         PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

                   CBOW                                                   Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5



Distributional Semantics 

  Other approaches: spectral methods, e.g., CCA 
  Word-context correlation [Dhillon et al., 2011, 2012] 

  Multilingual correlation [Faruqui and Dyer, 2014; Lu et al., 2015] 

 
  Some later ideas: Train task-tailored embeddings to 
capture specific types of similarity/semantics, e.g., 

  Dependency context [Bansal et al., 2014, Levy and Goldberg, 2014] 

  Predicate-argument structures [Hashimoto et al., 2014; Madhyastha et al., 2014] 

  Lexicon evidence (PPDB, WordNet, FrameNet) [Xu et al., 2014; Yu and Dredze, 

2014; Faruqui et al., 2014; Wieting et al., 2015] 

  Combining advantages of global matrix factorization and local context window 

methods [GloVe; Pennington et al., 2014] 



Compositional Semantics with NNs 

  Composing, combining word vectors to representations 
for longer units: phrases, sentences, paragraphs, … 

  Initial approaches: point-wise sum, multiplication    
[Mitchell and Lapata, 2010; Blacoe and Lapata, 2012] 

  Vector-matrix compositionality [Baroni and Zamparelli, 2010; 
Zanzotto et al., 2010; Grefenstette and Sadrzadeh, 2011; Socher et al., 2011; 
Yessenalina and Cardie, 2011] 

  Linguistic information added via say parses in RvNNs 
[Socher et al., 2011b, 2012, 2013a, 2013b, 2014; Hermann and Blunsom, 2013] 

  Sequential RNNs (with GRU/LSTM gates)  
 (Simple vector averaging w/ updating sometimes competitive) 



Compositional Semantics with NNs 

  Feed-forward NNs with back-propagation 

Softmax (=	logistic	regression)	is	not	very	powerful

4/7/16Richard	Socher29

• Softmax only	linear	decision	boundaries

• à Lame	when	problem
is	complex

• Wouldn’t	it	be	cool	to	
get	these	correct?

NN and backprop slides from CS224d – Richard Socher	



Compositional Semantics with NNs 

  Feed-forward NNs with back-propagation 

Neural	Nets	for	the	Win!

4/7/16Richard	Socher30

• Neural	networks	can	learn	much	more	complex	
functions	and	nonlinear	decision	boundaries!



Compositional Semantics with NNs 

  Feed-forward NNs with back-propagation 

A	neuron	is	essentially	a	binary	logistic	regression	unit

hw,b(x) = f (w
Tx + b)

f (z) = 1
1+ e−z

w,	b are	the	parameters	of	this	neuron
i.e.,	this	logistic	regression	model

33

b:	We	can	have	an	“always	on”	
feature,	which	gives	a	class	prior,	
or	separate	it	out,	as	a	bias	term



Compositional Semantics with NNs 

  Feed-forward NNs with back-propagation 

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
Before	we	know	it,	we	have	a	multilayer	neural	network….

36



Compositional Semantics with NNs 

  Feed-forward NNs with back-propagation 

Training	with	Backpropagation

• Let’s	consider	the	derivative	of	a	single	weight	Wij

• This	only	appears	inside	ai

• For	example:	W23 is	only	
used	to	compute	a2

x1 x2																	x3 +1

a1 a2

s		 U2

W23

19

b2



Compositional Semantics with NNs 

  Feed-forward NNs with back-propagation 

Training	with	Backpropagation

Derivative	of	weight	Wij:

20

x1 x2																	x3 +1

a1 a2

s		 U2

W23



Compositional Semantics with NNs 

  Feed-forward NNs with back-propagation 

where																																																		for	logistic	f

Training	with	Backpropagation

Derivative	of	single	weight	Wij :

Local	error	
signal

Local	input	
signal

21

x1 x2																	x3 +1

a1 a2

s		 U2

W23



Recurrent NNs 

  Recurrent NNs (RNNs) are non-tree, sequential versions of 
recursive RvNNs 

  Weights tied together for each time step 

  Loss function on identity of predicted word at each time step 

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1



LSTM RNNs 

c
Memory cell

Input gate Output gate

Forget gate

Figure 3: Long Short-term Memory (LSTM) unit.

Our model (Fig. 2) employs LSTMs as the nonlinear func-
tions f and g due to their ability to learn long-term depen-
dencies that exist over the instruction and action sequences,
without suffering from exploding or vanishing gradients.
Our model also integrates multi-level alignment to focus on
parts of the instruction that are more salient to the current
action at multiple levels of abstraction. We next describe
each component of our network in detail.

