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Show, Attend, and Tell 

Neural Image Caption Generation with Visual Attention

3. Image Caption Generation with Attention
Mechanism

3.1. Model Details

In this section, we describe the two variants of our
attention-based model by first describing their common
framework. The key difference is the definition of the �
function which we describe in detail in Sec. 4. See Fig. 1
for the graphical illustration of the proposed model.

We denote vectors with bolded font and matrices with capi-
tal letters. In our description below, we suppress bias terms
for readability.

3.1.1. ENCODER: CONVOLUTIONAL FEATURES

Our model takes a single raw image and generates a caption
y encoded as a sequence of 1-of-K encoded words.

y = {y1, . . . ,yC

} , y
i

2 RK

where K is the size of the vocabulary and C is the length
of the caption.

We use a convolutional neural network in order to extract a
set of feature vectors which we refer to as annotation vec-
tors. The extractor produces L vectors, each of which is
a D-dimensional representation corresponding to a part of
the image.

a = {a1, . . . ,aL} , ai 2 RD

In order to obtain a correspondence between the feature
vectors and portions of the 2-D image, we extract features
from a lower convolutional layer unlike previous work
which instead used a fully connected layer. This allows the
decoder to selectively focus on certain parts of an image by
weighting a subset of all the feature vectors.

3.1.2. DECODER: LONG SHORT-TERM MEMORY
NETWORK

We use a long short-term memory (LSTM) net-
work (Hochreiter & Schmidhuber, 1997) that produces a
caption by generating one word at every time step condi-
tioned on a context vector, the previous hidden state and
the previously generated words. Our implementation of
LSTMs, shown in Fig. 2, closely follows the one used in
Zaremba et al. (2014):
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are the input, forget, memory, output
and hidden state of the LSTM respectively. W•, U•, Z• and

Figure 2. A LSTM cell, lines with bolded squares imply projec-
tions with a learnt weight vector. Each cell learns how to weigh
its input components (input gate), while learning how to modulate
that contribution to the memory (input modulator). It also learns
weights which erase the memory cell (forget gate), and weights
which control how this memory should be emitted (output gate).

b• are learned weight matricies and biases. E 2 Rm⇥K is
an embedding matrix. Let m and n denote the embedding
and LSTM dimensionality respectively and � be the logis-
tic sigmoid activation.

In simple terms, the context vector ˆ

z

t

is a dynamic rep-
resentation of the relevant part of the image input at time
t. We define a mechanism � that computes ˆ

z

t

from the
annotation vectors a

i

, i = 1, . . . , L corresponding to the
features extracted at different image locations. For each
location i, the mechanism generates a positive weight ↵

i

which can be interpreted either as the probability that loca-
tion i is the right place to focus for producing the next word
(stochastic attention mechanism), or as the relative impor-
tance to give to location i in blending the a

i

’s together (de-
terministic attention mechanism). The weight ↵

i

of each
annotation vector a

i

is computed by an attention model fatt
for which we use a multilayer perceptron conditioned on
the previous hidden state h

t�1. To emphasize, we note that
the hidden state varies as the output RNN advances in its
output sequence: “where” the network looks next depends
on the sequence of words that has already been generated.
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Once the weights (which sum to one) are computed, the
context vector ẑ
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is computed by
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where � is a function that returns a single vector given the
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[Xu et al., 2015] 



Show, Attend, and Tell Neural Image Caption Generation with Visual Attention

Figure 4. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

research. We report BLEU4 from 1 to 4 without a brevity
penalty. There has been, however, criticism of BLEU, so
we report another common metric METEOR (Denkowski
& Lavie, 2014) and compare whenever possible.

5.2. Evaluation Procedures

A few challenges exist for comparison, which we ex-
plain here. The first challenge is a difference in choice
of convolutional feature extractor. For identical decoder
architectures, using a more recent architectures such as
GoogLeNet (Szegedy et al., 2014) or Oxford VGG (Si-
monyan & Zisserman, 2014) can give a boost in perfor-
mance over using the AlexNet (Krizhevsky et al., 2012).
In our evaluation, we compare directly only with results
which use the comparable GoogLeNet/Oxford VGG fea-
tures, but for METEOR comparison we include some re-
sults that use AlexNet.

The second challenge is a single model versus ensemble
comparison. While other methods have reported perfor-
mance boosts by using ensembling, in our results we report
a single model performance.

Finally, there is a challenge due to differences between
dataset splits. In our reported results, we use the pre-
defined splits of Flickr8k. However, for the Flickr30k
and COCO datasets is the lack of standardized splits for
which results are reported. As a result, we report the re-
sults with the publicly available splits5 used in previous

thors of Vinyals et al. (2014), Karpathy & Li (2014) and Kiros
et al. (2014b). For fairness, we only compare against results for
which we have verified that our BLEU evaluation code is the
same.

4 BLEU-n is the geometric average of the n-gram precision.
For instance, BLEU-1 is the unigram precision, and BLEU-2 is
the geometric average of the unigram and bigram precision.

5
http://cs.stanford.edu/people/karpathy/

work (Karpathy & Li, 2014). We note, however, that the
differences in splits do not make a substantial difference in
overall performance.

5.3. Quantitative Analysis

In Table 1, we provide a summary of the experiment vali-
dating the quantitative effectiveness of attention. We obtain
state of the art performance on the Flickr8k, Flickr30k and
MS COCO. In addition, we note that in our experiments we
are able to significantly improve the state-of-the-art perfor-
mance METEOR on MS COCO. We speculate that this is
connected to some of the regularization techniques we used
(see Sec. 4.2.1) and our lower-level representation.

5.4. Qualitative Analysis: Learning to attend

By visualizing the attention learned by the model, we are
able to add an extra layer of interpretability to the output
of the model (see Fig. 1). Other systems that have done
this rely on object detection systems to produce candidate
alignment targets (Karpathy & Li, 2014). Our approach is
much more flexible, since the model can attend to “non-
object” salient regions.

The 19-layer OxfordNet uses stacks of 3x3 filters mean-
ing the only time the feature maps decrease in size are due
to the max pooling layers. The input image is resized so
that the shortest side is 256-dimensional with preserved as-
pect ratio. The input to the convolutional network is the
center-cropped 224x224 image. Consequently, with four
max pooling layers, we get an output dimension of the top
convolutional layer of 14x14. Thus in order to visualize
the attention weights for the soft model, we upsample the
weights by a factor of 24 = 16 and apply a Gaussian filter

deepimagesent/

[Xu et al., 2015] 



Visual Referring Expressions 

Figure 1: Joint generation examples using our full model with “+rerank” on three datasets. Each sentence shows the generated
expression for one of the depicted objects (color coded to indicate correspondence).

Figure 2: Example comprehension results using our full model on three datasets. Green box shows the ground-truth region
and blue box shows our correct comprehension based on the detected regions.

ages from the MSCOCO dataset [17] in Yu et al [31]. In ad-
dition, Mao et al [19] collected Google’s REG dataset, also
based on MSCOCO images, but in a non-interactive setting,
resulting in more complex lengthy expressions. In this pa-
per, we focus our evaluations on the three recent datasets
collected on MSCOCO images [31, 19].

Recent neural approaches to the referring expression
generation and comprehension tasks can be roughly split
into two types. The first type uses a CNN-LSTM encoder-
decoder generative model [25] to generate (decode) sen-
tences given the encoded target object. With careful de-
sign of the visual representation of target object, this model
can generate unambiguous expressions [19, 31]. Here, the
CNN-LSTM models P (r|o), where r is the referring ex-
pression and o is the target object, which can be easily con-
verted to P (o|r) via Bayes’ rule and used to address the
comprehension task [10, 19, 31, 21] by selecting the o with
the largest posterior probability. The second type of ap-
proach uses a joint-embedding model that projects both a vi-
sual representation of the target object and a semantic repre-
sentation of the expression into a common space and learns
a distance metric. Generation and comprehension can be
performed by embedding a target object (or expression) into
the embedding space and retrieving the closest expression
(or object) in this space. This type of approach typically
achieves better comprehension performance than the CNN-

LSTM model as in [23, 26], but previously was only ap-
plied to the referring expression comprehension task. Re-
cent work [1] has also used both an encoder-decoder model
(speaker) and an embedding model (listener) for referring
expression generation in abstract images, where the offline
listener reranks the speaker’s output.

In this paper, we propose a unified model that jointly
learns both the CNN-LSTM speaker and embedding-based
listener models, for both the generation and comprehension
tasks. Additionally, we add a discriminative reward-based
reinforcer to guide the sampling of more discriminative ex-
pressions and further improve our final system. Instead of
working independently, we let the speaker, listener, and re-
inforcer interact with each other, resulting in improved per-
formance on both generation and comprehension tasks. Re-
sults evaluated on three standard, large-scale datasets verify
that our proposed listener-speaker-reinforcer model signifi-
cantly outperforms the state-of-the-art on both the compre-
hension task (Tables 1 and 2) and the generation task (eval-
uated using human judgements in Table 4, and automatic
metrics in Table 3).

2. Related work
Recent years have witnessed a rise in multimodal re-

search related to vision and language. Given the individ-
ual success in each area, and the need for models with more
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Joint Comprehension+Generation Model 

Man in the middle 
wearing yellow

MLP
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Concat LSTM

Embedding 
Loss

Generation 
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LSTM
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L2-Normalization
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Figure 3: Framework: The Speaker is a CNN-LSTM model, which generates a referring expression for the target object. The
Listener is a joint-embedding model learned to minimize the distance between paired object and expression representations.
In addition, a Reinforcer module helps improve the speaker by sampling more discriminative (less ambiguous) expressions
for training. The model is jointly trained with 3 loss functions – generation loss, embedding loss, and reward loss, thereby
improving performance on both the comprehension and generation tasks.

top left and bottom right corners of the target object bound-
ing box, as well as the bounding box size with respect to the
image, i.e., li = [

xtl
W ,

ytl

H ,

xbr
W ,

ybr

H ,

w·h
W ·H ].

As referring expressions often relate an object to other
objects of the same type within the image (“the red ball” vs
“the blue ball” or “the larger elephant”), comparisons tend
to be quite important for differentiation. The comparison
features are composed of two parts: a) appearance similar-
ity – �vi =

1
n

P
j 6=i

oi�oj
koi�ojk , where n is the number of ob-

jects chosen for comparisons, b) location and size similarity
– �li, concatenating the 5-d difference on each compared
object �lij = [

[4xtl]ij
wi

,

[4ytl]ij
hi

,

[4xbr]ij
wi

,

[4ybr]ij
hi

,

wjhj

wihi
].

The final visual representation for the target object
is then a concatenation of the above features followed
by a fully-connected layer fusing them together, ri =

Wm[oi, gi, li, �vi, �li] + bm. This joint feature is then fed
into the LSTM for referring expression generation. During
training we minimize the negative log-likelihood:

L

s
1(✓) = �

X

i

logP (ri|oi; ✓)

= �
X

i

X

t

logP (r

t
i |rt�1

i , . . . , r

1
i , oi; ✓)

(1)

Note that the speaker can be modeled using any form of
CNN-LSTM structure.

In [19], Mao proposed to add a Maximum Mutual Infor-
mation (MMI) constraint encouraging the generated expres-
sion to describe the target object better than the other objects

within the image (i.e., a ranking loss on objects). We gen-
eralize this idea to incorporate two triplet hinge losses com-
posed of a positive match and two negative matches. Given
a positive match (ri, oi), we sample the contrastive pair
(rj , oi) where rj is the expression describing some other
object and pair (ri, ok) where ok is some other object in the
same image, then we optimize the following max-margin
loss:

L

s
2(✓) =

X

i

[�

s
1 max(0,M + logP (ri|ok)� logP (ri|oi))

+�

s
2 max(0,M + logP (rj |oi)� logP (ri|oi))]

(2)

The first term is from [19], while the second term encour-
ages that the target object to be better described by the true
expression compared to expressions describing other ob-
jects in the image (i.e., a ranking loss on expressions).

3.2. Listener
We use a joint-embedding model to mimick the listener’s

behaviour. The purpose of this embedding model is to
encode the visual information from the target object and
semantic information from the referring expression into a
joint embedding space that embeds vectors that are visually
or semantically related closer together in the space. Here
for referring expression comprehension task, given a refer-
ring expression representation, the listener embeds it into
the joint space, then selects the closest object in the embed-
ding space for the predicted target object.

As illustrated in Fig. 3, for our listener joint-embedding

4
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Joint Comprehension+Generation Model 

[Yu et al., 2017] 

Figure 1: Joint generation examples using our full model with “+rerank” on three datasets. Each sentence shows the generated
expression for one of the depicted objects (color coded to indicate correspondence).

Figure 2: Example comprehension results using our full model on three datasets. Green box shows the ground-truth region
and blue box shows our correct comprehension based on the detected regions.

ages from the MSCOCO dataset [17] in Yu et al [31]. In ad-
dition, Mao et al [19] collected Google’s REG dataset, also
based on MSCOCO images, but in a non-interactive setting,
resulting in more complex lengthy expressions. In this pa-
per, we focus our evaluations on the three recent datasets
collected on MSCOCO images [31, 19].

Recent neural approaches to the referring expression
generation and comprehension tasks can be roughly split
into two types. The first type uses a CNN-LSTM encoder-
decoder generative model [25] to generate (decode) sen-
tences given the encoded target object. With careful de-
sign of the visual representation of target object, this model
can generate unambiguous expressions [19, 31]. Here, the
CNN-LSTM models P (r|o), where r is the referring ex-
pression and o is the target object, which can be easily con-
verted to P (o|r) via Bayes’ rule and used to address the
comprehension task [10, 19, 31, 21] by selecting the o with
the largest posterior probability. The second type of ap-
proach uses a joint-embedding model that projects both a vi-
sual representation of the target object and a semantic repre-
sentation of the expression into a common space and learns
a distance metric. Generation and comprehension can be
performed by embedding a target object (or expression) into
the embedding space and retrieving the closest expression
(or object) in this space. This type of approach typically
achieves better comprehension performance than the CNN-

LSTM model as in [23, 26], but previously was only ap-
plied to the referring expression comprehension task. Re-
cent work [1] has also used both an encoder-decoder model
(speaker) and an embedding model (listener) for referring
expression generation in abstract images, where the offline
listener reranks the speaker’s output.

In this paper, we propose a unified model that jointly
learns both the CNN-LSTM speaker and embedding-based
listener models, for both the generation and comprehension
tasks. Additionally, we add a discriminative reward-based
reinforcer to guide the sampling of more discriminative ex-
pressions and further improve our final system. Instead of
working independently, we let the speaker, listener, and re-
inforcer interact with each other, resulting in improved per-
formance on both generation and comprehension tasks. Re-
sults evaluated on three standard, large-scale datasets verify
that our proposed listener-speaker-reinforcer model signifi-
cantly outperforms the state-of-the-art on both the compre-
hension task (Tables 1 and 2) and the generation task (eval-
uated using human judgements in Table 4, and automatic
metrics in Table 3).

2. Related work
Recent years have witnessed a rise in multimodal re-

search related to vision and language. Given the individ-
ual success in each area, and the need for models with more
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VQA: Visual Question Answering 
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VQA: Visual Question Answering
www.visualqa.org

Aishwarya Agrawal⇤, Jiasen Lu⇤, Stanislaw Antol⇤,
Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural
language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such
as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas
of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a
more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA
is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can
be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers
(www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared
with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vqa).

F

1 INTRODUCTION

We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [16], [9], [12], [38], [26],
[24], [53]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [51], [13], [22].
In this paper, we introduce the task of free-form and open-
ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [3] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How

• ⇤The first three authors contributed equally.
• A. Agrawal, J. Lu and S. Antol are with Virginia Tech.
• M. Mitchell is with Microsoft Research, Redmond.
• C. L. Zitnick is with Facebook AI Research.
• D. Batra and D. Parikh are with Georgia Institute of Technology.

