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Language Modeling

A language model is a distribution over sequences of

words (sentences)
P(w) =P(w; w,)

Purpose is to usually assign high weights to plausible
sentences, e.g., in speech recognition or machine
translation

Also used for language generation now (predict next
word given previous words), esp. w/ new RNN models



Traditional N-gram LMs

= Use chain rule to generate words left-to-right
P(wl . wn) = HP(wZ]wl ce wi_l)
= Can’t condition on the entire left context

P(??? | Turn to page 134 and look at the picture of the)

= N-gram models make a Markov assumption

P(w1 wn) = HP(wZ|wz_sz_1)

P(please close the door) =

P(please|START) P(close|please) ... P(STOP|door)



Traditional N-gram LMs

* How do we know P(w | history)?

= Use statistics from data (examples using Google N-Grams)
= E.g. whatis P(door | the)?

198015222 the first

2 | 194623024 the same

S | 168504105 the following P(door|the) = —aii240
O | 158562063 the world 23135851162
o

=

£ | 14112454 the door = 0.0006

I: -

23135851162 the *

» This is the maximum likelihood estimate

https://netspeak.org/#g=*+the+door&corpus=web-en




Sparsity Issue & Parameter Estimation

» New words all the time (antidisestablishmentarianism,
kakorrhaphiophobia,, www.xyzabcl156.com)....worse for new bigrams
and trigrams!

= Maximum likelihood estimates won’t get us very far

3516 wipe off the excess

A c(w_l, w) 1034 wipe off the dust
P(w|lw_1) = p 547 wipe off the sweat
Zw’ C(w—h w ) 518 wipe off the mouthpiece

. 120 wipe off the grease
= Need to smooth these estimates 0 wipe off the sauce

0 wipe off the mice

= General method (procedurally) 28048 wipe off the *
= Take your empirical counts
= Modify them in various ways to improve estimates

=  General method (mathematically)
= Often can give estimators a formal statistical interpretation
= ... but not always
= Approaches that are mathematically obvious aren’t always what works



Smoothing Techniques

= We often want to make estimates from sparse statistics:

P(w | denied the)

3 allegations w

2 reports 5

1 claims 8| e @ _ @
1 request % § = *g) %% "qCS
7 total =8| & € &

= Smoothing flattens spiky distributions so they generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

allegations
reports
charges
motion
benefits

claims
request

= Very important all over NLP, but easy to do badly!



Smoothing Techniques

Classic Solution: add-one or add small priors to numer/denom
Backing off to smaller n-grams

Held-out Reweighting: Important to optimize/estimate how models
generalize! So use held-out data to estimate the map of old count

to new count

Kneser-Ney Discounting: two successful ideas:
ldea 1: observed n-grams occur more in training than they will later

|ldea 2: Type-based fertility (based on how common the word type is)

Read Chen and Goodman, 1996 for various details and graphs!

http://wordnetweb.princeton.edu/perl/webwn?s=bank




RNN Language Models

Avoid huge number of n-grams; Memory requirement only scales
with #words

Can condition on all previous history (with forget gates)
Loss function on identity of predicted word at each time step

But harder/slower to train and reach optimum (and less
interpretable)?

0000 — -
z

Xt-1 r Xt |) Xt+1




Distributional Semantics

Words occurring in similar context have similar linguistic
behavior (meaning) [Harris, 1954; Firth, 1957] food

Traditional approach: context-counting vectors
Count left and right context in window
Reweight with PMI or LLR
Reduce dimensionality with SVD or NNMF

[Pereira et al., 1993; Lund & Burgess, 1996; Lin, 1998; Lin and Pantel, 2001;
Sahlgren, 2006; Pado & Lapata, 2007; Turney and Pantel, 2010; Baroni and
Lenci, 2010]

More word representations: hierarchical clustering based on
bigram LM LL
[Brown et al., 1992] 0 i
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Unsupervised Embeddings

» Vector space representations learned on unlabeled linear context
(i.e., left/right words): distributional semantics (Harris, 1954; Firth, 1957)
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Distributional Semantics -- NNs

Newer approach: context-predicting vectors (NNs)

» SENNA [Collobert and Weston, 2008; Collobert et al., 2011]: Multi-layer
DNN w/ ranking-loss objective; BoW and sentence-level feature
layers, followed by std. NN layers. Similar to [Bengio et al., 2003].

i-th output = P(w, = i| context)

softmax
(X ) R (XX D)
A
. \
most| computation here \

\

\
\
1
tanh !
o) '