Encoder Our encoder takes as input the natural lan-
guage route instruction represented as a sequence
x1:N = (x1, x2, . . . , xN ), where x1 and xN are the
first and last words in the sentence, respectively. We treat
each word xi as a K-dimensional one-hot vector, where
K is the vocabulary size. We feed this sequence into an
LSTM-RNN that summarizes the temporal relationships
between previous words and returns a sequence of hidden
annotations h1:N = (h1, h2, . . . , hN ), where the annotation
hj summarizes the words up to and including xj .

We adopt an LSTM encoder architecture (Fig. 3) similar
to that of Graves, Abdel-rahman, and Hinton (2013),
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where T

e is an affine transformation, � is the logistic sig-
moid that restricts its input to [0, 1], iej , fe

j , and o

e
j are the

input, output, and forget gates of the LSTM, respectively,
and c

e
j is the memory cell activation vector. The memory

cell cej summarizes the LSTM’s previous memory c

e
j�1 and

the current input, which are modulated by the forget and in-
put gates, respectively. The forget and input gates enable the
LSTM to regulate the extent to which it forgets its previous
memory and the input, while the output gate regulates the
degree to which the memory affects the hidden state.

Our encoder employs bidirectionality, encoding the sen-
tences in both the forward and backward directions, an ap-
proach that has been found to be successful in speech recog-
nition and machine translation (Graves, Abdel-rahman,
and Hinton 2013; Bahdanau, Cho, and Bengio 2014;
Cho et al. 2014). In this way, the hidden annotations

hj = (

�!
h

>
j ;
 �
h

>
j )

> concatenate forward
�!
h j and backward

annotations
 �
h j , each determined using Equation 4c.

Multi-level Aligner The context representation of the in-
struction is computed as a weighted sum of the word vectors
xj and encoder states hj . Whereas most previous work align
based only on the hidden annotations hj , we found that also
including the original input word xj in the aligner improves
performance. This multi-level representation allows the de-
coder to not just reason over the high-level, context-based
representation of the input sentence hj , but to also consider
the original low-level word representation xj . By adding xj ,
the model offsets information that is lost in the high-level
abstraction of the instruction. Intuitively, the model is able
to better match the salient words in the input sentence (e.g.,
“easel”) directly to the corresponding landmarks in the cur-
rent world state yt used in the decoder. The context vector
then takes the form

zt =

X

j

↵tj

✓
xj

hj

◆
(5)

The weight ↵tj associated with each pair (xj , hj) is

↵tj = exp(�tj)/

X

j

exp(�tj), (6)

where the alignment term �tj = f(st�1, xj , hj) weighs the
extent to which the word at position j and those around it
match the output at time t. The alignment is modelled as a
one-layer neural perceptron

�tj = v

>
tanh(Wst�1 + Uxj + V hj), (7)

where v, W , U , and V are learned parameters.

Decoder Our architecture uses an LSTM decoder (Fig. 3)
that takes as input the current world state yt, the context
of the instruction zt, and the LSTM’s previous hidden state
st�1. The output is the conditional probability distribution
Pa,t = P (at|a1:t�1, yt, x1:N ) over the next action (3), rep-
resented as a deep output layer (Pascanu et al. 2014)
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qt = L0(Eyt + Lsst + Lzzt) (8d)
Pa,t = softmax (qt) (8e)

where E is an embedding matrix and L0, Ls, and Lz are
parameters to be learned.

Training We train the encoder and decoder models so as
to predict the action sequence a

⇤
1:T according to Equation 1

for a given instruction x1:N and world state y1:T from the

4

  LSTM (Long short term memory) RNNs have gates for forgetting, 
allowing learning of longer-term connections by avoiding vanishing/
exploding gradients 



Character RNNs 

  Can directly process each character as a unit! 
  Helps learn prefixes, stems, suffixes (form vs. function, rare/

unseen words, etc.) 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/	



RNN Generations 

  Automatically generate Shakespeare from RNNs! 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/	



RNN Generations 

  Automatically generate Wikipedia-style text from RNNs! 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/	



RNN Generations 

  Automatically generate source code from RNNs! 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/	



Various Applications of such RNNs 

  Language Modeling and Language Generation 

  Classification: Sentiment Analysis 

  Conditioned Generation: End-to-end MT, 
Summarization 

 
  Others: Parsing, Captioning, Q&A, Dialogue (some will 
be covered in future weeks) 