Does it appear to be rainy? 
Does this person have 20/20 vision? 

Is this person expecting company? 
What is just under the tree? 

How many slices of pizza are there? 
Is this a vegetarian pizza? 

What color are her eyes? 
What is the mustache made of? 

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

many bikes are there?”), activity recognition (e.g., “Is this man
crying?”), knowledge base reasoning (e.g., “Is this a vegetarian
pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [19], [36], [50], [3] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this paper,
we present both an open-ended answering task and a multiple-
choice task [45], [33]. Unlike the open-ended task that requires
a free-form response, the multiple-choice task only requires an
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Demo 
• http://vqa.cloudcv.org/ 

[Agrawal et al., 2015] 



Simple VQA Baseline 

[Agrawal et al., 2015] 



Hierarchical Co-Attention Model 

[Lu et al., 2016] 
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Figure 1: Flowchart of our proposed hierarchical co-attention model. Given a question, we extract its word
level, phrase level and question level embeddings. At each level, we apply co-attention on both the image and
question. The final answer prediction is based on all the co-attended image and question features.

Specifically, we convolve word representations with temporal filters of varying support, and then
combine the various n-gram responses by pooling them into a single phrase level representation. At
the question level, we use recurrent neural networks to encode the entire question. For each level
of the question representation in this hierarchy, we construct joint question and image co-attention
maps, which are then combined recursively to ultimately predict a distribution over the answers.

Overall, the main contributions of our work are:

• We propose a novel co-attention mechanism for VQA that jointly performs question-guided
visual attention and image-guided question attention. We explore this mechanism with two
strategies, parallel and alternating co-attention, which are described in Sec. 3.3;

• We propose a hierarchical architecture to represent the question, and consequently construct
image-question co-attention maps at 3 different levels: word level, phrase level and question
level. These co-attended features are then recursively combined from word level to question
level for the final answer prediction;

• At the phrase level, we propose a novel convolution-pooling strategy to adaptively select the
phrase sizes whose representations are passed to the question level representation;

• Finally, we evaluate our proposed model on two large datasets, VQA [2] and COCO-QA [17].
We also perform ablation studies to quantify the roles of different components in our model.

2 Related Work

Many recent works [2, 7, 13, 16, 17, 27, 12, 6] have proposed models for VQA. We compare and
relate our proposed co-attention mechanism to other vision and language attention mechanisms in
literature.

Image attention. Instead of directly using the holistic entire-image embedding from the fully
connected layer of a deep CNN (as in [2, 15–17]), a number of recent works have explored image
attention models for VQA. Zhu et al. [28] add spatial attention to the standard LSTM model for
pointing and grounded QA. Andreas et al. [1] propose a compositional scheme that consists of a
language parser and a number of neural modules networks. The language parser predicts which neural
module network should be instantiated to answer the question. Some other works perform image
attention multiple times in a stacked manner. In [25], the authors propose a stacked attention network,
which runs multiple hops to infer the answer progressively. To capture fine-grained information from
the question, Xu et al. [24] propose a multi-hop image attention scheme. It aligns words to image
patches in the first hop, and then refers to the entire question for obtaining image attention maps in
the second hop. In [20], the authors generate image regions with object proposals and then select the
regions relevant to the question and answer choice. Xiong et al. [23] augments dynamic memory

2



Hierarchical Co-Attention Model 

[Lu et al., 2016] 
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Figure 2: (a) Parallel co-attention mechanism; (b) Alternating co-attention mechanism.

3.3 Co-Attention

We propose two co-attention mechanisms that differ in the order in which image and question
attention maps are generated. The first mechanism, which we call parallel co-attention, generates
image and question attention simultaneously. The second mechanism, which we call alternating
co-attention, sequentially alternates between generating image and question attentions. See Fig. 2.
These co-attention mechanisms are executed at all three levels of the question hierarchy.

Parallel Co-Attention. Parallel co-attention attends to the image and question simultaneously.
Similar to [24], we connect the image and question by calculating the similarity between image and
question features at all pairs of image-locations and question-locations. Specifically, given an image
feature map V 2 Rd⇥N , and the question representation Q 2 Rd⇥T , the affinity matrix C 2 RT⇥N

is calculated by
C = tanh(QTW

b

V ) (3)

where W
b

2 Rd⇥d contains the weights. After computing this affinity matrix, one possible way of
computing the image (or question) attention is to simply maximize out the affinity over the locations
of other modality, i.e. av

[n] = max

i

(C
i,n

) and aq

[t] = max

j

(C
t,j

). Instead of choosing the max
activation, we find that performance is improved if we consider this affinity matrix as a feature and
learn to predict image and question attention maps via the following

Hv

= tanh(W
v

V + (W
q

Q)C), Hq

= tanh(W
q

Q+ (W
v

V )CT

)

av

= softmax(wT

hv

Hv

), aq

= softmax(wT

hq

Hq

)

(4)

where W
v

,W
q

2 Rk⇥d, w
hv

,w
hq

2 Rk are the weight parameters. av 2 RN and aq 2 RT are
the attention probabilities of each image region v

n

and word q
t

respectively. The affinity matrix C
transforms question attention space to image attention space (vice versa for CT ). Based on the above
attention weights, the image and question attention vectors are calculated as the weighted sum of the
image features and question features, i.e.,

ˆv =

NX

n=1

av
n

v
n

, ˆq =

TX

t=1

aq
t

q
t

(5)

The parallel co-attention is done at each level in the hierarchy, leading to ˆvr and ˆqr where r 2
{w, p, s}.

Alternating Co-Attention. In this attention mechanism, we sequentially alternate between gen-
erating image and question attention. Briefly, this consists of three steps (marked in Fig. 2b): 1)
summarize the question into a single vector q; 2) attend to the image based on the question summary
q; 3) attend to the question based on the attended image feature.

Concretely, we define an attention operation ˆx = A(X; g), which takes the image (or question)
features X and attention guidance g derived from question (or image) as inputs, and outputs the

4



Hierarchical Co-Attention Model 

[Lu et al., 2016] 

Q: what is the man holding a
snowboard on top of a snow

covered? A: mountain

what is the man holding a
snowboard on top of a snow covered

what is the man holding a
snowboard on top of a snow

covered ?

what is the man holding a
snowboard on top of a snow

covered ?

Q: what is the color of the bird? A:
white what is the color of the bird ? what is the color of the bird ? what is the color of the bird ?

Q: how many snowboarders in
formation in the snow, four is

sitting? A: 5

how many snowboarders in
formation in the snow , four is

sitting ?

how many snowboarders in
formation in the snow , four is

sitting ?

how many snowboarders in
formation in the snow , four is

sitting ?

Figure 4: Visualization of image and question co-attention maps on the COCO-QA dataset. From left to right:
original image and question pairs, word level co-attention maps, phrase level co-attention maps and question
level co-attention maps. For visualization, both image and question attentions are scaled (from red:high to
blue:low). Best viewed in color.

image attention has different patterns across images. For the first two images, the attention transfers
from objects to background regions. For the third image, the attention becomes more focused on
the objects. We suspect that this is caused by the different question types. On the question side,
our model is capable of localizing the key phrases in the question, thus essentially discovering the
question types in the dataset. For example, our model pays attention to the phrases “what color” and
“how many snowboarders”. Our model successfully attends to the regions in images and phrases in the
questions appropriate for answering the question, e.g., “color of the bird” and bird region. Because
our model performs co-attention at three levels, it often captures complementary information from
each level, and then combines them to predict the answer.

5 Conclusion
In this paper, we proposed a hierarchical co-attention model for visual question answering. Co-
attention allows our model to attend to different regions of the image as well as different fragments
of the question. We model the question hierarchically at three levels to capture information from
different granularities. The ablation studies further demonstrate the roles of co-attention and question
hierarchy in our final performance. Through visualizations, we can see that our model co-attends
to interpretable regions of images and questions for predicting the answer. Though our model was
evaluated on visual question answering, it can be potentially applied to other tasks involving vision
and language.
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Abstract

Modeling textual or visual information with
vector representations trained from large lan-
guage or visual datasets has been successfully
explored in recent years. However, tasks such
as visual question answering require combin-
ing these vector representations with each other.
Approaches to multimodal pooling include
element-wise product or sum, as well as con-
catenation of the visual and textual represen-
tations. We hypothesize that these methods
are not as expressive as an outer product of
the visual and textual vectors. As the outer
product is typically infeasible due to its high
dimensionality, we instead propose utilizing
Multimodal Compact Bilinear pooling (MCB)
to efficiently and expressively combine multi-
modal features. We extensively evaluate MCB
on the visual question answering and ground-
ing tasks. We consistently show the benefit of
MCB over ablations without MCB. For visual
question answering, we present an architec-
ture which uses MCB twice, once for predict-
ing attention over spatial features and again
to combine the attended representation with
the question representation. This model out-
performs the state-of-the-art on the Visual7W
dataset and the VQA challenge.

1 Introduction

Representation learning for text and images has been
extensively studied in recent years. Recurrent neural
networks (RNNs) are often used to represent sen-
tences or phrases (Sutskever et al., 2014; Kiros et al.,

* indicates equal contribution
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Figure 1: Multimodal Compact Bilinear Pooling for
visual question answering.

2015), and convolutional neural networks (CNNs)
have shown to work best to represent images (Don-
ahue et al., 2013; He et al., 2015). For tasks such as
visual question answering (VQA) and visual ground-
ing, most approaches require joining the represen-
tation of both modalities. For combining the two
vector representations (multimodal pooling), current
approaches in VQA or grounding rely on concatenat-
ing vectors or applying element-wise sum or product.
While this generates a joint representation, it might
not be expressive enough to fully capture the complex
associations between the two different modalities.

In this paper, we propose to rely on Multimodal
Compact Bilinear pooling (MCB) to get a joint repre-
sentation. Bilinear pooling computes the outer prod-
uct between two vectors, which allows, in contrast
to element-wise product, a multiplicative interaction
between all elements of both vectors. Bilinear pool-
ing models (Tenenbaum and Freeman, 2000) have
recently been shown to be beneficial for fine-grained
classification for vision only tasks (Lin et al., 2015).
However, given their high dimensionality (n2), bi-
linear pooling has so far not been widely used. In
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MCB Model with Attention 
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Figure 3: Our architecture for VQA: Multimodal Compact Bilinear (MCB) with Attention. Conv implies
convolutional layers and FC implies fully connected layers. For details see Sec. 3.2.

where ⇤ is the convolution operator. Additionally, the
convolution theorem states that convolution in the
time domain is equivalent to element-wise product
in the frequency domain. The convolution x

0 ⇤ q0 can
be rewritten as FFT�1

(FFT(x0) � FFT(q0)), where
� refers to element-wise product. These ideas are
summarized in Figure 2 and formalized in Algorithm
1, which is based on the Tensor Sketch algorithm of
Pham and Pagh (2013). We invoke the algorithm with
v1 = x and v2 = q. We note that this easily extends
and remains efficient for more than two multi-modal
inputs as the combination happens as element-wise
product.

3.2 Architectures for VQA

In VQA, the input to the model is an image and a
question, and the goal is to answer the question. Our
model extracts representations for the image and the
question, pools the vectors using MCB, and arrives
at the answer by treating the problem as a multi-class
classification problem with 3,000 possible classes.

We extract image features using a 152-layer Resid-
ual Network (He et al., 2015) that is pretrained on
ImageNet data (Deng et al., 2009). Images are re-
sized to 448⇥448, and we use the output of the layer
(“pool5”) before the 1000-way classifier. We then
perform L2 normalization on the 2048-D vector.

Input questions are first tokenized into words, and
the words are one-hot encoded and passed through
a learned embedding layer. The tanh nonlinearity
is used after the embedding. The embedding layer
is followed by a 2-layer LSTM with 1024 units in
each layer. The outputs of each LSTM layer are
concatenated to form a 2048-D vector.

The two vectors are then passed through MCB.
The MCB is followed by an element-wise signed
square-root and L2 normalization. After MCB pool-
ing, a fully connected layer connects the resulting
16,000-D multimodal representation to the 3,000 top
answers.

Attention. To incorporate spatial information, we
use soft attention on our MCB pooling method. Ex-
plored by (Xu et al., 2015) for image captioning and
by (Xu and Saenko, 2016) and (Yang et al., 2015)
for VQA, the soft attention mechanism can be easily
integrated in our model.

For each spatial grid location in the visual rep-
resentation (i.e. last convolutional layer of ResNet
[res5c], last convolutional layer of VGG [conv5]),
we use MCB pooling to merge the slice of the visual
feature with the language representation. As depicted
in Figure 3, after the pooling we use two convolu-
tional layers to predict the attention weight for each
grid location. We apply softmax to produce a nor-
malized soft attention map. We then take a weighted
sum of the spatial vectors using the attention map to
create the attended visual representation. We also ex-
periment with generating multiple attention maps to
allow the model to make multiple “glimpses” which
are concatenated before being merged with the lan-
guage representation through another MCB pooling
for prediction. Predicting attention maps with MCB
pooling allows the model to effectively learn how to
attend to salient locations based on both the visual
and language representations.

Answer Encoding. For VQA with multiple
choices, we can additionally embed the answers. We

[Fukui et al., 2016] 



Results 
Test-dev Test-standard

Open Ended MC Open Ended MC

Y/N No. Other All All Y/N No. Other All All

MCB 81.2 35.1 49.3 60.8 65.4 - - - - -
MCB + Genome 81.7 36.6 51.5 62.3 66.4 - - - - -
MCB + Att. 82.2 37.7 54.8 64.2 68.6 - - - - -
MCB + Att. + GloVe 82.5 37.6 55.6 64.7 69.1 - - - - -
MCB + Att. + Genome 81.7 38.2 57.0 65.1 69.5 - - - - -
MCB + Att. + GloVe + Genome 82.3 37.2 57.4 65.4 69.9 - - - - -
Ensemble of 7 Att. models 83.4 39.8 58.5 66.7 70.2 83.2 39.5 58.0 66.5 70.1

Naver Labs (challenge 2nd) 83.5 39.8 54.8 64.9 69.4 83.3 38.7 54.6 64.8 69.3
HieCoAtt (Lu et al., 2016) 79.7 38.7 51.7 61.8 65.8 - - - 62.1 66.1
DMN+ (Xiong et al., 2016) 80.5 36.8 48.3 60.3 - - - - 60.4 -
FDA (Ilievski et al., 2016) 81.1 36.2 45.8 59.2 - - - - 59.5 -
D-NMN (Andreas et al., 2016a) 81.1 38.6 45.5 59.4 - - - - 59.4 -
AMA (Wu et al., 2016) 81.0 38.4 45.2 59.2 - 81.1 37.1 45.8 59.4 -
SAN (Yang et al., 2015) 79.3 36.6 46.1 58.7 - - - - 58.9 -
NMN (Andreas et al., 2016b) 81.2 38.0 44.0 58.6 - 81.2 37.7 44.0 58.7 -
AYN (Malinowski et al., 2016) 78.4 36.4 46.3 58.4 - 78.2 36.3 46.3 58.4 -
SMem (Xu and Saenko, 2016) 80.9 37.3 43.1 58.0 - 80.9 37.5 43.5 58.2 -
VQA team (Antol et al., 2015) 80.5 36.8 43.1 57.8 62.7 80.6 36.5 43.7 58.2 63.1
DPPnet (Noh et al., 2015) 80.7 37.2 41.7 57.2 - 80.3 36.9 42.2 57.4 -
iBOWIMG (Zhou et al., 2015) 76.5 35.0 42.6 55.7 - 76.8 35.0 42.6 55.9 62.0

Table 4: Open-ended and multiple-choice (MC) results on VQA test set (trained on train+val set) compared
with state-of-the-art: accuracy in %. See Sec. 4.4.

linear pooling has no impact on accuracy compared
to full bilinear pooling. Section 3 in Table 1 demon-
strates that the MCB brings improvements regardless
of the image CNN used. We primarily use ResNet-
152 in this paper, but MCB also improves perfor-
mance if VGG-19 is used. Section 4 in Table 1 shows
that our soft attention model works best with MCB
pooling. In fact, attending to the Concatenation + FC
layer has the same performance as not using attention
at all, while attending to the MCB layer improves
performance by 2.67 points.