...........................................

shared parameters
across words

index for wy_, 4 index for w;_» index for w;,_;



Distributional Semantics -- NNs

CBOW, SKIP, word2vec [Mikolov et al., 2013]. Simple, super-fast NN w/ no
hidden layer. Continuous BoW model predicts word given context, skip-
gram model predicts surrounding context words given current word

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2) w(t-2) \\
- - N
O
w(t-1) w(t-1) %\((\
\SUM L | e\(\
o - S
/ 5\\N

— w(t) w(t) —

N
/ NEE
w(t+1) A w(t+1)
- (0\(\ .
Sl .

w(t+2)

cBow Skip-gram

» Other: [Mnih and Hinton, 2007; Turian et al., 2010]

Demos: https://code.google.com/p/word2vec,
http://metaoptimize.com/projects/wordreprs/, http://ml.nec-labs.com/senna/




Skipgram word2vec

[Mikolov et al., 2013]

INPUT PROJECTION OUTPUT
w(t-2)
. context
window
w(t-1) W
w(t) > ”
w(t+1)
w(t+2)

Few mins. vs. days/weeks/months!!



Skip-gram word2vec Objective Function

[Mikolov et al., 2013]
Objective of Skip-gram model is to max. the avg. log probability:

T
XY logplwnlu)

t=1 —c<j<c,j#0

The above conditional probability is defined via the softmax function:

;)T
exp (vwo vw1>

p(wo|w1) =
Z@MU/:1 eXp (U{Uvaz)

where v and Vv’ are the “input” and “output” vector representations
of w, and W is the number of words in the vocabulary



Efficient Skip-gram word2vec:
[Mikolov et al., 2013]
Negative Sampling:

k

log O-(Ufiuo var) + Z B~ P (w) [log O(_U:M
1=1

-
Vwr )

|.e., to distinguish the target word w, from draws from the noise
distribution P, (w) using logistic regression, where there are k
negative samples for each data sample.



Efficient Skip-gram word2vec:

[Mikolov et al., 2013]

Hierarchical Softmax:

L(w)—1

plwlwr) = H 0( (w,§ +1) = ch(n(w, ))]].v;(w,j)%w[)

Instead of evaluating W output nodes in the neural network to obtain
the probability distribution, it is needed to evaluate only about
log,(W) nodes.

Uses a binary tree representation of the output layer with the W
words as its leaves and, for each node, explicitly represents the
relative probabilities of its child nodes. These define a random walk
that assigns probabilities to words.



Analogy Properties Learned

WOMAN

UNCLE

KING

MAN/ /

QUEEN

AUNT

[Mikolov et al., 2013]

KINGS

N\

QUEENS

KING

AN

QUEEN




Analogy Properties Learned

1.5

0.5

-0.5

-1.5

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about

[Mikolov et al., 2013]

Country and Capital Vectors Projected by PCA

what a capital city means.
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Analogy Properties Learned

[Mikolov et al., 2013]

Newspapers
New York New York Times Baltimore Baltimore Sun
San Jose San Jose Mercury News Cincinnati Cincinnati Enquirer
NHL Teams
Boston Boston Bruins Montreal Montreal Canadiens
Phoenix Phoenix Coyotes Nashville Nashville Predators
NBA Teams
Detroit Detroit Pistons Toronto Toronto Raptors
Oakland Golden State Warriors Memphis Memphis Grizzlies
Airlines
Austria Austrian Airlines Spain Spainair
Belgium Brussels Airlines Greece Aegean Airlines
Company executives
Steve Ballmer Microsoft Larry Page Google
Samuel J. Palmisano IBM Werner Vogels Amazon

Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples).
The goal is to compute the fourth phrase using the first three. Our best model achieved an accuracy
of 72% on this dataset.



Analogy Properties Learned

[Mikolov et al., 2013]

Czech + currency | Vietnam + capital German + airlines Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche
Check crown Ho Chi Minh City carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two
vectors are shown, using the best Skip-gram model.