Table 2 compares different values of d, the output
dimensionality of the multimodal compact bilinear
feature. Approximating the bilinear feature with a
16,000-D vector yields the highest accuracy.

We also evaluated models with multiple atten-
tion maps or channels. One attenion map achieves
64.67%, two 65.08% and four 64.24% accuracy
(trained on train+val). Visual inspection of the gen-

erated attention maps reveals that an ensembling or
smoothing effect occurs when using multiple maps.

Table 3 presents results for the Visual7W multiple-
choice QA task. The MCB with attention model out-
performs the previous state-of-the-art by 7.9 points
overall and performs better in almost every category.

4.4 Comparison to State-of-the-Art

Table 4 compares our approach with the state-of-the-
art on VQA test set. Our best single model uses
MCB pooling with two attention maps. Additionally,
we augment our training data with images and QA
pairs from the Visual Genome dataset. We also con-
catenate the learned word embedding with pretrained
GloVe vectors (Pennington et al., 2014).

Each model in our ensemble of 7 models uses
MCB with attention. Some of the models were
trained with data from Visual Genome, and some
were trained with two attention maps. This ensem-

[Fukui et al., 2016] 
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Abstract

Problems at the intersection of vision and language
are of significant importance both as challenging research
questions and for the rich set of applications they enable.
However, inherent structure in our world and bias in our
language tend to be a simpler signal for learning than vi-
sual modalities, resulting in models that ignore visual infor-
mation, leading to an inflated sense of their capability.

We propose to counter these language priors for the task
of Visual Question Answering (VQA) and make vision (the V
in VQA) matter! Specifically, we balance the popular VQA
dataset [3] by collecting complementary images such that
every question in our balanced dataset is associated with
not just a single image, but rather a pair of similar images
that result in two different answers to the question. Our
dataset is by construction more balanced than the origi-
nal VQA dataset and has approximately twice the number
of image-question pairs. Our complete balanced dataset
is publicly available at http://visualqa.org/ as
part of the 2nd iteration of the Visual Question Answering
Dataset and Challenge (VQA v2.0).

We further benchmark a number of state-of-art VQA
models on our balanced dataset. All models perform sig-
nificantly worse on our balanced dataset, suggesting that
these models have indeed learned to exploit language pri-
ors. This finding provides the first concrete empirical evi-
dence for what seems to be a qualitative sense among prac-
titioners.

Finally, our data collection protocol for identifying com-
plementary images enables us to develop a novel inter-
pretable model, which in addition to providing an answer
to the given (image, question) pair, also provides a counter-
example based explanation. Specifically, it identifies an im-
age that is similar to the original image, but it believes has
a different answer to the same question. This can help in
building trust for machines among their users.

⇤The first two authors contributed equally.

Who is wearing glasses? Where is the child sitting?

Is the umbrella upside down? How many children are in the bed?

womanman armsfridge

noyes 12

Figure 1: Examples from our balanced VQA dataset.

1. Introduction
Language and vision problems such as image caption-

ing [8, 4, 7, 19, 40, 21, 28] and visual question answering
(VQA) [3, 26, 27, 10, 31] have gained popularity in recent
years as the computer vision research community is pro-
gressing beyond “bucketed” recognition and towards solv-
ing multi-modal problems.

The complex compositional structure of language makes
problems at the intersection of vision and language chal-
lenging. But recent works [6, 47, 49, 16, 18, 1] have pointed
out that language also provides a strong prior that can re-
sult in good superficial performance, without the underlying
models truly understanding the visual content.

This phenomenon has been observed in image caption-
ing [6] as well as visual question answering [47, 49, 16, 18,
1]. For instance, in the VQA [3] dataset, the most com-
mon sport answer “tennis” is the correct answer for 41%
of the questions starting with “What sport is”, and “2” is
the correct answer for 39% of the questions starting with
“How many”. Moreover, Zhang et al. [47] points out a par-
ticular ‘visual priming bias’ in the VQA dataset – specifi-
cally, subjects saw an image while asking questions about it.
Thus, people only ask the question “Is there a clock tower
in the picture?” on images actually containing clock tow-
ers. As one particularly perverse example – for questions

1
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Results 

dataset (⇠twice the size of original dataset), the accuracy
improves by 2-3% (compare BhalfB to BB). This increase
in accuracy suggests that current VQA models are data
starved, and would benefit from even larger VQA datasets.

As the absolute numbers in the table suggest, there is
significant room for improvement in building visual under-
standing models that can extract detailed information from
images and leverage this information to answer free-form
natural language questions about images accurately. As ex-
pected from the construction of this balanced dataset, the
question-only approach performs significantly worse on the
balanced dataset compared to the unbalanced dataset, again
confirming the language-bias in the original VQA dataset,
and its successful alleviation (though not elimination) in our
proposed balanced dataset.

Note that in addition to the lack of language bias, visual
reasoning is also challenging on the balanced dataset since
there are pairs of images very similar to each other in im-
age representations learned by CNNs, but with different an-
swers to the same question. To be successful, VQA models
need to understand the subtle differences in these images.

The paired construction of our dataset allows us to an-
alyze the performance of VQA models in unique ways.
Given the prediction of a VQA model, we can count the
number of questions where both complementary images
(I ,I 0) received correct answer predictions for the corre-
sponding question Q, or both received identical (correct
or incorrect) answer predictions, or both received different
answer predictions. For the HieCoAtt [25] model, when
trained on the unbalanced dataset, 13.5% of the pairs were
answered correctly, 59.9% of the pairs had identical pre-
dictions, and 40.1% of the pairs had different predictions.
In comparison, when trained on balanced dataset, the same
model answered 17.7% of the pairs correctly, a 4.2% in-
crease in performance! Moreover, it predicts identical an-
swers for 10.5% fewer pairs (49.4%). This shows that by
training on balanced dataset, this VQA model has learned
to tell the difference between two otherwise similar images.
However, significant room for improvement remains. The
VQA model still can not tell the difference between two im-
ages that have a noticeable difference – a difference enough
to result in the two images having different ground truth an-
swers for the same question asked by humans.

To benchmark models on VQA v2.0 dataset, we also
train these models on VQA v2.0 train+val and report re-
sults on VQA v2.0 test-standard in Table 2. Papers report-
ing results on VQA v2.0 dataset are suggested to report test-
standard accuracies and compare their methods’ accuracies
with accuracies reported in Table 2.

Analysis of Accuracies for Different Answer Types:
We further analyze the accuracy breakdown over answer
types for Multimodal Compact Bilinear Pooling (MCB) [9]
and Hierarchical Co-attention (HieCoAtt) [25] models.

Approach All Yes/No Number Other

Prior 25.98 61.20 00.36 01.17
Language-only 44.26 67.01 31.55 27.37
d-LSTM+n-I [24] 54.22 73.46 35.18 41.83
MCB [9] 62.27 78.82 38.28 53.36

Table 2: Performance of VQA models when trained on
VQA v2.0 train+val and tested on VQA v2.0 test-standard
dataset.

Approach Ans Type UU UB BhalfB BB

MCB [9]

Yes/No 81.20 70.40 74.89 77.37
Number 34.80 31.61 34.69 36.66
Other 51.19 47.90 47.43 51.23
All 60.36 54.22 56.08 59.14

HieCoAtt [25]

Yes/No 79.99 67.62 70.93 71.80
Number 34.83 32.12 34.07 36.53
Other 45.55 41.96 42.11 46.25
All 57.09 50.31 51.88 54.57

Table 3: Accuracy breakdown over answer types achieved
by MCB [9] and HieCoAtt [25] models when trained/tested
on unbalanced/balanced VQA datasets. UB stands for
training on Unbalanced train and testing on Balanced val
datasets. UU, BhalfB and BB are defined analogously.

The results are shown in Table 3. First, we immedi-
ately notice that the accuracy for the answer-type “yes/no”
drops significantly from UU to UB (⇠10.8% for MCB and
⇠12.4% for HieCoAtt). This suggests that these VQA mod-
els are really exploiting language biases for “yes/no” type
questions, which leads to high accuracy on unbalanced val
set because the unbalanced val set also contains these bi-
ases. But performance drops significantly when tested on
the balanced val set which has significantly reduced biases.

Second, we note that for both the state-of-art VQA mod-
els, the largest source of improvement from UB to BhalfB
is the “yes/no” answer-type (⇠4.5% for MCB and ⇠3% for
HieCoAtt) and the “number” answer-type (⇠3% for MCB
and ⇠2% for HieCoAtt).

This trend is particularly interesting since the “yes/no”
and “number” answer-types are the ones where existing ap-
proaches have shown minimal improvements. For instance,
in the results announced at the VQA Real Open Ended
Challenge 20162, the accuracy gap between the top-4 ap-
proaches is a mere 0.15% in “yes/no” answer-type cate-
gory (and a gap of 3.48% among the top-10 approaches).
Similarly, “number” answer-type accuracies only vary by

2
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Abstract
We introduce the task of Visual Dialog, which requires an
AI agent to hold a meaningful dialog with humans in natu-
ral, conversational language about visual content. Specifi-
cally, given an image, a dialog history, and a question about
the image, the agent has to ground the question in image,
infer context from history, and answer the question accu-
rately. Visual Dialog is disentangled enough from a specific
downstream task so as to serve as a general test of ma-
chine intelligence, while being grounded in vision enough
to allow objective evaluation of individual responses and
benchmark progress. We develop a novel two-person chat
data-collection protocol to curate a large-scale Visual Di-
alog dataset (VisDial). VisDial v0.9 has been released and
contains 1 dialog with 10 question-answer pairs on ⇠120k
images from COCO, with a total of ⇠1.2M dialog question-
answer pairs.
We introduce a family of neural encoder-decoder models for
Visual Dialog with 3 encoders – Late Fusion, Hierarchi-
cal Recurrent Encoder and Memory Network – and 2 de-
coders (generative and discriminative), which outperform a
number of sophisticated baselines. We propose a retrieval-
based evaluation protocol for Visual Dialog where the AI
agent is asked to sort a set of candidate answers and eval-
uated on metrics such as mean-reciprocal-rank of human
response. We quantify gap between machine and human
performance on the Visual Dialog task via human studies.
Putting it all together, we demonstrate the first ‘visual chat-
bot’! Our dataset, code, trained models and visual chatbot
are available on https://visualdialog.org.

1. Introduction

We are witnessing unprecedented advances in computer vi-
sion (CV) and artificial intelligence (AI) – from ‘low-level’
AI tasks such as image classification [20], scene recogni-

*Work done while KG and AS were interns at Virginia Tech.

Figure 1: We introduce a new AI task – Visual Dialog, where an AI
agent must hold a dialog with a human about visual content. We
introduce a large-scale dataset (VisDial), an evaluation protocol,
and novel encoder-decoder models for this task.

tion [63], object detection [34] – to ‘high-level’ AI tasks
such as learning to play Atari video games [42] and Go [55],
answering reading comprehension questions by understand-
ing short stories [21, 65], and even answering questions
about images [6, 39, 49, 71] and videos [57, 58]!
What lies next for AI? We believe that the next genera-
tion of visual intelligence systems will need to posses the
ability to hold a meaningful dialog with humans in natural
language about visual content. Applications include:
• Aiding visually impaired users in understanding their sur-

roundings [7] or social media content [66] (AI: ‘John just
uploaded a picture from his vacation in Hawaii’, Human:
‘Great, is he at the beach?’, AI: ‘No, on a mountain’).

• Aiding analysts in making decisions based on large quan-
tities of surveillance data (Human: ‘Did anyone enter this
room last week?’, AI: ‘Yes, 27 instances logged on cam-
era’, Human: ‘Were any of them carrying a black bag?’),

1
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Demo 
• http://visualchatbot.cloudcv.org/ 
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Visual Dialog vs VQA 

Figure 2: Differences between image captioning, Visual Question
Answering (VQA) and Visual Dialog. Two (partial) dialogs are
shown from our VisDial dataset, which is curated from a live chat
between two Amazon Mechanical Turk workers (Sec. 3).

• Interacting with an AI assistant (Human: ‘Alexa – can
you see the baby in the baby monitor?’, AI: ‘Yes, I can’,
Human: ‘Is he sleeping or playing?’).

• Robotics applications (e.g. search and rescue missions)
where the operator may be ‘situationally blind’ and oper-
ating via language [40] (Human: ‘Is there smoke in any
room around you?’, AI: ‘Yes, in one room’, Human: ‘Go
there and look for people’).

Despite rapid progress at the intersection of vision and lan-
guage – in particular, in image captioning and visual ques-
tion answering (VQA) – it is clear that we are far from this
grand goal of an AI agent that can ‘see’ and ‘communicate’.
In captioning, the human-machine interaction consists of
the machine simply talking at the human (‘Two people are
in a wheelchair and one is holding a racket’), with no dia-
log or input from the human. While VQA takes a significant
step towards human-machine interaction, it still represents
only a single round of a dialog – unlike in human conver-
sations, there is no scope for follow-up questions, no mem-
ory in the system of previous questions asked by the user
nor consistency with respect to previous answers provided
by the system (Q: ‘How many people on wheelchairs?’, A:
‘Two’; Q: ‘How many wheelchairs?’, A: ‘One’).
As a step towards conversational visual AI, we introduce
a novel task – Visual Dialog – along with a large-scale
dataset, an evaluation protocol, and novel deep models.
Task Definition. The concrete task in Visual Dialog is the
following – given an image I , a history of a dialog con-
sisting of a sequence of question-answer pairs (Q1: ‘How
many people are in wheelchairs?’, A1: ‘Two’, Q2: ‘What
are their genders?’, A2: ‘One male and one female’), and
a natural language follow-up question (Q3: ‘Which one is
holding a racket?’), the task for the machine is to answer the
question in free-form natural language (A3: ‘The woman’).
This task is the visual analogue of the Turing Test.
Consider the Visual Dialog examples in Fig. 2. The ques-
tion ‘What is the gender of the one in the white shirt?’
requires the machine to selectively focus and direct atten-

tion to a relevant region. ‘What is she doing?’ requires
co-reference resolution (whom does the pronoun ‘she’ re-
fer to?), ‘Is that a man to her right?’ further requires the
machine to have visual memory (which object in the im-
age were we talking about?). Such systems also need to
be consistent with their outputs – ‘How many people are
in wheelchairs?’, ‘Two’, ‘What are their genders?’, ‘One
male and one female’ – note that the number of genders be-
ing specified should add up to two. Such difficulties make
the problem a highly interesting and challenging one.
Why do we talk to machines? Prior work in language-only
(non-visual) dialog can be arranged on a spectrum with the
following two end-points:
goal-driven dialog (e.g. booking a flight for a user)  !
goal-free dialog (or casual ‘chit-chat’ with chatbots).
The two ends have vastly differing purposes and conflicting
evaluation criteria. Goal-driven dialog is typically evalu-
ated on task-completion rate (how frequently was the user
able to book their flight) or time to task completion [14,44]
– clearly, the shorter the dialog the better. In contrast, for
chit-chat, the longer the user engagement and interaction,
the better. For instance, the goal of the 2017 $2.5 Million
Amazon Alexa Prize is to “create a socialbot that converses
coherently and engagingly with humans on popular topics
for 20 minutes.”
We believe our instantiation of Visual Dialog hits a sweet
spot on this spectrum. It is disentangled enough from a
specific downstream task so as to serve as a general test of
machine intelligence, while being grounded enough in vi-
sion to allow objective evaluation of individual responses
and benchmark progress. The former discourages task-
engineered bots for ‘slot filling’ [30] and the latter discour-
ages bots that put on a personality to avoid answering ques-
tions while keeping the user engaged [64].
Contributions. We make the following contributions:
• We propose a new AI task: Visual Dialog, where a ma-

chine must hold dialog with a human about visual content.
• We develop a novel two-person chat data-collection pro-

tocol to curate a large-scale Visual Dialog dataset (Vis-
Dial). Upon completion1, VisDial will contain 1 dialog
each (with 10 question-answer pairs) on ⇠140k images
from the COCO dataset [32], for a total of ⇠1.4M dialog
question-answer pairs. When compared to VQA [6], Vis-
Dial studies a significantly richer task (dialog), overcomes
a ‘visual priming bias’ in VQA (in VisDial, the questioner
does not see the image), contains free-form longer an-
swers, and is an order of magnitude larger.