Distributional Semantics

Other approaches: spectral methods, e.g., CCA
Word-context correlation [pnilion et al., 2011, 2012]

Multilingual correlation [Faruqui and Dyer, 2014; Lu et al., 2015]

MUIti'Sense embeddings [Reisinger and Mooney, 2010; Neelakantan et al., 2014]

Some later ideas: Train task-tailored embeddings to

capture specific types of similarity/semantics, e.g.,
Dependency context [Bansal et al., 2014, Levy and Goldberg, 2014]
Predicate-argument structures [Hashimoto et al., 2014; Madhyastha et al., 2014]
Lexicon evidence (PPDB, WordNet, FrameNet) [Xu et al., 2014; Yu and Dredze,
2014; Faruqui et al., 2014; Wieting et al., 2015]

Combining advantages of global matrix factorization and local context window
methods [GloVe; Pennington et al., 2014]



Multi-sense Embeddings

» Different vectors for each sense of a word

... chose Zbigniew Brzezinski
for the position of ...

... thus the symbol s position
on his clothing was ...

... writes call options against
the stock position ...

... offered a position with ...
... a position he would hold
until his retirement in ...

... endanger their position as
a cultural group...

... on the chart of the vessel s
current position ...

... not in a position to help...

* single

(collect contexts)

Figure 1: Overview of the multi-prototype approach
to near-synonym discovery for a single target word
independent of context. Occurrences are clustered
and cluster centroids are used as prototype vectors.
Note the “hurricane” sense of position (cluster 3) is

(cluster)

(cluster#1)
location
importance
bombing
——
(cluster#2)
post
appointme
nt, role, job
S —
(cluster#3)
intensity,
winds,

hour, gust
S —

(cluster#4)
lineman,
tackle, role,
scorer

(similarity)

not typically considered appropriate in WSD.

[Reisinger and Mooney, 2010]
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Figure 2: Architecture of Multi-Sense Skip-gram
(MSSG) model with window size R; = 2 and
K = 3. Context ¢; of word w; consists of
We—1, Wi—2, Wt 1, Wer2. The sense is predicted by
finding the cluster center of the context that is clos-
est to the average of the context vectors.

[Neelakantan et al., 2014]



Syntactically Tailored Embeddings

[Bansal et al., 2014]

Context window size (SKIP)

Smaller window - syntactic/functional similarity

Larger window - topical similarity

The morning flight at the JFK airport was delayed

\ \ ] )

<

context window

Similar effect in distributional representations (Lin and wu, 2009)



Cluster Examples

[Bansal et al., 2014]
» SKIP, w =10:
lattendant, takeoff, airport, carry-on, airplane, flown, landings, flew, fly, cabins, ...]
[maternity, childbirth, clinic, physician, doctor, medical, health-care, day-care, ...]

[transactions, equity, investors, capital, financing, stock, fund, purchases, ...]



Cluster Examples

[Bansal et al., 2014]

» SKIP, w =1
[Mr., Mrs., Ms., Prof., III, Jr., Dr.]
[Jeffrey, William, Dan, Robert, Stephen, Peter, John, Richard, ...]

[Portugal, Iran, Cuba, Ecuador, Greece, Thailand, Indonesia, ...]

[his, your, her, its, their, my, our]
| Your, Our, Its, My, His, Their, Her]

[truly, wildly, politically, financially, completely, potentially, ...]



Syntactically Tailored Embeddings

[Bansal et al., 2014]

» Syntactic context (SKIPygp)
» Condition on dependency context instead of linear

» First parse a large corpus with baseline parser:

(dep label)
NMOD PMOD

N NN VY

said that the regulation of  safety is

(grandparent) (parent) (child)

1



Syntactically Tailored Embeddings

[Bansal et al., 2014]

» Syntactic context (SKIPygp)
» Condition on dependency context instead of linear

» Then convert each dependency to a tuple:

dep label grandparent parent child dep label
[PMOD< I> regulation_. of  safety PMOD._ L>]
l \ i )
\ i i \
! Y
\ ! )
Y

context windows

»  Syntactic information in clustering, topic, semantic space models

(Sagae and Gordon, 2009; Haffari et al., 2011; Grave et al., 2013; Boyd-Graber and Blei, 2008;
Pado and Lapata, 2007)



Intrinsic Evaluation

(Finkelstein et al., 2002)

[Bansal et al., 2014]

Representation SIM TAG
BROWN — 89.3
SENNA 49.8 85.2
HUANG 62.6 78.1
SKIP, w = 10 44.6 71.5
SKIP, w = 5 44 .4 1.1
SKIP, w =1 37.8 86.6
SKIPpgp 34.6 88.3
Topical Syntactic/

Functional



Parsing Experiments

Main WSJ results:

System Test
Baseline 91.9
BROWN 92.7
SENNA 92.3
TURIAN 92.3
HUANG 92.4
SKIP 92.3
SKIPpgp 92.7
Ensemble Results
ALL — BROWN 92.9
ALL 93.0