1VisDial data on COCO-train (⇠83k images) and COCO-
val (⇠40k images) is already available for download at https://

visualdialog.org. Since dialog history contains the ground-truth cap-
tion, we will not be collecting dialog data on COCO-test. Instead,
we will collect dialog data on 20k extra images from COCO distribution
(which will be provided to us by the COCO team) for our test set.

2
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Early Video Captioning 

Predicting natural language desriptions of still
images has received considerable attention, with
some of the earliest works by Aker and Gaizauskas
(2010), Farhadi et al. (2010), Yao et al. (2010), and
Kulkarni et al. (2011) amongst others. Propelled by
successes of deep learning, several groups released
record breaking results in just the past year (Don-
ahue et al., 2014; Mao et al., 2014; Karpathy et al.,
2014; Fang et al., 2014; Kiros et al., 2014; Vinyals
et al., 2014; Kuznetsova et al., 2014).

In this work, we use deep recurrent nets (RNNs),
which have recently demonstrated strong results for
machine translation tasks using Long Short Term
Memory (LSTM) RNNs (Sutskever et al., 2014; Cho
et al., 2014). In contrast to traditional statistical
MT (Koehn, 2010), RNNs naturally combine with
vector-based representations, such as those for im-
ages and video. Donahue et al. (2014) and Vinyals
et al. (2014) simultaneously proposed a multimodal
analog of this model, with an architecture which
uses a visual convnet to encode a deep state vector,
and an LSTM to decode the vector into a sentence.

Our approach to video to text generation is in-
spired by the work of Donahue et al. (2014), who
also applied a variant of their model to video-to-text
generation, but stopped short of training an end-to-
end model. Instead they converted the video to an
intermediate role representation using a CRF, then
decoded that representation into a sentence. In con-
trast, we bypass detection of high-level roles and use
the output of a deep convolutional network directly
as the state vector that is decoded into a sentence.
This avoids the need for labeling semantic roles,
which can be difficult to detect in the case of very
large vocabularies. It also allows us to first pre-train
the model on a large image and caption database,
and transfer the knowledge to the video domain
where the corpus size is smaller. While Donahue et
al. (2014) only showed results on a narrow domain
of cooking videos with a small set of pre-defined
objects and actors, we generate sentences for open-
domain YouTube videos with a vocabulary of thou-
sands of words.

3 Approach

Figure 2 depicts our model for sentence generation
from videos. Our framework is based on deep image
description models in Donahue et al. (2014);Vinyals
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Figure 2: The structure of our video description network.
We extract fc7 features for each frame, mean pool the
features across the entire video and input this at every
time step to the LSTM network. The LSTM outputs one
word at each time step, based on the video features (and
the previous word) until it picks the end-of-sentence tag.

et al. (2014) and extends them to generate sentences
describing events in videos. These models work
by first applying a feature transformation on an im-
age to generate a fixed dimensional vector represen-
tation. They then use a sequence model, specifi-
cally a Recurrent Neural Network (RNN), to “de-
code” the vector into a sentence (i.e. a sequence of
words). In this work, we apply the same principle of
“translating” a visual vector into an English sentence
and show that it works well for describing dynamic
videos as well as static images.

We identify the most likely description for a given
video by training a model to maximize the log like-
lihood of the sentence S, given the corresponding
video V and the model parameters ✓,

✓

⇤
= argmax

✓

X

(V,S)

log p(S|V ; ✓) (1)

Assuming a generative model of S that produces
each word in the sequence in order, the log proba-
bility of the sentence is given by the sum of the log
probabilities over the words and can be expressed
as:

log p(S|V ) =

NX

t=0

log p(S

wt |V, S

w1 , . . . , Swt�1)

where S

wi represents the i

th word in the sentence
and N is the total number of words. Note that we
have dropped ✓ for convenience.

A sequence model would be apt to model
p(S

wt |V, S

w1 , . . . , Swt�1), and we choose an RNN.
An RNN, parameterized by ✓, maps an input x

t

,
and the previously seen words expressed as a hid-
den state or memory, h

t�1 to an output z

t

and an

1496
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Figure 2. We propose a stack of two LSTMs that learn a representation of a sequence of frames in order to decode it into a sentence that
describes the event in the video. The top LSTM layer (colored red) models visual feature inputs. The second LSTM layer (colored green)
models language given the text input and the hidden representation of the video sequence. We use <BOS> to indicate begin-of-sentence
and <EOS> for the end-of-sentence tag. Zeros are used as a <pad> when there is no input at the time step.

loss is propagated back in time, the LSTM learns to gener-
ate an appropriate hidden state representation (h

n

) of the
input sequence. The output (z

t

) of the second LSTM layer
is used to obtain the emitted word (y). We apply a softmax
function to get the probability distribution over the words y0
in the vocabulary V :

p(y|z
t

) =

exp(W
y

z

t

)P
y

02V

exp(W
y

0
z

t

)

(5)

We note that, during the decoding phase, the visual frame
representation for the first LSTM layer is simply a vector
of zeros that acts as padding input. We require an explicit
end-of-sentence tag (<EOS>) to terminate each sentence
since this enables the model to define a distribution over
sequences of varying lengths. At test time, during each de-
coding step we choose the word y

t

with the maximum prob-
ability after the softmax (from Equation 5) until it emits the
<EOS> token.

3.3. Video and text representation

RGB frames. Similar to previous LSTM-based image cap-
tioning efforts [8, 40] and video-to-text approaches [39, 43],
we apply a convolutional neural network (CNN) to input
images and provide the output of the top layer as input to
the LSTM unit. In this work, we report results using the out-
put of the fc7 layer (after applying the ReLU non-linearity)
on the Caffe Reference Net (a variant of AlexNet) and also
the 16-layer VGG model [32]. We use CNNs that are pre-
trained on the 1.2M image ILSVRC-2012 object classifica-
tion subset of the ImageNet dataset [30] and made available
publicly via the Caffe ModelZoo.1 Each input video frame
is scaled to 256x256, and is cropped to a random 227x227

1https://github.com/BVLC/caffe/wiki/Model-Zoo

region. It is then processed by the CNN. We remove the
original last fully-connected classification layer and learn a
new linear embedding of the features to a 500 dimensional
space. The lower dimension features form the input (x

t

)
to the first LSTM layer. The weights of the embedding are
learned jointly with the LSTM layers during training.
Optical Flow. In addition to CNN outputs from raw im-
age (RGB) frames, we also incorporate optical flow mea-
sures as input sequences to our architecture. Others [24, 8]
have shown that incorporating optical flow information to
LSTMs improves activity classification. As many of our
descriptions are activity centered, we explore this option
for video description as well. We follow the approach in
[8, 9] and first extract classical variational optical flow fea-
tures [2]. We then create flow images (as seen in Figure 1)
in a manner similar to [9], by centering x and y flow values
around 128 and multiplying by a scalar such that flow values
fall between 0 and 255. We also calculate the flow magni-
tude and add it as a third channel to the flow image. We
then use a CNN [9] initialized with weights trained on the
UCF101 video dataset to classify optical flow images into
101 activity classes. The fc6 layer activations of the CNN
are embedded in a lower 500 dimensional space which is
then given as input to the LSTM. The rest of the LSTM ar-
chitecture remains unchanged for flow inputs.

In our combined model, we use a shallow fusion tech-
nique to integrate flow and RGB features. At each time
step of the decoding phase, the model proposes a set of can-
didate words. We then rescore these hypotheses with the
weighted sum of the scores by the flow and RGB networks,
where we only need to recompute the score of each new
word p(y

t

= y

0
) as:

↵ · p
rgb

(y

t

= y

0
) + (1� ↵) · p

flow

(y

t

= y

0
)

the hyper-parameter ↵ is tuned on the validation set.
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Hierarchical Encoder 

C CCCCCCCC

(a) Stacked LSTM video encoder

C CCCCCCCC

(b) Hierarchical Recurrent Neural Encoder

Figure 3: A comparison between stacked LSTM and the proposed Hierarchical Recurrent Neural Encoder. This figure takes
a two layer hierarchy as an example to showcase. The red line in each subfigure shows one of the paths from the visual
appearance input at t = 1 to the output video vector representation. There are 10 time steps in stacked LSTM and only 6
time steps in our model.

our HRNE model. We next introduce the attention mecha-
nism part.

The core of the soft attention mechanism is that instead
of just inputting the original sequence (x1,x2, ...,xn

) into
a LSTM layer, dynamic weights are used to generate a new
sequence (v1,v2, ...,vm

):

v

t

=

nX

i=1

↵
(t)
i

x

i

, (10)

where
P

n

i=1 ↵
(t)
i

= 1 and ↵
(t)
i

will be calculated by an
attention neural network at each time step t = 1, 2, . . . ,m.

The attention weight ↵
(t)
i

actually measures the rele-
vance between the i-th element x

i

of the input sequence
and the history information recorded by the LSTM h

t�1.
Hence a function is needed to calculate the relevance score:

e
(t)
i

= w>
tanh(W

a

x

i

+ U
a

h

t�1 + b
a

), (11)

where w,W
a

, U
a

, b
a

are all parameters and h

t�1 is the hid-
den state of the LSTM at (t�1)-th time step.

We need to calculate e(t)
i

for i = 1, 2, ..., n and then ↵
(t)
i

could be calculated by:

↵
(t)
i

= exp(e
(t)
i

)/
nX

j=1

exp(e
(t)
j

). (12)

The attention mechanism could make the LSTM pay atten-
tion to different temporal locations of the input sequence
according to its backprop information, and when the input
sequence and the output sequence are not aligned strictly,
attention would especially be helpful. We add attention
units in three different positions in our video caption model:
between the visual input and the LSTM filter, between the
output of the filter and the second LSTM layer, between the
output of our HRNE and the description decoder.

3.3. Video Captioning

Our HRNE can be applied to several video processing
tasks where feature vectors are required to represent videos.
In this paper, we use video captioning, where temporal in-
formation plays an important role, to showcase the advan-
tage of the proposed method.

We develop our video captioning model based on the
general sequence to sequence model [31], i.e., encoder-
decoder framework, which is same as the previous
works [42, 37]. We use the general video encoder to
map video sequences to feature vectors and then one-layer
LSTM decoder conditioned on the video feature vector to
generate description for the video.

The overall objective function we are optimizing is the
log-likelihood over the whole training set,

max

✓

TX

t=1

log Pr(y
t

|z, y
t�1; ✓), (13)

where y
t

is a one-hot vector (1-of-N coding, where N is the
size of the word vocabulary) used to represent the word at
the t-th time step, z is the feature vector output by the video
encoder and ✓ represents the video captioning model’s pa-
rameters.

Similar to most recurrent neural network language mod-
els, we utilize a softmax layer to model the probability dis-
tribution of the next word over the word space, i.e.,

Pr(y
t

|z, y
t�1; ✓) / exp(y>

t

W
y

s

t

), (14)

where

s

t

= tanh(W
z

z+W
h

h

t

+W
e

y
t�1 + b), (15)

and W
y

,W
z

,W
h

,W
e

and b are all the parameters.
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Abstract

Automatically describing the content of an image is a
fundamental problem in artificial intelligence that connects
computer vision and natural language processing. In this
paper, we present a generative model based on a deep re-
current architecture that combines recent advances in com-
puter vision and machine translation and that can be used
to generate natural sentences describing an image. The
model is trained to maximize the likelihood of the target de-
scription sentence given the training image. Experiments
on several datasets show the accuracy of the model and the
fluency of the language it learns solely from image descrip-
tions. Our model is often quite accurate, which we verify
both qualitatively and quantitatively. For instance, while
the current state-of-the-art BLEU-1 score (the higher the
better) on the Pascal dataset is 25, our approach yields 59,
to be compared to human performance around 69. We also
show BLEU-1 score improvements on Flickr30k, from 56 to
66, and on SBU, from 19 to 28. Lastly, on the newly released
COCO dataset, we achieve a BLEU-4 of 27.7, which is the
current state-of-the-art.

1. Introduction
Being able to automatically describe the content of an

image using properly formed English sentences is a very
challenging task, but it could have great impact, for instance
by helping visually impaired people better understand the
content of images on the web. This task is significantly
harder, for example, than the well-studied image classifi-
cation or object recognition tasks, which have been a main
focus in the computer vision community [27]. Indeed, a
description must capture not only the objects contained in
an image, but it also must express how these objects relate
to each other as well as their attributes and the activities
they are involved in. Moreover, the above semantic knowl-
edge has to be expressed in a natural language like English,
which means that a language model is needed in addition to
visual understanding.

Most previous attempts have proposed to stitch together

A group of people 
shopping at an 
outdoor market. 
!
There are many 
vegetables at the 
fruit stand.

Vision!
Deep CNN

Language !
Generating!

RNN

Figure 1. NIC, our model, is based end-to-end on a neural net-
work consisting of a vision CNN followed by a language gener-
ating RNN. It generates complete sentences in natural language
from an input image, as shown on the example above.

existing solutions of the above sub-problems, in order to go
from an image to its description [6, 16]. In contrast, we
would like to present in this work a single joint model that
takes an image I as input, and is trained to maximize the
likelihood p(S|I) of producing a target sequence of words
S = {S1, S2, . . .} where each word S

t

comes from a given
dictionary, that describes the image adequately.

The main inspiration of our work comes from recent ad-
vances in machine translation, where the task is to transform
a sentence S written in a source language, into its transla-
tion T in the target language, by maximizing p(T |S). For
many years, machine translation was also achieved by a se-
ries of separate tasks (translating words individually, align-
ing words, reordering, etc), but recent work has shown that
translation can be done in a much simpler way using Re-
current Neural Networks (RNNs) [3, 2, 30] and still reach
state-of-the-art performance. An “encoder” RNN reads the
source sentence and transforms it into a rich fixed-length
vector representation, which in turn in used as the initial
hidden state of a “decoder” RNN that generates the target
sentence.

Here, we propose to follow this elegant recipe, replac-
ing the encoder RNN by a deep convolution neural network
(CNN). Over the last few years it has been convincingly
shown that CNNs can produce a rich representation of the
input image by embedding it to a fixed-length vector, such
that this representation can be used for a variety of vision

1
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Figure 3. LSTM model combined with a CNN image embedder
(as defined in [12]) and word embeddings. The unrolled connec-
tions between the LSTM memories are in blue and they corre-
spond to the recurrent connections in Figure 2. All LSTMs share
the same parameters.

image and each sentence word such that all LSTMs share
the same parameters and the output m

t�1 of the LSTM at
time t � 1 is fed to the LSTM at time t (see Figure 3). All
recurrent connections are transformed to feed-forward con-
nections in the unrolled version. In more detail, if we denote
by I the input image and by S = (S0, . . . , SN

) a true sen-
tence describing this image, the unrolling procedure reads:

x�1 = CNN(I) (10)
x

t

= W

e

S

t

, t 2 {0 . . . N � 1} (11)
p

t+1 = LSTM(x

t

), t 2 {0 . . . N � 1} (12)

where we represent each word as a one-hot vector S

t

of
dimension equal to the size of the dictionary. Note that we
denote by S0 a special start word and by S

N

a special stop
word which designates the start and end of the sentence. In
particular by emitting the stop word the LSTM signals that a
complete sentence has been generated. Both the image and
the words are mapped to the same space, the image by using
a vision CNN, the words by using word embedding W

e

.
The image I is only input once, at t = �1, to inform the
LSTM about the image contents. We empirically verified
that feeding the image at each time step as an extra input
yields inferior results, as the network can explicitly exploit
noise in the image and overfits more easily.