[Bansal et al., 2014]

(faster)

(complementary)



Task-Trained Embeddings

[Chen and Manning, 2014; CS224n]

» Can also directly train word embeddings on the task, via back-prop
from the task supervision (XE errors), e.g., dependency parsing:

Softmax probabilities

Output layer y cross-entropy error will be

y = softmax(Uh + b,) back-propagated to the
embeddings.
Hidden layer h
h = ReLU(Wx + b,) m
Input layer x |( )( ) ( ) ( )( )

lookup + concat f

............................................

nsubj

He PRP



Multilingual Embeddings via CCA

Translational context (say, English €<-> German) can
help learn stronger embeddings, e.g., separate
antonyms vs. synonyms

CCA on translation pairs to map them to shared space

E[(u'x)(v'y)]

max
uerPz veRPy  /E[(uTx)2]\/E[(vy)?
B u' 2izyV
Vu'Eu/vIZ,, v

[Faruqui and Dyer, 2014]



Multi-view Embeddings via CCA

Before CCA pretty

cute
charming

gorgeous
magnificent

splendi

marvelous

elegant

After CCA
elegant’ charming' cute'
gorgeous' pretty'
magnificent'
splendid’
marvelous'

[Faruqui and Dyer, 2014]



Linear vs Deep CCA

Linear CCA results:

Embeddings WS-353  WS-SIM  WS-REL || SL-999
Original 46.7 56.3 36.6 26.5
CCA-1 67.2 73.0 63.4 40.7
CCA-Ens 67.5 73.1 63.7 40.4

Linear feature mapping not sufficiently powerful to
capture hidden, non-linear relationships within data

Use deep NNs to learn non-linear transformations of orig.
embeddings to space where linear correlation maximized



Deep-CCA

English
word vector 1

foul Magnificent

., cute
beastly i‘())vtiusl u}éomdor eous
ugly g q gorg
marvelous charming
hidous splendid
tt
elegant prefty
——

German
word vector 2

hassliche bezaubernder
foul . abscheulichen
ziemlich a7k lsren
grotesk schrecklichen

gebot 1 t
groPartige clegarie

hervorragende
wunderbaren

clever
blonden

[Lu, Wang, Bansal, Gimpel, Livescu, 2015]



Deep-CCA

2 DNNs f, g extract features from the 2 input views x and y
DNNs are trained to maximize output linear correlation of 2 views

DNN weights and linear projections optimized together:

uTzng

1max
Wf7Wg7uav \/uTszU\/VnggV

Covariance matrices computed for {f(x;),g(y:)}, , as in CCA

Mini-batch SGD: Feed-forward a sample to estimate (u, v) and
gradient and then update NN weights via back-propagation

[Andrew et al., 2013]



Results

Word-similarity improvements

Embeddings WS-353 WS-SIM  WS-REL || SL-999
Original 46.7 56.3 36.6 26.5
CCA-1 67.2 73.0 63.4 40.7

CCA-Ens 67.5 73.1 63.7 40.4
DCCA-1 (BestAvg) 69.6 73.9 65.6 38.9
DCCA-Ens (BestAvg) 70.8 75.2 67.3 41.7
DCCA-1 (MostBeat) 68.6 73.5 65.7 42.3
DCCA-Ens (MostBeat) 69.9 74.4 66.7 42.3

Also gets improvements on bigram similarity datasets

[Lu, Wang, Bansal, Gimpel, Livescu, 2015]



Analysis

High-similarity word pairs that change most with DCCA

better with DCCA worse with DCCA
arrive  come author creator
locate find leader manager
way manner buddy companion
recent new crowd bunch
take obtain achieve succeed
boundary border attention interest
win accomplish join add
contemplate think mood emotion

DCCA discards hypernymy, separates senses

[Lu, Wang, Bansal, Gimpel, Livescu, 2015]



Analysis

» DCCA more cleanly separates synonym-antonym lists

grave RISKLESS hazardous
grievous UNADVENTUROUS RISK-FREE grave dangerous
life-threatening RISKLESS unsafe
UNHURT dangerous .
RISK-FREE unsafe grievous life-threatening
hazardous serious SAFE
. . serious
life-threatening SECURE . grave
. risky
risky unsafe UNHURT SAFE grievous
RISK-FREE
SECURE hazardous SOUND SECURE RISKLESS
SAFE UNADVENTUROUS UNHURT
COUND dangerous SOUND
serious risky UNADVENTUROUS
Original CCA-1 DCCA-1 (MostBeat)

[Lu, Wang, Bansal, Gimpel, Livescu, 2015]




Retrofitting Word Embeddings to Lexicons

We want the inferred word vector to be close to the observed
value q" and close to its neighbors q;, Vj such that (i, j) € E,
where E is the set of relations in a dictionary/lexicon (e.g.,
WordNet, PPDB, etc.)

v(Q) = Z|:az”% Gl + Y Billa — gl
1=1

(i,J)EE

Figure 1: Word graph with edges between related words
showing the observed (grey) and the inferred (white)
word vector representations.

[Faruqui et al., 2015]



Bias in Word Embeddings

Extreme she Extreme he

. homemaker
. nurse

. receptionist
. librarian

. hairdresser

. hanny

. bookkeeper
stylist 9

1 1. maestro

2 2. skipper

3 3. protege

4 4. philosopher
5. socialite 5.
6 6
7 7
8 8
9

1

captain

. architect
. financier
. warrior

broadcaster

0. housekeeper 10. magician

Gender stereotype she-he analogies
sewing-carpentry registered nurse-physician housewife-shopkeeper

nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle  vocalist-guitarist petite-lanky

sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas lovely-brilliant

Gender appropriate she-he analogies
queen-king sister-brother mother-father
waitress-waiter ~ ovarian cancer-prostate cancer convent-monastery

Figure 1: Left The most extreme occupations as projected on to the she—he gender direction on
w2vNEWS. Occupations such as businesswoman, where gender is suggested by the orthography,
were excluded. Right Automatically generated analogies for the pair she-he using the procedure
described in text. Each automatically generated analogy is evaluated by 10 crowd-workers to whether
or not it reflects gender stereotype.

Debiasing word embeddings via identifying pairs (sets) of words to
correct/neutralize, identify bias direction (subspace), and then
debias via neutralize+equalize or soften algorithms.

[Bolukbasi et al., 2016]



Compositional Semantics with NNs

Composing, combining word vectors to representations
for longer units: phrases, sentences, paragraphs, ...

Initial approaches: point-wise sum, multiplication
[Mitchell and Lapata, 2010; Blacoe and Lapata, 2012]

Vector-matrix compositionality [Baroni and Zamparelii, 2010;

Zanzotto et al., 2010; Grefenstette and Sadrzadeh, 2011; Socher et al., 2011;
Yessenalina and Cardie, 2011]

Linguistic information added via say parses in RvNNs
[Socher et al., 2011b, 2012, 2013a, 2013b, 2014; Hermann and Blunsom, 2013]

Sequential RNNs (with GRU/LSTM gates)

(Simple vector averaging w/ updating sometimes competitive)



Compositional Semantics with NNs

» Feed-forward NNs with back-propagation

Softmax (= logistic regression) is not very powerful

e Softmax only linear decision boundaries

- Lame when problem
is complex

Wouldn’t it be cool to
get these correct?

NN and backprop slides from CS224d — Richard Socher



Compositional Semantics with NNs

» Feed-forward NNs with back-propagation

Neural Nets for the Win!

* Neural networks can learn much more complex
functions and nonlinear decision boundaries!




Compositional Semantics with NNs

» Feed-forward NNs with back-propagation

A neuron is essentially a binary logistic regression unit

b: We can have an “alwayson”

hw,b (X) = f(wa + b) «— feature, WhiFh gives a CI?SS prior,
or separateit out, as a biasterm
1

1(2)= l+e" , r

> h,,,(x)

+1 w, b are the parameters of this neuron
i.e., this logistic regression model



Compositional Semantics with NNs

» Feed-forward NNs with back-propagation

A neural network
= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network....

l

hyo(X)

l

+1 LayerL,

Layer L,




Compositional Semantics with NNs

» Feed-forward NNs with back-propagation
Training with Backpropagation
* Let’s consider the derivative of a single weight W;

s 0 .o 0 _p 0 7
GW_8WU a_6WU f(z)—aWU f(Waz +b)

e This only appears inside g,

* For example: W,5 is only
used to compute a,

19




Compositional Semantics with NNs

» Feed-forward NNs with back-propagation

Training with Backpropagation

0s 0 0 0

T = aWUTa = WUTf(z) = WUTf(Wx + b)
N . 0 Jy ou
Derivative of weight W 8—1 : 8—*5%
zi o= Wiz+b =Y Wiz;+b
agfijUTa — %UM " e ;
. aj;(;) 8%3 W3
= Uz‘f’%)%
() Wi b