Our loss is the sum of the negative log likelihood of the
correct word at each step as follows:

L(I, S) = �
NX

t=1

log p

t

(S

t

) . (13)

The above loss is minimized w.r.t. all the parameters of the
LSTM, the top layer of the image embedder CNN and word
embeddings W

e

.

Inference There are multiple approaches that can be used
to generate a sentence given an image, with NIC. The first
one is Sampling where we just sample the first word ac-
cording to p1, then provide the corresponding embedding
as input and sample p2, continuing like this until we sample
the special end-of-sentence token or some maximum length.
The second one is BeamSearch: iteratively consider the set
of the k best sentences up to time t as candidates to generate
sentences of size t + 1, and keep only the resulting best k
of them. This better approximates S = argmax

S

0
p(S

0|I).
We used the BeamSearch approach in the following experi-
ments, with a beam of size 20. Using a beam size of 1 (i.e.,
greedy search) did degrade our results by 2 BLEU points on
average.

4. Experiments
We performed an extensive set of experiments to assess

the effectiveness of our model using several metrics, data
sources, and model architectures, in order to compare to
prior art.

4.1. Evaluation Metrics

Although it is sometimes not clear whether a description
should be deemed successful or not given an image, prior
art has proposed several evaluation metrics. The most re-
liable (but time consuming) is to ask for raters to give a
subjective score on the usefulness of each description given
the image. In this paper, we used this to reinforce that some
of the automatic metrics indeed correlate with this subjec-
tive score, following the guidelines proposed in [11], which
asks the graders to evaluate each generated sentence with a
scale from 1 to 41.

For this metric, we set up an Amazon Mechanical Turk
experiment. Each image was rated by 2 workers. The typ-
ical level of agreement between workers is 65%. In case
of disagreement we simply average the scores and record
the average as the score. For variance analysis, we perform
bootstrapping (re-sampling the results with replacement and
computing means/standard deviation over the resampled re-
sults). Like [11] we report the fraction of scores which are
larger or equal than a set of predefined thresholds.

The rest of the metrics can be computed automatically
assuming one has access to groundtruth, i.e. human gen-
erated descriptions. The most commonly used metric so
far in the image description literature has been the BLEU
score [25], which is a form of precision of word n-grams
between generated and reference sentences 2. Even though

1 The raters are asked whether the image is described without any er-
rors, described with minor errors, with a somewhat related description, or
with an unrelated description, with a score of 4 being the best and 1 being
the worst.

2In this literature, most previous work report BLEU-1, i.e., they only
compute precision at the unigram level, whereas BLEU-n is a geometric
average of precision over 1- to n-grams.

Architecture of Image Captioning Model

[Vinyals et al., 2015]
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Abstract

Inspired by recent work in machine translation
and object detection, we introduce an attention
based model that automatically learns to describe
the content of images. We describe how we
can train this model in a deterministic manner
using standard backpropagation techniques and
stochastically by maximizing a variational lower
bound. We also show through visualization how
the model is able to automatically learn to fix its
gaze on salient objects while generating the cor-
responding words in the output sequence. We
validate the use of attention with state-of-the-
art performance on three benchmark datasets:
Flickr8k, Flickr30k and MS COCO.

1. Introduction
Automatically generating captions of an image is a task
very close to the heart of scene understanding — one of the
primary goals of computer vision. Not only must caption
generation models be powerful enough to solve the com-
puter vision challenges of determining which objects are in
an image, but they must also be capable of capturing and
expressing their relationships in a natural language. For
this reason, caption generation has long been viewed as
a difficult problem. It is a very important challenge for
machine learning algorithms, as it amounts to mimicking
the remarkable human ability to compress huge amounts of
salient visual infomation into descriptive language.

Despite the challenging nature of this task, there has been
a recent surge of research interest in attacking the image
caption generation problem. Aided by advances in training
neural networks (Krizhevsky et al., 2012) and large clas-
sification datasets (Russakovsky et al., 2014), recent work

Figure 1. Our model learns a words/image alignment. The visual-
ized attentional maps (3) are explained in section 3.1 & 5.4
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has significantly improved the quality of caption genera-
tion using a combination of convolutional neural networks
(convnets) to obtain vectorial representation of images and
recurrent neural networks to decode those representations
into natural language sentences (see Sec. 2).

One of the most curious facets of the human visual sys-
tem is the presence of attention (Rensink, 2000; Corbetta &
Shulman, 2002). Rather than compress an entire image into
a static representation, attention allows for salient features
to dynamically come to the forefront as needed. This is
especially important when there is a lot of clutter in an im-
age. Using representations (such as those from the top layer
of a convnet) that distill information in image down to the
most salient objects is one effective solution that has been
widely adopted in previous work. Unfortunately, this has
one potential drawback of losing information which could
be useful for richer, more descriptive captions. Using more
low-level representation can help preserve this information.
However working with these features necessitates a power-
ful mechanism to steer the model to information important
to the task at hand.

In this paper, we describe approaches to caption genera-
tion that attempt to incorporate a form of attention with
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using T

s,t

: Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, i
t

, f
t

, c
t

, o
t

, h
t

are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ˆ

z 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ˆz
t

(equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ˆz

t

from the annotation vectors a
i

, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵
i

which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
a
i

’s together. The weight ↵
i

of each annotation vector a
i

is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state h

t�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

e
ti

=fatt(ai,ht�1) (4)

↵
ti

=

exp(e
ti

)

P
L

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑ

t

is computed by

ˆ

z

t

= � ({a
i

} , {↵
i

}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

a

i

)

h0 = finit,h(
1

L

LX

i

a

i

)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(y
t

|a,yt�1
1 ) / exp(L

o

(Ey

t�1 + L

h

h

t

+ L

z

ˆ

z

t

)) (7)

Where L

o

2 RK⇥m, L
h

2 Rm⇥n, L
z

2 Rm⇥D, and E

are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs
Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable s
t

as where the model
decides to focus attention when generating the tth word.
s
t,i

is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵

i

}, and view ẑ
t

as a random variable:

p(s
t,i

= 1 | s
j<t

,a) = ↵
t,i

(8)

ˆ

z

t

=

X

i

s
t,i

a

i

. (9)

We define a new objective function L
s

that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing L

s

:

L
s

=

X

s

p(s | a) log p(y | s,a)

 log

X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@L
s

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)
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Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along



Applications: 

• Assistance to visually impaired


• Improving online video search


• Grounded robotic instruction tasks

Video Captioning

5 [Kojima et al., 2002; Lee et al., 2008; Khan and Gotoh, 2012; Barbu et al., 2012; Das et al., 2013; 

Rohrbach et al., 2013; Yu and Siskind, 2013; Venugopalan et al., 2014, 2015, 2016]

[Pasunuru & Bansal, ACL 2017](slides by Ramakanth Pasunuru)



Video Captioning Challenges: 
• Lack of sufficient labeled data

• Spatial-visual modeling

• Logical storyline dynamics

• Temporal across-frame dynamics

We share knowledge w/ 2 related directed-generation tasks/datasets (textual+visual):

1. Premise-to-Entailment Generation 


• To help learn better caption decoder representations, since caption is also entailed by video.

2. Video-to-Video Generation (Unsupervised) 


• To help learn richer video encoder representations, aware of temporal action context.

Multi-Task for Video Captioning

6

(slides by Ramakanth Pasunuru) [Pasunuru & Bansal, ACL 2017]



UNSUPERVISED
VIDEO PREDICTION

VIDEO CAPTIONING
ENTAILMENT
GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Multi-Task for Video Captioning
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Baseline Video Captioning Model

• Sequence-to-sequence encoder-decoder 
model (‘f’ denotes frames; ‘w’ denotes words)


• Attention-based (Bahdanau et al., 2015)


• State-of-the-art Inception-v4 image frame 
features


• Strong baseline (>= previous work)

8
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Textual Entailment

• Directional, logical-implication relation between two sentences:

• Premise:   A girl is jumping on skateboard in the middle of a red bridge. 

• Entailment:   The girl does a skateboarding trick.  
• Contradiction:  The girl skates down the sidewalk. 

• Neutral:   The girl is wearing safety equipment. 


• Premise:   A blond woman is drinking from a public fountain. 

• Entailment:  The woman is drinking water. 

• Contradiction:  The woman is drinking coffee. 

• Neutral:   The woman is very thirsty. 


• Can we use entailment as linguistic inference to help related directed/conditioned 
generation tasks? (Yes, for e.g. video captioning or document summarization).


• Large-scale SNLI corpus allows training accurate classification and RNN-style 
generation  models.

[Dagan et al., 2006; Roth and Sammons, 2007; Lai and Hockenmaier, 2014; Bowman et al., 2016]9
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Entailment Generation

• Helps learn better video-entailing caption 
decoder representations.


• Since caption needs to be entailed by visual 
premise of video (i.e., describes subsets of 
objects/events logically implied by full video 
content), we teach it about entailment via 
MTL.


ENTAILMENT
GENERATION

Language Encoder

Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

[Kolesnyk et al., 2016]10
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Unsupervised Video Prediction

• Helps learn richer video encoder 
representations that are aware of temporal 
context and action sequence/completion.


• Robust to missing frames and varying frame 
lengths or motion speeds .


• 80:20% frame division between encoder and 
decoder.


• UCF-101 action videos dataset.

UNSUPERVISED
VIDEO PREDICTION

Video Encoder

Video Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

[Srivastava et al., 2015]11

frame1 frame2 frame3 frame4

frame5 frame6 frame7 frame8
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M-to-1 Multi-Task Model

UNSUPERVISED
VIDEO PREDICTION

VIDEO CAPTIONING
ENTAILMENT
GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM
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1-to-M Multi-Task Model

UNSUPERVISED
VIDEO PREDICTION

VIDEO CAPTIONING
ENTAILMENT
GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM
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M-to-M Multi-Task for Video Captioning

UNSUPERVISED
VIDEO PREDICTION

VIDEO CAPTIONING
ENTAILMENT
GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Training in alternate mini-batches: mixing ratio = 

3.5 Multi-Task Learning

Multi-task learning helps in sharing information

between different tasks and across domains. Our

primary aim is to improve the video captioning

model, where visual content translates to a tex-

tual form in a directed (entailed) generation way.

Hence, this presents an interesting opportunity to

share temporally and logically directed knowledge

with both visual and linguistic generation tasks.

Fig. 4 shows our overall many-to-many multi-task

model for jointly learning video captioning, unsu-

pervised video prediction, and textual entailment

generation. Here, the video captioning task shares

its video encoder (parameters) with the encoder of

the video prediction task (one-to-many setting) so

as to learn context-aware and temporally-directed

visual representations (see Sec. 3.3).

Moreover, the decoder of the video caption-

ing task is shared with the decoder of the textual

entailment generation task (many-to-one setting),

thus helping generate captions that can ‘entail’,

i.e., are logically implied by or follow from the

video content (see Sec. 3.4).2 In both the one-to-

many and the many-to-one settings, we also allow

the attention parameters to be shared or separated.

The overall many-to-many setting thus improves

both the visual and language representations of the

video captioning model.

We train the multi-task model by alternately op-

timizing each task in mini-batches based on a mix-

ing ratio. Let αv, αf , and αe be the number

of mini-batches optimized alternately from each

of these three tasks – video captioning, unsuper-

vised video future frames prediction, and entail-

ment generation, resp. Then the mixing ratio is de-

fined as αv

(αv+αf+αe)
:

αf

(αv+αf+αe)
: αe

(αv+αf+αe)
.

4 Experimental Setup

4.1 Datasets

Video Captioning Datasets We report results

on three popular video captioning datasets. First,

we use the YouTube2Text or MSVD (Chen and

Dolan, 2011) for our primary results, which con-

2Empirically, logical entailment helped captioning more
than simple fusion with language modeling (i.e., partial sen-
tence completion with no logical implication), because a cap-
tion also entails a video in a logically-directed sense and
hence the entailment generation task matches the video cap-
tioning task better than language modeling. Moreover, a
multi-task setup is more suitable to add directed information
such as entailment (as opposed to pretraining or fusion with
only the decoder). Details in Sec. 5.1.

tains 1970 YouTube videos in the wild with sev-

eral different reference captions per video (40 on

average). We also use MSR-VTT (Xu et al.,

2016) with 10, 000 diverse video clips (from a

video search engine) – it has 200, 000 video clip-

sentence pairs and around 20 captions per video;

and M-VAD (Torabi et al., 2015) with 49, 000
movie-based video clips but only 1 or 2 captions

per video, making most evaluation metrics (except

paraphrase-based METEOR) infeasible. We use

the standard splits for all three datasets. Further

details about all these datasets are provided in the

supplementary.

Video Prediction Dataset For our unsupervised

video representation learning task, we use the

UCF-101 action videos dataset (Soomro et al.,

2012), which contains 13, 320 video clips of 101
action categories, and suits our video captioning

task well because it also contains short video clips

of a single action or few actions. We use the stan-

dard splits – further details in supplementary.

Entailment Generation Dataset For the entail-

ment generation encoder-decoder model, we use

the Stanford Natural Language Inference (SNLI)

corpus (Bowman et al., 2015), which contains

human-annotated English sentence pairs with clas-

sification labels of entailment, contradiction and

neutral. It has a total of 570, 152 sentence pairs

out of which 190, 113 correspond to true entail-

ment pairs, and we use this subset in our multi-task

video captioning model. For improving video cap-

tioning, we use the same training/validation/test

splits as provided by Bowman et al. (2015), which

is 183, 416 training, 3, 329 validation, and 3, 368
testing pairs (for the entailment subset).

However, for the entailment generation multi-

task results (see results in Sec. 5.3), we modify

the splits so as to create a multi-reference setup

which can afford evaluation with automatic met-

rics. A given premise usually has multiple entailed

hypotheses but the original SNLI corpus is set

up as single-reference (for classification). Due to

this, the different entailed hypotheses of the same

premise land up in different splits of the dataset

(e.g., one in train and one in test/validation) in

many cases. Therefore, we regroup the premise-

entailment pairs and modify the split as follows:

among the 190, 113 premise-entailment pairs sub-

set of the SNLI corpus, there are 155, 898 unique

premises; out of which 145, 822 have only one hy-

14

(slides by Ramakanth Pasunuru) [Pasunuru & Bansal, ACL 2017]



Results (YouTube2Text)

15

Dataset: 1970 videos with 40 reference captions for each video clip.
Metrics: All the above metrics are automatic based on phrase matching between 
generated and reference caption. For example, BLEU is based on n-gram 
matching, ROUGE-L is based on longest common subsequence matching. 

(slides by Ramakanth Pasunuru) [Pasunuru & Bansal, ACL 2017]



* All models (1-to-M, M-to-1 and M-to-M) stat. signif. better than strong SotA baseline.16

Results (YouTube2Text)

Human evaluation: Multi-task model is better than baseline 

(slides by Ramakanth Pasunuru) [Pasunuru & Bansal, ACL 2017]



Results (Entailment Generation)

• Video captioning mutually also helps improve the entailment-generation task in turn (w/ 
statistical significance). 

UNSUPERVISED
VIDEO PREDICTION

VIDEO CAPTIONING
ENTAILMENT
GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Models M C R B
Venugopalan (2015b)⋆ 23.4 - - 32.3
Yao et al. (2015)⋆ 25.2 - - 35.2
Xu et al. (2016) 25.9 - - 36.6
Rank1: v2t navigator 28.2 44.8 60.9 40.8
Rank2: Aalto 26.9 45.7 59.8 39.8
Rank3: VideoLAB 27.7 44.1 60.6 39.1
Our Model (New Rank1) 28.8 47.1 60.2 40.8

Table 2: Results on MSR-VTT dataset on the 4 metrics.
⋆Results are reimplementations as per Xu et al. (2016).
We also report the top 3 leaderboard systems – our model
achieves the new rank 1 based on their ranking method.