Compositional Semantics with NNs

» Feed-forward NNs with back-propagation

Training with Backpropagation

M-

Derivative of single weight W : = - wia+n -
g, = Uil e =g
)

= UZf/(ZZ)WZWkak
o

= sz’(zZ) CBj
——

T
Local error Local input
signal signal

Wijz; +0b;

<
Il
—

U;

where f'(z) = f(2)(1 — f(z)) for logistic f




Syntactically Recursive NNs

» Socher et al., 2013a, 2014: RvNNs on constituent and dependency
parse trees

X1

X3 at x
Students bikes night

https://stanfordnlp.github.io/CoreNLP/demo.html
https://parser.kitaev.io/




Recurrent NNs

Recurrent NNs (RNNs) are non-tree, sequential versions of
recursive RvNNs

Weights tied together for each time step

Loss function on identity of predicted word at each time step

htig
W

>

Xt-1 r Xt Xes1 r

e00e| (ecee| (o000

v

0000 —
=
0000 —>~
0000 — -
x




LSTM RNNs

LSTM (Long short term memory) RNNs have gates for forgetting,
allowing learning of longer-term connections by avoiding vanishing/
exploding gradients

L hj—l

Forget gate
€L j h j—1 ;

CU]\( hj—l
Input ga‘[e\@/ @/Output gate
hj—l (
\@ >(-¢> > C >(-¢> > N

X / Memory cell

https://colah.github.io/posts/2015-08-Understanding-LSTMs/




Character RNNs

Can directly process each character as a unit!
Helps learn prefixes, stems, suffixes (form vs. function, rare/
unseen words, etc.)

target chars: “e” “” “” ‘0"
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
tput |
outputiayer 1 39 1.0 1.9 -0.1
4.1 12 -1.1 2.2
T | T Wy
0.3 1.0 i [ e
hidden layer | -0.1 » 0.3 > -0.5 — 0.9
0.9 0.1 -0.3 ()17
T T T W
1 0 0 0
. 0 1 0 0
input layer 0 0 1 1
0 0 0 0
input chars: “h” et | “17

http://karpathy.qithub.io/2015/05/21/rnn-effectiveness/




Supervised Sentence Embedding Models

Just like word embeddings were supervised using lexicons,
dictionaries, taxonomies (WordNet) etc., sentence embeddings
also benefit greatly from supervision!

2 examples: supervision based on bidirectional sentence similarity

(paraphrases) or directed similarity (entailment vs contradiction vs
neutral)



Paraphrase-based Sentence Embeddings

Phrases that mean the same, are replaceable in context

main reason why

informed about the outcome
with particular emphasis
we 'll have a good time

50 years ago

that , according to

program is aimed at

are under the obligation

a critical component

principal reason for
notified of the results

with specific focus

we 're gonna have fun

five decades ago

which , in accordance with
programme aims to

have a duty

an essential element



Paraphrase-based Sentence Embeddings

PPDB: Massive, useful resource (220M) automatically extracted
from parallel bilingual corpora [Ganitkevitch et al., 2013]

l[dea summary: carefully extract a few (< 0.05%) +ve and -ve pairs
from unannotated PPDB as weak supervision

Train a parametric paraphrase model (2-view RNN with hinge
loss) on these pairs, to be able to represent arbitrary phrases as
embeddings

This learns strong word/phrase embeddings that better predict
paraphrases on new annotated PPDB subset and gets SoA on
word/bigram similarity datasets

[Wieting, Bansal, Gimpel, Livescu, Roth, 2015]



Paraphrase Model

» 2 parse-based RvNNs with a hinge-based loss function

Loss

rea”

Composition =
g(p) = fF(Wlg(e1); g(e2)] +0)

1(0000)2(0000)3(0000)4(00.00) 12(0000)3(00.00)
The cats catch mice Cats eat mice

[Socher et al., 2011]



Paraphrase Model

» Loss: +ve pairs closer than -ve pairs with margin 0

Positive training pairs Negative training pairs
1
— (0,68 — . L g(t
WHJIV%W|X|< > g(z1) - g(z2)[+|g(z1) - g(t1))
(r1,r2)EX

+max(0,d —[g(x1) - g(z2)|+|g(z2) - 9(t2>>)

\ y ) \ )
Regularization terms

[Wieting, Bansal, Gimpel, Livescu, Roth, 2015]