Models METEOR
Yao et al. (2015) 5.7
Venugopalan et al. (2015a) 6.7
Pan et al. (2016a) 6.8
Our M-to-M Multi-Task Model 7.4

Table 3: Results on M-VAD dataset.

of video captioning, unsupervised video predic-

tion, and entailment generation, resp. works well.

Table 1 shows that our many-to-many multi-task

model again outperforms our strongest baseline

(with statistical significance of p < 0.01 on all

metrics), as well as all the previous state-of-the-

art results by large absolute margins on all met-

rics. It also achieves significant improvements on

some metrics over the one-to-many and many-to-

one models.7 Overall, we achieve the best results

to date on YouTube2Text (MSVD) on all metrics.

5.2 Video Captioning on MSR-VTT, M-VAD

In Table 2, we also train and evaluate our fi-

nal many-to-many multi-task model on two other

video captioning datasets (using their standard

splits; details in supplementary). First, we eval-

uate on the new MSR-VTT dataset (Xu et al.,

2016). Since this is a recent dataset, we list pre-

vious works’ results as reported by the MSR-VTT

dataset paper itself.8 We improve over all of these

significantly. Moreover, they maintain a leader-

board9 on this dataset and we also report the top 3

systems from it. Based on their ranking method,

our multi-task model achieves the new rank 1 on

this leaderboard. In Table 3, we further eval-

uate our model on the challenging movie-based

M-VAD dataset, and again achieve improvements

over all previous work (Venugopalan et al., 2015a;

7Many-to-many model’s improvements have a statistical
significance of p < 0.01 on all metrics w.r.t. baseline, and
p < 0.01 on CIDEr-D w.r.t. both one-to-many and many-to-
one models, and p < 0.04 on METEOR w.r.t. one-to-many.

8In their updated supplementary at https:
//www.microsoft.com/en-us/research/wp-content/
uploads/2016/10/cvpr16.supplementary.pdf

9
http://ms-multimedia-challenge.com/leaderboard

Models M C R B
Entailment Generation 29.6 117.8 62.4 40.6
+Video Caption (M-to-1) 30.0 121.6 63.9 41.6

Table 4: Entailment generation results with the four metrics.

Pan et al., 2016a; Yao et al., 2015).10

5.3 Entailment Generation Results

Above, we showed that the new entailment gener-

ation task helps improve video captioning. Next,

we show that the video captioning task also

inversely helps the entailment generation task.

Given a premise, the task of entailment generation

is to generate an entailed hypothesis. We use only

the entailment pairs subset of the SNLI corpus for

this, but with a multi-reference split setup to al-

low automatic metric evaluation and a zero train-

test premise overlap (see Sec. 4.1). All the hyper-

parameter details (again tuned on the validation

set) are presented in the supplementary. Table 4

presents the entailment generation results for the

baseline (sequence-to-sequence with attention, 3-

ensemble, beam search) and the multi-task model

which uses video captioning (shared decoder) on

top of the baseline. A mixing ratio of 100 : 20 al-

ternate mini-batches of entailment generation and

video captioning (resp.) works well.11 The multi-

task model achieves stat. significant (p < 0.01)

improvements over the baseline on all metrics,

thus demonstrating that video captioning and en-

tailment generation both mutually help each other.

5.4 Human Evaluation

In addition to the automated evaluation metrics,

we present pilot-scale human evaluations on the

YouTube2Text (Table 1) and entailment genera-

tion (Table 4) results. In each case, we compare

our strongest baseline with our final multi-task

model (M-to-M in case of video captioning and

M-to-1 in case of entailment generation). We eval-

uate a random sample of 300 generated captions

(or entailed hypotheses) from the test set, across

three human evaluators. We remove the model

identity to anonymize the two models, and ask

the human evaluators to choose the better model

based on relevance and coherence (described in

Sec. 4.2). As shown in Table 5 and Table 6,

10Following previous work, we only use METEOR be-
cause M-VAD only has a single reference caption per video.

11Note that this many-to-one model prefers a different mix-
ing ratio and learning rate than the many-to-one model for
improving video captioning (Sec. 5.1), because these hyper-
parameters depend on the primary task being improved, as
also discussed in previous work (Luong et al., 2016).
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Analysis Example

Complex example where the multi-task model performs better than baseline.
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We introduce a novel entailment-enhanced reward (CIDEnt) that corrects phrase-matching 
based metrics (such as CIDEr) to only allow for logically-implied partial matches and avoid 
contradictions.
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Ground-truth caption Generated (sampled) caption CIDEr Ent
a man is spreading some butter in a pan puppies is melting butter on the pan 140.5 0.07
a panda is eating some bamboo a panda is eating some fried 256.8 0.14
a monkey pulls a dogs tail a monkey pulls a woman 116.4 0.04
a man is cutting the meat a man is cutting meat into potato 114.3 0.08
the dog is jumping in the snow a dog is jumping in cucumbers 126.2 0.03
a man and a woman is swimming in the pool a man and a whale are swimming in a pool 192.5 0.02

Table 1: Examples of captions sampled during policy gradient and their CIDEr vs Entailment scores.

sequence. We also use a variance-reducing bias

(baseline) estimator in the reward function. Their

details and the partial derivatives using the chain

rule are described in the supplementary.

Mixed Loss During reinforcement learning, op-

timizing for only the reinforcement loss (with au-

tomatic metrics as rewards) doesn’t ensure the

readability and fluency of the generated caption,

and there is also a chance of gaming the metrics

without actually improving the quality of the out-

put (Liu et al., 2016a). Hence, for training our

reinforcement based policy gradients, we use a

mixed loss function, which is a weighted combi-

nation of the cross-entropy loss (XE) and the rein-

forcement learning loss (RL), similar to the previ-

ous work (Paulus et al., 2017; Wu et al., 2016).

This mixed loss improves results on the metric

used as reward through the reinforcement loss

(and improves relevance based on our entailment-

enhanced rewards) but also ensures better read-

ability and fluency due to the cross-entropy loss (in

which the training objective is a conditioned lan-

guage model, learning to produce fluent captions).

Our mixed loss is defined as:

LMIXED = (1− γ)LXE + γLRL (4)

where γ is a tuning parameter used to balance

the two losses. For annealing and faster conver-

gence, we start with the optimized cross-entropy

loss baseline model, and then move to optimizing

the above mixed loss function.2

4 Reward Functions

Caption Metric Reward Previous image cap-

tioning papers have used traditional captioning

metrics such as CIDEr, BLEU, or METEOR as

reward functions, based on the match between the

generated caption sample and the ground-truth ref-

erence(s). First, it has been shown by Vedantam

2We also experimented with the curriculum learning
‘MIXER’ strategy of Ranzato et al. (2016), where the XE+RL
annealing is based on the decoder time-steps; however, the
mixed loss function strategy (described above) performed
better in terms of maintaining output caption fluency.

et al. (2015) that CIDEr, based on a consensus

measure across several human reference captions,

has a higher correlation with human evaluation

than other metrics such as METEOR, ROUGE,

and BLEU. They further showed that CIDEr gets

better with more number of human references (and

this is a good fit for our video captioning datasets,

which have 20-40 human references per video).

More recently, Rennie et al. (2016) further

showed that CIDEr as a reward in image caption-

ing outperforms all other metrics as a reward, not

just in terms of improvements on CIDEr metric,

but also on all other metrics. In line with these

above previous works, we also found that CIDEr

as a reward (‘CIDEr-RL’ model) achieves the best

metric improvements in our video captioning task,

and also has the best human evaluation improve-

ments (see Sec. 6.3 for result details, incl. those

about other rewards based on BLEU, SPICE).

Entailment Corrected Reward Although CIDEr

performs better than other metrics as a reward, all

these metrics (including CIDEr) are still based on

an undirected n-gram matching score between the

generated and ground truth captions. For exam-

ple, the wrong caption “a man is playing football”

w.r.t. the correct caption “a man is playing bas-

ketball” still gets a high score, even though these

two captions belong to two completely different

events. Similar issues hold in case of a negation

or a wrong action/object in the generated caption

(see examples in Table 1).

We address the above issue by using an entail-

ment score to correct the phrase-matching metric

(CIDEr or others) when used as a reward, ensur-

ing that the generated caption is logically implied

by (i.e., is a paraphrase or directed partial match

with) the ground-truth caption. To achieve an ac-

curate entailment score, we adapt the state-of-the-

art decomposable-attention model of Parikh et al.

(2016) trained on the SNLI corpus (image caption

domain). This model gives us a probability for

whether the sampled video caption (generated by

our model) is entailed by the ground truth caption

as premise (as opposed to a contradiction or neu-

Table: Examples of captions sampled during policy gradient and their CIDEr vs Entailment scores. 

tral case).3 Similar to the traditional metrics, the

overall ‘Ent’ score is the maximum over the en-

tailment scores for a generated caption w.r.t. each

reference human caption (around 20/40 per MSR-

VTT/YouTube2Text video). CIDEnt is defined as:

CIDEnt =

{

CIDEr − λ, if Ent < β

CIDEr, otherwise
(5)

which means that if the entailment score is very

low, we penalize the metric reward score by de-

creasing it by a penalty λ. This agreement-based

formulation ensures that we only trust the CIDEr-

based reward in cases when the entailment score

is also high. Using CIDEr−λ also ensures the

smoothness of the reward w.r.t. the original CIDEr

function (as opposed to clipping the reward to a

constant). Here, λ and β are hyperparameters

that can be tuned on the dev-set; on light tun-

ing, we found the best values to be intuitive: λ =
roughly the baseline (cross-entropy) model’s score

on that metric (e.g., 0.45 for CIDEr on MSR-VTT

dataset); and β = 0.33 (i.e., the 3-class entailment

classifier chose contradiction or neutral label for

this pair). Table 1 shows some examples of sam-

pled generated captions during our model training,

where CIDEr was misleadingly high for incorrect

captions, but the low entailment score (probabil-

ity) helps us successfully identify these cases and

penalize the reward.

5 Experimental Setup

Datasets We use 2 datasets: MSR-VTT (Xu et al.,

2016) has 10, 000 videos, 20 references/video; and

YouTube2Text/MSVD (Chen and Dolan, 2011)

has 1970 videos, 40 references/video. Standard

splits and other details in supp.

Automatic Evaluation We use several standard

automated evaluation metrics: METEOR, BLEU-

4, CIDEr-D, and ROUGE-L (from MS-COCO

evaluation server (Chen et al., 2015)).

Human Evaluation We also present human eval-

uation for comparison of baseline-XE, CIDEr-RL,

and CIDEnt-RL models, esp. because the au-

tomatic metrics cannot be trusted solely. Rele-

vance measures how related is the generated cap-

tion w.r.t, to the video content, whereas coherence

measures readability of the generated caption.

3Our entailment classifier based on Parikh et al. (2016)
is 92% accurate on entailment in the caption domain, hence
serving as a highly accurate reward score. For other domains
in future tasks such as new summarization, we plan to use the
new multi-domain dataset by Williams et al. (2017).

Training Details All the hyperparameters are

tuned on the validation set. All our results (in-

cluding baseline) are based on a 5-avg-ensemble.

See supplementary for extra training details, e.g.,

about the optimizer, learning rate, RNN size,

Mixed-loss, and CIDEnt hyperparameters.

6 Results

6.1 Primary Results

Table 2 shows our primary results on the popular

MSR-VTT dataset. First, our baseline attention

model trained on cross entropy loss (‘Baseline-

XE’) achieves strong results w.r.t. the previous

state-of-the-art methods.4 Next, our policy gra-

dient based mixed-loss RL model with reward as

CIDEr (‘CIDEr-RL’) improves significantly5 over

the baseline on all metrics, and not just the CIDEr

metric. It also achieves statistically significant im-

provements in terms of human relevance evalua-

tion (see below). Finally, the last row in Table 2

shows results for our novel CIDEnt-reward RL

model (‘CIDEnt-RL’). This model achieves sta-

tistically significant6 improvements on top of the

strong CIDEr-RL model, on all automatic metrics

(as well as human evaluation). Note that in Ta-

ble 2, we also report the CIDEnt reward scores,

and the CIDEnt-RL model strongly outperforms

CIDEr and baseline models on this entailment-

corrected measure. Overall, we are also the new

Rank1 on the MSR-VTT leaderboard, based on

their ranking criteria.

Human Evaluation We also perform small hu-

man evaluation studies (250 samples from the

MSR-VTT test set output) to compare our 3 mod-

els pairwise.7 As shown in Table 3 and Table 4, in

terms of relevance, first our CIDEr-RL model stat.

significantly outperforms the baseline XE model

(p < 0.02); next, our CIDEnt-RL model signif-

icantly outperforms the CIDEr-RL model (p <

4We list previous works’ results as reported by the
MSR-VTT dataset paper itself, as well as their 3
leaderboard winners (http://ms-multimedia-challenge.
com/leaderboard), plus the 10-ensemble video+entailment
generation multi-task model of Pasunuru and Bansal (2017).

5Statistical significance of p < 0.01 for CIDEr, ME-
TEOR, and ROUGE, and p < 0.05 for BLEU, based on the
bootstrap test (Noreen, 1989; Efron and Tibshirani, 1994).

6Statistical significance of p < 0.01 for CIDEr, BLEU,
ROUGE, and CIDEnt, and p < 0.05 for METEOR.

7We randomly shuffle pairs to anonymize model iden-
tity and the human evaluator then chooses the better caption
based on relevance and coherence (see Sec. 5). ‘Not Distin-
guishable’ are cases where the annotator found both captions
to be equally good or equally bad).

penalizing CIDEr reward when 
entailment score is low. Thus, 
ensuring the generated caption 
logically implies (i.e., is 
paraphrase or directed partial 
match w/) ground-truth 
caption. 
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Models BLEU-4 METEOR ROUGE-L CIDEr-D CIDEnt Human*
PREVIOUS WORK

Venugopalan (2015b)⋆ 32.3 23.4 - - - -
Yao et al. (2015)⋆ 35.2 25.2 - - - -
Xu et al. (2016) 36.6 25.9 - - - -
Pasunuru and Bansal (2017) 40.8 28.8 60.2 47.1 - -
Rank1: v2t navigator 40.8 28.2 60.9 44.8 - -
Rank2: Aalto 39.8 26.9 59.8 45.7 - -
Rank3: VideoLAB 39.1 27.7 60.6 44.1 - -

OUR MODELS

Cross-Entropy (Baseline-XE) 38.6 27.7 59.5 44.6 34.4 -
CIDEr-RL 39.1 28.2 60.9 51.0 37.4 11.6
CIDEnt-RL (New Rank1) 40.5 28.4 61.4 51.7 44.0 18.4

Table 2: Our primary video captioning results on MSR-VTT. All CIDEr-RL results are statistically

significant over the baseline XE results, and all CIDEnt-RL results are stat. signif. over the CIDEr-RL

results. Human* refers to the ‘pairwise’ comparison of human relevance evaluation between CIDEr-RL

and CIDEnt-RL models (see full human evaluations of the 3 models in Table 3 and Table 4).

Relevance Coherence
Not Distinguishable 64.8% 92.8%
Baseline-XE Wins 13.6% 4.0%
CIDEr-RL Wins 21.6% 3.2%

Table 3: Human eval: Baseline-XE vs CIDEr-RL.

Relevance Coherence
Not Distinguishable 70.0% 94.6%
CIDEr-RL Wins 11.6% 2.8%
CIDEnt-RL Wins 18.4% 2.8%

Table 4: Human eval: CIDEr-RL vs CIDEnt-RL.

0.03). The models are statistically equal on co-

herence in both comparisons.

6.2 Other Datasets

We also tried our CIDEr and CIDEnt reward mod-

els on the YouTube2Text dataset. In Table 5, we

first see strong improvements from our CIDEr-RL

model on top of the cross-entropy baseline. Next,

the CIDEnt-RL model also shows some improve-

ments over the CIDEr-RL model, e.g., on BLEU

and the new entailment-corrected CIDEnt score. It

also achieves significant improvements on human

relevance evaluation (250 samples).8

6.3 Other Metrics as Reward

As discussed in Sec. 4, CIDEr is the most promis-

ing metric to use as a reward for captioning,

based on both previous work’s findings as well as

ours. We did investigate the use of other metrics

as the reward. When using BLEU as a reward

(on MSR-VTT), we found that this BLEU-RL

model achieves BLEU-metric improvements, but

was worse than the cross-entropy baseline on hu-

man evaluation. Similarly, a BLEUEnt-RL model

achieves BLEU and BLEUEnt metric improve-

ments, but is again worse on human evaluation.

8This dataset has a very small dev-set, causing tuning is-
sues – we plan to use a better train/dev re-split in future work.

Models B M R C CE H*
Baseline-XE 52.4 35.0 71.6 83.9 68.1 -
CIDEr-RL 53.3 35.1 72.2 89.4 69.4 8.4
CIDEnt-RL 54.4 34.9 72.2 88.6 71.6 13.6

Table 5: Results on YouTube2Text (MSVD)

dataset. CE = CIDEnt score. H* refer to the pair-

wise human comparison of relevance.

We also experimented with the new SPICE met-

ric (Anderson et al., 2016) as a reward, but this

produced long repetitive phrases (as also discussed

in Liu et al. (2016b)).

6.4 Analysis

Fig. 1 shows an example where our CIDEnt-

reward model correctly generates a ground-truth

style caption, whereas the CIDEr-reward model

produces a non-entailed caption because this cap-

tion will still get a high phrase-matching score.

Several more such examples are in the supp.

7 Conclusion

We first presented a mixed-loss policy gradi-

ent approach for video captioning, allowing for

metric-based optimization. We next presented an

entailment-corrected CIDEnt reward that further

improves results, achieving the new state-of-the-

art on MSR-VTT. In future work, we are apply-

ing our entailment-corrected rewards to other di-

rected generation tasks such as image caption-

ing and document summarization (using the new

multi-domain NLI corpus (Williams et al., 2017)).
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Abstract
We introduce the task of Visual Dialog, which requires an
AI agent to hold a meaningful dialog with humans in natu-
ral, conversational language about visual content. Specifi-
cally, given an image, a dialog history, and a question about
the image, the agent has to ground the question in image,
infer context from history, and answer the question accu-
rately. Visual Dialog is disentangled enough from a specific
downstream task so as to serve as a general test of ma-
chine intelligence, while being grounded in vision enough
to allow objective evaluation of individual responses and
benchmark progress. We develop a novel two-person chat
data-collection protocol to curate a large-scale Visual Di-
alog dataset (VisDial). VisDial v0.9 has been released and
contains 1 dialog with 10 question-answer pairs on ⇠120k
images from COCO, with a total of ⇠1.2M dialog question-
answer pairs.
We introduce a family of neural encoder-decoder models for
Visual Dialog with 3 encoders – Late Fusion, Hierarchi-
cal Recurrent Encoder and Memory Network – and 2 de-
coders (generative and discriminative), which outperform a
number of sophisticated baselines. We propose a retrieval-
based evaluation protocol for Visual Dialog where the AI
agent is asked to sort a set of candidate answers and eval-
uated on metrics such as mean-reciprocal-rank of human
response. We quantify gap between machine and human
performance on the Visual Dialog task via human studies.
Putting it all together, we demonstrate the first ‘visual chat-
bot’! Our dataset, code, trained models and visual chatbot
are available on https://visualdialog.org.

1. Introduction

We are witnessing unprecedented advances in computer vi-
sion (CV) and artificial intelligence (AI) – from ‘low-level’
AI tasks such as image classification [20], scene recogni-

*Work done while KG and AS were interns at Virginia Tech.

Figure 1: We introduce a new AI task – Visual Dialog, where an AI
agent must hold a dialog with a human about visual content. We
introduce a large-scale dataset (VisDial), an evaluation protocol,
and novel encoder-decoder models for this task.

tion [63], object detection [34] – to ‘high-level’ AI tasks
such as learning to play Atari video games [42] and Go [55],
answering reading comprehension questions by understand-
ing short stories [21, 65], and even answering questions
about images [6, 39, 49, 71] and videos [57, 58]!
What lies next for AI? We believe that the next genera-
tion of visual intelligence systems will need to posses the
ability to hold a meaningful dialog with humans in natural
language about visual content. Applications include:
• Aiding visually impaired users in understanding their sur-

roundings [7] or social media content [66] (AI: ‘John just
uploaded a picture from his vacation in Hawaii’, Human:
‘Great, is he at the beach?’, AI: ‘No, on a mountain’).

• Aiding analysts in making decisions based on large quan-
tities of surveillance data (Human: ‘Did anyone enter this
room last week?’, AI: ‘Yes, 27 instances logged on cam-
era’, Human: ‘Were any of them carrying a black bag?’),
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Figure 2: Two example games in the dataset. After a se-
quence of five questions we are able to locate the object
(highlighted by a green mask).

guage descriptions of an image. Visual Question Answering
(VQA) [6] is another popular task that involves answering
single open-ended questions concerning an image. Closer
to our work, the ReferIt game [21] aims to generate a single
expression that refers to one object in the image.

On the other hand, there has been a renewed interest in
dialogue systems [31, 37], inspired by the success of data-
driven approaches in other areas of natural language pro-
cessing [11]. Traditionally, dialogue systems have been
built through heavy engineering and hand-crafted expert
knowledge, despite machine learning attempts for almost
two decades [25, 40]. One of the difficulties comes from
the lack of automatic evaluation as – contrary to machine
translation – there is no evaluation metric that correlates
well with human evaluation [27]. A promising alternative is
goal-directed dialogue tasks [31, 40, 44, 43] where agents
converse to pursue a goal rather than casually chit-chat. The
agent’s success rate in completing the task can then be used
as an automatic evaluation metric. Many tasks have recently
been introduced, including the bAbI tasks [44] for testing an
agent’s ability to answer questions about a short story, the
movie dialog dataset [12] to assess an agent’s capabilities
regarding personal movie recommendation and a Wizard-
of-Oz framework [43] to evaluate an agent’s performance
for assisting users in finding restaurants.

In this paper, we bring these two fields together and
propose a novel goal-directed task for multi-modal dia-
logue. The two-player game, called GuessWhat?!, extends
the ReferIt game [21] to a dialogue setting. To succeed, both
players must understand the relations between objects and
how they are expressed in natural language. From a ma-
chine learning point of view, the GuessWhat?! challenge
is the following: learn to acquire natural language by in-
teraction on a visual task. Previous attempts in that direc-
tion [2, 43] do not ground natural language to their imme-
diate environment; instead they rely on an external database
through which a conversational agent searches.

The key contribution of this paper is the introduction of
the GuessWhat?! dataset that contains 155,280 dialogues
composed of 831,889 question/answer pairs on 66,537 im-
ages extracted from the MS COCO dataset [26]. We define
three sub-tasks that are based on the GuessWhat?! dataset
and prototype deep learning baselines to establish their dif-
ficulty. The paper is organized as follows. First, we explain
the rules of the GuessWhat?! game in Sec. 2. Then, Sec. 3
describes how GuessWhat?! relates to previous work. In
Sec. 4.1 we highlight our design decisions in collecting the
dataset, while Sec. 4.2 analyses many aspects of the dataset.
Sec. 5 introduces the questioner and oracle tasks and their
baseline models. Finally, Sec. 6 provides a final discussion
of the GuessWhat?! game.

2. GuessWhat?! game
GuessWhat?! is a cooperative two-player game in which

both players see the picture of a rich visual scene with sev-
eral objects. One player – the oracle – is randomly assigned
an object (which could be a person) in the scene. This ob-
ject is not known by the other player – the questioner –
whose goal it is to locate the hidden object. To do so, the
questioner can ask a series of yes-no questions which are
answered by the oracle as shown in Fig 1 and 2. Note that
the questioner is not aware of the list of objects, they can
only see the whole picture. Once the questioner has gath-
ered enough evidence to locate the object, they notify the
oracle that they are ready to guess the object. We then re-
veal the list of objects, and if the questioner picks the right
object, we consider the game successful. Otherwise, the
game ends unsuccessfully. We also include a small penalty
for every question to encourage the questioner to ask in-
formative questions. Fig 8 and 9 in Appendix A display a
full game from the perspective of the oracle and questioner,
respectively.

The oracle role is a form of visual question answering
where the answers are limited to Yes, No and N/A (not ap-
plicable). The N/A option is included to respond even when
the question being asked is ambiguous or an answer simply
cannot be determined. For instance, one cannot answer the
question ”Is he wearing glasses?” if the face of the selected
person is not visible. The role of the questioner is much
harder. They need to generate questions that progressively
narrow down the list of possible objects. Ideally, they would
like to minimize the number of questions necessary to lo-
cate the object. The optimal policy for doing so involves a
binary search: eliminate half of the remaining objects with
each question. Natural language is often very effective at
grouping objects in an image scene. Such strategies depend
on the picture, but we distinguish the following types:

Spatial reasoning We group objects spatially within the
image scene. One may use absolute spatial informa-

[Das et al., 2017]

[De Vries et al., 2017] 

[Mostafazadeh et al., 2017]
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Abstract

Unlike traditional over-the-phone spoken
dialog systems (SDSs), modern dialog
systems tend to have visual rendering on
the device screen as an additional modal-
ity to communicate the system’s response
to the user. Visual display of the system’s
response not only changes human behav-
ior when interacting with devices, but also
creates new research areas in SDSs. On-
screen item identification and resolution
in utterances is one critical problem to
achieve a natural and accurate human-
machine communication. We pose the
problem as a classification task to cor-
rectly identify intended on-screen item(s)
from user utterances. Using syntactic, se-
mantic as well as context features from the
display screen, our model can resolve dif-
ferent types of referring expressions with
up to 90% accuracy. In the experiments we
also show that the proposed model is ro-
bust to domain and screen layout changes.

1 Introduction

Todays natural user interfaces (NUI) for applica-
tions running on smart devices, e.g, phones (SIRI,
Cortana, GoogleNow), consoles (Amazon FireTV,
XBOX), tablet, etc., can handle not only simple
spoken commands, but also natural conversational
utterances. Unlike traditional over-the-phone spo-
ken dialog systems (SDSs), user hears and sees the
system’s response displayed on the screen as an
additional modality. Having visual access to the
system’s response and results changes human be-
havior when interacting with the machine, creating
new and challenging problems in SDS.

[System]: How can i help you today ?
[User]: Find non-fiction books by Chomsky.
[System]: (Fetches the following books from database)

[User]: “show details for the oldest production” or
“details for the syntax book” or
“open the last one” or
“i want to see the one on linguistics” or
“bring me Jurafsky’s text book”

Table 1: A sample multi-turn dialog. A list of second turn
utterances referring to the last book (in bold) and a new search
query (highlighted) are shown.

Consider a sample dialog in Table 1 between a
user and a NUI in the books domain. After the sys-
tem displays results on the screen, the user may
choose one or more of the on-screen items with
natural language utterances as shown in Table 1.
Note that, there are multiple ways of referring to
the same item, (e.g. the last book)1. To achieve a
natural and accurate human to machine conversa-
tion, it is crucial to accurately identify and resolve
referring expressions in utterances. As important
as interpreting referring expressions (REs) is for
modern NUI designs, relatively few studies have
investigated withing the SDSs. Those that do fo-
cus on the impact of the input from multimodal
interfaces such as gesture for understanding (Bolt,
1980; Heck et al., 2013; Johnston et al., 2002),
touch for ASR error correction (Huggins-Daines
and Rudnicky, 2008), or cues from the screen
(Balchandran et al., 2008; Anastasiou et al., 2012).
Most of these systems are engineered for a specific

1An item could be anything from a list, e.g. restaurants,
games, contact list, organized in different lay-outs on the
screen.
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Our Twitch-FIFA Dataset
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Video + Chat based Context Multiple speakers
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Task
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S1: what an offside trap 
OMEGALUL
 

S2: Lol that finish bro
 

S3: suprised you didn't 
do the extra pass
 

S4: @S10 a drunk bet? 
 

S5: @S11 thanks mate
 

S6: could have passed 
one more
 

S7: Pass that
 

S1: record now!
 

S8: !record 

S9: done a nother pass there

The task is to predict the response (bottom-
right) using the video context (left) and the 
chat context (top-right) 
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S1: what an offside trap 
OMEGALUL
 

S2: Lol that finish bro
 

S3: suprised you didn't 
do the extra pass
 

S4: @S10 a drunk bet? 
 

S5: @S11 thanks mate
 

S6: could have passed 
one more
 

S7: Pass that
 

S1: record now!
 

S8: !record 

S9: done a nother pass there

The task is to predict the response (bottom-
right) using the video context (left) and the 
chat context (top-right) 

Applications of 
Video-Grounded 

Dialogue

• Personal 
Assistants

• Intelligent tutors

• Human-robot 
Collaboration
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Statistics Train Val Test
#Videos 33 8 8
Total Hours 58.4 11.9 15.4
Final Filtered #Instances 10,510 2,153 2,780
Avg. Chat Context Length 69.0 63.5 71.2
Avg. Response Length 6.5 6.5 6.1

Table 2: Twitch-FIFA dataset’s chat statistics (lengths
are defined in terms of number of words).

generic utterances) unless no other response satis-
fies the similarity condition, hence suppressing the
frequent responses.3 If we couldn’t find any utter-
ance based on the multi-response matching pro-
cedure described above, then we just consider the
first utterance in the 10-second window as the re-
sponse.4 We also make sure that the chat context
window has at least 4 utterances, otherwise we
exclude that context window and also the corre-
sponding response window from the dataset. After
all this processing, our final resulting dataset con-
tains 10, 510 samples in training, 2, 153 samples
in validation, and 2, 780 samples in test.5

3.2 Dataset Analysis
Dataset Statistics Table 2 presents the full statis-
tics on train, validation, and test sets of our
Twitch-FIFA dataset, after the filtering process de-
scribed in Sec. 3.1. As shown, the average chat
context length in the dataset is around 68 words,
and the average response length is 6.3 words.
Chat Context Size Fig. 3 presents the study of
number of utterances in the chat context vs. the
number of such training samples. As we limit the
minimum number of utterances to 4, chat context
with less than 4 utterances is not present in the
dataset. From the Fig. 3, it is clear that as the num-
ber of utterances in the chat context increases, the
number of such training samples decrease.
Frequent Words Fig. 4 presents the top-20 fre-
quent words (excluding stop words) and their cor-
responding frequency in our Twitch-FIFA dataset.
Most of these frequent words are related to soccer
vocabulary. Also, some of these frequent words
are twitch emotes (e.g. ‘kappa’, ‘inceptionlove’).

3Note that this filtering suppresses the performance of
simple frequent-response baseline described in Sec. 4.1.

4Other preprocessing steps include: omit the utterances
in the response window which refer to a speaker name out
of the current chat context; remove non-representative utter-
ances, e.g., those with hyperlinks; replace (anonymize) all
the user identities mentioned in the utterances with a com-
mon tag (i.e., anonymizing due to similar intuitions from the
Q&A community (Hermann et al., 2015)).

5Note that this is substantially larger than or comparable
to most current video captioning datasets. We plan to further
extend our dataset based on diverse games and video types.

Figure 3: Distribution of #utterances in chat context
(w.r.t. the #training examples for each case).

Figure 4: Frequent words in our Twitch-FIFA dataset.

4 Models

Let v = {v1, v2, .., vm} be the video context
frames, u = {u1, u2, .., un} be the textual chat
(utterance) context tokens, and r = {r1, r2, .., rk}
be response tokens generated (or retrieved).