Entailment-based Embeddings

» SNLI and Multi-NLI corpora with sentence pairs of 3 relationships:
entailment, contradiction, neutral/unrelated

. Premise | label | Hypothesis | Genre |
;I:;easl)ld QIS ENES CemEiz) CEtelE, GEa neutral ~ Ca'daan knew the Old One very well. Fiction
Your gift is appreciated by each and every student neutral Hundreds of students will benefit from your Letters
who will benefit from your generosity. generosity.

yes oW Yo know if if everybody like in August when ... August is a black out month for vacations in  Telephone
everybody's on vacation or something we can dress a contradiction the compan Soeech
little more casual or pany. 0

At the other end of Pennsylvania Avenue, people . People formed a line at the end of
. . entailment . 9/11 Report
began to line up for a White House tour. Pennsylvania Avenue.

A black race car starts up in front of a crowd of people. contradiction A man is driving down a lonely road. SNLI/

[Bowman et al., 2015; Williams et al., 2017]



Entailment-based Embeddings

Encoding Matching

Same

Structure
— Prediction

Hypothesis

[wuv@u v —ul

[Conneau et al., 2017]



Entailment-based Embeddings

Model ‘ MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
Unsupervised representation training (unordered sentences)

Unigram-TFIDF 737 79.2 903 82.4 - 850 73.6/81.7 - - .58/.57
ParagraphVec (DBOW) 60.2 669 763 70.7 - 594 7209/81.1 - - 42/.43
SDAE 74.6 780 90.8 86.9 - 784  73.7/80.7 - - .37/.38
SIF (GloVe + WR) - - - - 822 - - - 84.6 .69/ -

word2vec BOWT 777 79.8  90.9 88.3 79.7 83.6 72.5/814 0.803 78.7 .65/.64
fastText BOWT 76.5 789 91.6 87.4 78.8 81.8  72.4/81.2 0.800 77.9 .63/.62
GloVe BOW' 78.7 785 91.6 87.6 79.8 83.6 72.1/80.9 0.800 78.6 .54/.56

GloVe Positional Encoding’| 78.3 77.4  91.1 87.1 80.6 833 72.5/81.2  0.799 77.9 .51/.54
BiLSTM-Max (untrained)’ | 77.5 81.3  89.6 88.7 80.7 85.8 73.2/81.6  0.860 83.4 .39/.48

Unsupervised representation training (ordered sentences)

FastSent 70.8 784  88.7 80.6 - 76.8 72.2/80.3 - - .63/.64
FastSent+AE 71.8 76.7 88.8 81.5 - 804 71.2/79.1 - - .62/.62
SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0  0.858 82.3 .29/.35
SkipThought-LLN 794 831 937 89.3 829 884 - 0.858 79.5 44/.45
Supervised representation training
CaptionRep (bow) 619 693 774 70.8 - 722 - - - .46/.42
DictRep (bow) 76.7 787  90.7 872 - 81.0 68.4/76.8 - - .67/.70
NMT En-to-Fr 64.7 70.1 849 81.5 82.8 - 43/.42

Paragram-phrase - - - - 797 - - 0.849 83.1 J1/ -

BiLSTM-Max (on SST)T (*)y 837 90.2 89.5 (*) 86.0 72.7/80.9  0.863 83.1 .55/.54
BiLSTM-Max (on SNLI)! | 79.9 846 92.1 89.8 83.3 88.7 75.1/82.3  0.885 86.3 .68/.65
BiLSTM-Max (on AIINLI)T| 81.1 86.3 92.4 90.2 84.6 882 76.2/83.1  0.884 86.3 .70/.67

Supervised methods (directly trained for each task — no transfer)

Naive Bayes - SVM 794 81.8 932 86.3 83.1 - - - - -
AdaSent 83.1 86.3 955 933 - 924 - - - -
TF-KLD - - - - - - 80.4/85.9 - - -
Ilinois-LH - - - - - - - - 84.5 -
Dependency Tree-LSTM - - - - - - - 0.868 - -

[Conneau et al., 2017]



Classification Tasks: Sentiment Analysis

FROM THE HUMANS BEHIND

Ever wonder what your pets do

‘when you're nof home?

LLOMNATON
THe SECRET
LIFEof

Sentiment Analysis with Python NLTK Text Classification

This is a demonstration of sentiment analysis using a NLTK 2.0.4 powered text classification process. It can tell you whether it
thinks the text you enter below expresses positive sentiment, negative sentiment, or if it's neutral. Using hierarchical

classification, neutrality is determined first, and sentiment polarity is determined second, but only if the text is not neutral.

Analyze Sentiment

Language
english ¢

Enter text

It always amazes me how Universal never
cares to create anything remotely clever
when it comes to their animations, and so
once again they come up with a harmless
little story that wants to be cute and
funny (which it is sometimes) but is only
bound to be quickly forgotten.

Enter up to 50000 characters

Analyze

Sentiment Analysis Results

The text is neg.

The final sentiment is determined by looking at the classification
probabilities below.
Subjectivity
e neutral: 0.3
o polar: 0.7
Polarity

e pos:0.2
e neg: 0.8



Sentiment Analysis

» Earlier methods used bag of words, e.g., lexicons of
positive and negative words and phrases

» Cannot distinguish tricky cases like:

+ white  blood cells destroying an infection
— an infection destroying white  blood cells

+  There are slow and repetitive parts but it has just enough
spice to keep it interesting.

— Stealing Harvard doesn’t care about cleverness, wit or any
other kind of intelligent humor.



Sentiment Analysis

Even simpler issues like negation hard to understand

Socher et al., 2013b present new compositional
training data and new composition model

cleverness other kind intelligent humor



Sentiment Analysis

» Even simpler issues like negation hard to understand

» Socher et al., 2013b present new compositional
training data and new composition model



Sentiment Analysis

» Sentiment Compositionality:

e Parse trees of 11,855 sentences
e 215,154 phrases with labels nerdviole |

e Allowstraining and evaluating iy | Moo Somoster Meckd Somowiat Pose ey
with compositionalinformation  ,ciomenal fantasy best sellers

[ 0
| | | | | | |
Very Negative Somewhat Neutral Somewhat Positive Very
negative negative positive positive

100%

80% -

60% -

40% -

% of Sentiment Values

20% -

0%

5 10 15 20 25 30 35 40 45
N-Gram Length



Sentiment Analysis

» Better Models: Tree-based LSTM-RNNSs
Tree LSTMs

e We can use those ideasin
grammatical tree structures!
e Paper: Tai et al. 2015:

Improved Semantic Representations From
Tree-Structured Long Short-Term Memory Networks Z4 Z5 Z6

e |dea: Sum the child vectors hi= ) hk,
in a tree structure

ij=0 (W(%j + U, + b(i>) ,

finl=o (W(f)xj +UDhy + b(f)) :

e Each child has its own
forget gate

0j = (WOw; + U, +5))

u; = tanh (Wz; + UR; +4®),

¢j =15 Ouj + Z fik © ¢k,
e Same softmax on h keC(j)
h; = 0; ® tanh(c;),




Sentiment Analysis

» Better Models: Recursive Neural Tensor Network
(RNTN)

©
©o P2 = g(a,p1)

©o p1=g(b,c)

©/ @ ®
Neural Tensor Layer @ ©© <o
.. hot very good..
Slices of Standard a b c
Tensor Layer Layer
/ (o e — — 3\ A
NCOICIO)

|
|
%i +[8333 E

— e T e e e e e — )
P — — —— — — — — —




Sentiment Compositionality

Results on Stanford Sentiment Treebank

Method Fine-grained Binary
RAE (Socher et al., 2013) 43.2 82.4
MV-RNN (Socher et al., 2013) 44 .4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DRNN (Irsoy and Cardie, 2014) 49.8 86.6
LSTM 45.8 86.7
Bidirectional LSTM 49.1 86.8
2-layer LSTM 47.5 85.5
2-layer Bidirectional LSTM 46.2 84.8
Constituency Tree LSTM (no tuning) 46.7 86.6 of word vectors
Constituency Tree LSTM 50.6 86.9

» Demos: http://nlp.stanford.edu:8080/sentiment/rntnDemo.htm|
[Yessenalina and Cardie, 2011; Socher et al., 2013b]




Other Classification Tasks

Sentence similarity
Entailment classification
Spam detection

Document topic classification

Others: abusive language, hate speech, humor, irony,
rumor, sarcasm detection, etc.

SemEval has great new tasks every year with novel datasets in
many cases! Some recent years:

http://alt.qcri.org/semeval2019/index.php?id=tasks
http://alt.qcri.org/semeval2018/index.php?id=tasks
http://alt.qcri.org/semeval2017/index.php?id=tasks
http://alt.qcri.org/semeval2016/index.php?id=tasks
http://alt.qcri.org/semeval2015/index.php?id=tasks