4.1 Baselines
Our simple non-trained baselines are Most-
Frequent-Response (re-rank the candidate re-
sponses based on their frequency in the training
set), Chat-Response-Cosine (re-rank the candidate
responses based on their similarity score w.r.t. the
chat context), and Nearest-Neighbor (find the K-
best similar chat contexts in the training set, take
their corresponding responses, and then re-rank
the candidate responses based on mean similar-
ity score w.r.t. this K-best response set). For
trained baselines, we use logistic regression and
Naive Bayes methods. We use the final state of a
Twitch-trained RNN Language Model to represent
the chat context and response. Please see supple-
mentary for full details.

4.2 Discriminative Models
4.2.1 Triple Encoder
For our simpler discriminative model, we use a
‘triple encoder’ to encode the video context, chat
context, and response (see Fig. 5), as an exten-
sion of the dual encoder model in Lowe et al.
(2015). The task here is to predict the given train-

Twitch-FIFA dataset’s chat statistics (lengths are defined in terms 
of number of words) 

• Anonymized user identities
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Discriminative Model 

8

Our Triple Encoder discriminative model with bidirectional 
LSTM-RNN encoders for video, chat context, and response 

[Lowe et al., 2015]
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response-to-chat
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video-to-response
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chat-to-response
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Discriminative Model 

9

Our Tri-Directional Attention Flow (TriDAF) model with all pairwise 
modality attention modules, as well as self attention on video context, chat 
context, and response as inputs 

[Seo et al., 2017; Lin et al., 2017]
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Results
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Models r@1 r@2 r@5
BASELINES

Most-Frequent-Response 10.0 16.0 20.9
Naive Bayes 9.6 20.9 51.5
Logistic Regression 10.8 21.8 52.5
Nearest Neighbor 11.4 22.6 53.2
Chat-Response-Cosine 11.4 22.0 53.2

DISCRIMINATIVE MODEL
Dual Encoder (C) 17.1 30.3 61.9
Dual Encoder (V) 16.3 30.5 61.1
Triple Encoder (C+V) 18.1 33.6 68.5
TriDAF+Self Attn (C+V) 20.7 35.3 69.4

GENERATIVE MODEL
Seq2seq +Attn (C) 14.8 27.3 56.6
Seq2seq +Attn (V) 14.8 27.2 56.7
Seq2seq + Attn (C+V) 15.7 28.0 57.0
Seq2seq + Attn + BiDAF (C+V) 16.5 28.5 57.7

Table 3: Performance of our baselines, discriminative
models, and generative models for recall@k metrics on
our Twitch-FIFA test set. C and V represent chat and
video context, respectively.

in the order of the probability score each response
gets from the model. If the positive response is
within the top-k list, then the recall@k score is 1,
otherwise 0, following previous Ubuntu-dialogue
work (Lowe et al., 2015). For the generative mod-
els, we follow a similar approach, but the rerank-
ing score for a candidate response is based on
the log probability score given by the generative
models’ decoder for that response, following the
setup of previous visual-dialog work (Das et al.,
2017). In our experiments, we use recall@1,
recall@2, and recall@5 scores. For complete-
ness, we also report the phrase-matching metric
scores: METEOR (Denkowski and Lavie, 2014)
and ROUGE (Lin, 2004) for our generative mod-
els. We also present human evaluation.

Training Details For negative samples, during
training, for every positive triple (video, chat,
response) in the training set, we sample 3 ran-
dom negative triples. For validation/test, we sam-
ple 9 random negative responses elsewhere from
the validation/test set. Also, the negative sam-
ples don’t come from the video corresponding to
the positive response. More details of negative
samples and other training details (e.g., dimen-
sion/vocab sizes, visual feature details, validation-
based hyperparamater tuning and model selec-
tion), are discussed in the supplementary.

6 Results and Analysis

6.1 Human Evaluation of Dataset
First, the overall human quality evaluation of our
dataset (shown in Table 1) demonstrates that it

contains 90% responses relevant to video and/or
chat context. Next, we also do a blind hu-
man study on the recall-based setup (on a set
of 100 samples from the validation set), where
we anonymize the positive response by randomly
mixing it with 9 tricky negative responses in the
retrieval list, and ask the user to select the most
relevant response for the given video and/or chat
context. We found that human performance on
this task is around 55% recall@1, demonstrating
that this 10-way-discriminative recall-based task
setup is reasonably challenging for humans,7 but
also that there is a lot of scope for future model
improvements because the chance baseline is only
10% and the best-performing model so far (see
Sec. 6.3) achieves only 22% recall@1 (on dev set),
and hence there is a large 33% gap.

6.2 Baseline Results
Table 3 displays all our primary results. We
first discuss results of our simple non-trained and
trained baselines (see Sec. 4.1). The ‘Most-
Frequent-Response’ baseline, which just ranks the
10-sized response retrieval list based on their fre-
quency in the training data, gets only around
10% recall@1.8 Our other non-trained baselines:
‘Chat-Response-Cosine’ and ‘Nearest Neighbor’,
which ranks the candidate responses based on
(Twitch-trained RNN encoder’s vector) cosine
similarity with chat-context and K-best training
contexts’ response vectors, respectively, achieves
slightly better scores. We also show that our sim-
ple trained baselines (logistic regression and near-
est neighbor) also achieve relatively low scores,
indicating that a simple, shallow model will not
work on this challenging dataset.

6.3 Discriminative Model Results
Next, we present the recall@k retrieval perfor-
mance of our various discriminative models in Ta-

7This relatively low human recall@1 performance is be-
cause this is a challenging, 10-way-discriminative evaluation,
i.e., the choice comes w.r.t. 9 tricky negative examples along
with just 1 positive example (hence chance-baseline is only
10%). Note that these negative examples are an artifact of
specifically recall-based evaluation only, and will not affect
the more important real-world task of response generation
(for which our dataset’s response quality is 90%, as shown
in Table 1). Moreover, our dataset filtering (see Sec. 3.1) also
‘suppresses’ simple baselines and makes the task even harder.

8Note that the performance of this baseline is worse than
the random choice baseline (recall@1:10%, recall@2:20%,
recall@5:50%) because our dataset filtering process already
suppresses frequent responses (see Sec. 3.1), in order to pro-
vide a challenging dataset for the community.

Performance of our baselines and discriminative models for recall@k
metrics on our Twitch-FIFA test set. C and V represent chat and video 
context, respectively. 
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• Visual question answering is a task to answer diverse questions about 
images.

• In order to answer all the questions successfully, the ability to 
understand different aspects of an image is required. 

1https://visualqa.org/
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VQA: Visual Question Answering
www.visualqa.org

Aishwarya Agrawal⇤, Jiasen Lu⇤, Stanislaw Antol⇤,
Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural
language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such
as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas
of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a
more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA
is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can
be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers
(www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared
with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vqa).

F

1 INTRODUCTION

We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [16], [9], [12], [38], [26],
[24], [53]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [51], [13], [22].
In this paper, we introduce the task of free-form and open-
ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [3] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How

• ⇤The first three authors contributed equally.
• A. Agrawal, J. Lu and S. Antol are with Virginia Tech.
• M. Mitchell is with Microsoft Research, Redmond.
• C. L. Zitnick is with Facebook AI Research.
• D. Batra and D. Parikh are with Georgia Institute of Technology.

How many slices of pizza are there? 
Is this a vegetarian pizza? 

What color are her eyes? 
What is the mustache made of? 

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

many bikes are there?”), activity recognition (e.g., “Is this man
crying?”), knowledge base reasoning (e.g., “Is this a vegetarian
pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [19], [36], [50], [3] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this paper,
we present both an open-ended answering task and a multiple-
choice task [45], [33]. Unlike the open-ended task that requires
a free-form response, the multiple-choice task only requires an
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1 INTRODUCTION

We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [16], [9], [12], [38], [26],
[24], [53]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [51], [13], [22].
In this paper, we introduce the task of free-form and open-
ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [3] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How

• ⇤The first three authors contributed equally.
• A. Agrawal, J. Lu and S. Antol are with Virginia Tech.
• M. Mitchell is with Microsoft Research, Redmond.
• C. L. Zitnick is with Facebook AI Research.
• D. Batra and D. Parikh are with Georgia Institute of Technology.

Does it appear to be rainy? 
Does this person have 20/20 vision? 

Is this person expecting company? 
What is just under the tree? 

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

many bikes are there?”), activity recognition (e.g., “Is this man
crying?”), knowledge base reasoning (e.g., “Is this a vegetarian
pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [19], [36], [50], [3] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this paper,
we present both an open-ended answering task and a multiple-
choice task [45], [33]. Unlike the open-ended task that requires
a free-form response, the multiple-choice task only requires an
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• Image captioning task is to describe contents or topics from images. 

• Singe-sentence captions usually focus on obvious and the most salient part of an image, so 
tend to describe similar contents.

• On the other hand, paragraph captions contain diverse aspects of an image.

1

1Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li Fei-Fei. 2017. A hierarchical approach for generating descriptive image paragraphs. CVPR, 2017 
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A Hierarchical Approach for Generating Descriptive Image Paragraphs

Jonathan Krause Justin Johnson Ranjay Krishna Li Fei-Fei
Stanford University

{jkrause,jcjohns,ranjaykrishna,feifeili}@cs.stanford.edu

Abstract

Recent progress on image captioning has made it possible

to generate novel sentences describing images in natural

language, but compressing an image into a single sentence

can describe visual content in only coarse detail. While one

new captioning approach, dense captioning, can potentially

describe images in finer levels of detail by captioning many

regions within an image, it in turn is unable to produce a

coherent story for an image. In this paper we overcome these

limitations by generating entire paragraphs for describing

images, which can tell detailed, unified stories. We develop

a model that decomposes both images and paragraphs into

their constituent parts, detecting semantic regions in images

and using a hierarchical recurrent neural network to reason

about language. Linguistic analysis confirms the complexity

of the paragraph generation task, and thorough experiments

on a new dataset of image and paragraph pairs demonstrate

the effectiveness of our approach.

1. Introduction
Vision is the primary sensory modality for human percep-

tion, and language is our most powerful tool for communi-
cating with the world. Building systems that can simultane-
ously understand visual stimuli and describe them in natural
language is therefore a core problem in both computer vi-
sion and artificial intelligence as a whole. With the advent
of large datasets pairing images with natural language de-
scriptions [20, 34, 10, 16] it has recently become possible to
generate novel sentences describing images [4, 6, 12, 22, 30].
While the success of these methods is encouraging, they all
share one key limitation: detail. By only describing images
with a single high-level sentence, there is a fundamental
upper-bound on the quantity and quality of information ap-
proaches can produce.

One recent alternative to sentence-level captioning is the
task of dense captioning [11], which overcomes this limita-
tion by detecting many regions of interest in an image and
describing each with a short phrase. By extending the task
of object detection to include natural language description,

Figure 1. Paragraphs are longer, more informative, and more
linguistically complex than sentence-level captions. Here we show
an image with its sentence-level captions from MS COCO [20]
(top) and the paragraph used in this work (bottom).

dense captioning describes images in considerably more de-
tail than standard image captioning. However, this comes at
a cost: descriptions generated for dense captioning are not
coherent, i.e. they do not form a cohesive whole describing
the entire image.

In this paper we address the shortcomings of both tra-
ditional image captioning and the recently-proposed dense
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Visual Questions vs. Paragraph Captioning (Ground-Truth)

Q. How many planes are in the sky? / A. One
Q. What color are the trees? / A. Green
Q. What color is the plane? / A. White and blue
Q. What color is the sky? / A. Cream and gray
Q. What is in the sky? / A. The plane
Q. What color are the tires? / A. Black
Q. Where was the picture taken? / A. At an airport

GT Paragraph Caption: “The image is of a plane
taking off on a runway. There are two planes in the
background on the tarmac and one in the sky that has
just taken off and is at a very low altitude. The plane
that has just taken off is white with blue and gray
stripes on it and white writing on the tail. There
are trees on the outside of the airport and it is sunset.”

5ACL	2019
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Q. How many planes are in the sky? / A. One
Q. What color are the trees? / A. Green
Q. What color is the plane? / A. White and blue
Q. What color is the sky? / A. Cream and gray
Q. What is in the sky? / A. The plane
Q. What color are the tires? / A. Black
Q. Where was the picture taken? / A. At an airport

GT Paragraph Caption: “The image is of a plane
taking off on a runway. There are two planes in the
background on the tarmac and one in the sky that
has just taken off and is at a very low altitude. The
plane that has just taken off is white with blue and
gray stripes on it and white writing on the tail. There
are trees on the outside of the airport and it is
sunset.”

Visual Questions vs. Paragraph Captioning (Ground-Truth)
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Q. How many planes are in the sky? / A. One
Q. What color are the trees? / A. Green
Q. What color is the plane? / A. White and blue
Q. What color is the sky? / A. Cream and gray
Q. What is in the sky? / A. The plane
Q. What color are the tires? / A. Black
Q. Where was the picture taken? / A. At an airport

Generated Paragraph Caption: “A plane is on the
runway. The plane is white. The plane is a plane. The
airplane is white. The tail of the plane is red. The sky
is very cloudy. The clouds are white. There are trees
on the ground. The planes are white and blue. The
sky is blue.”

Visual Questions vs. Paragraph Captioning (Generated)

7ACL	2019
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Text % of Answerable Questions
Ground Truth Caption 55.00
Generated Paragraph Caption 42.67

• Choose random 300 questions.
• Count the questions that can be answered only with text material.

§ These results are evidence that a paragraph caption can help VQA task if it can be 
integrated into VQA model in appropriate ways. 

§ Paragraph captions provide intermediate textual symbolic evidence for clues.

Manual Investigation (Human Evaluation)

8ACL	2019
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VTQA (VQA + TextQA)

with Early, Late, and Later Fusion

VTQA Model
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A man is sitting on the 
snow. The man is wearing 
a black jacket. …A    man    is   sitting …

LSTM

… RewardLSTM

LSTM

LSTM

§ Paragraph Captioning Model (Melas-Kyriazi et al., 2018).
§ Trained with RL using CIDEr-D metric as a reward.
§ Repetition penalty applied.
§ We will discuss more rewards we tried (saliency, #objects, VQA accuracy) later.

1Luke Melas-Kyriazi, Alexander Rush, and George Han. Training for diversity in image paragraph captioning. EMNLP 2018. 

Paragraph Captioning

12

1

ACL	2019

(slides by Hyounghun Kim)



A man is sitting 
on the snow.

Faster R-CNN

A man is sitting on the 
snow. The man is 
wearing a black jacket. …

GRU

The man is wearing 
a black jacket.

GRU

The man is wearing 
black pants.

GRU

…

Cross-Att.

A    man    is   sitting …

Para-Capt. Model with RL

LSTM

…

Snow is white.GRU

Sky is blueGRU

GRU

…

Concat.

Reward

Tree is green

man, snowboard, 
snow, trees, sky,  

white …

softmax

Avg.

Max. FC

FC

FC

Paragraph Caption

Object Properties

Visual Feature

Att.

Question Feature
MLP

MLP

MLP

*

*

Att. FC

LSTM

LSTM

LSTM

"On the snow"

Paragraph Caption

Early Fusion Attention

"Where is the man sitting?"GRU

Late
Fusion

Answer
Recommendation

VTQA Model

13ACL	2019

(slides by Hyounghun Kim)



…

A man is sitting on 
the snow.

Faster R-CNN

GRU

The man is wearing a 
black jacket.GRU

The man is wearing
black pants.

GRU

…

…

Cross-Att.

Snow is white.GRU

Sky is blueGRU

GRU

…

Concat.

Tree is green

Paragraph Caption

Object Properties

Visual Feature

§ Faster R-CNN
• Detects objects in an image.
• Extracts visual features from each 

object.

§ Cross-Attention
• Creates a similarity matrix between 

visual features and paragraph caption 
features.

• According to the matrix, relevant 
features are selected with weights.

§ Object Property 
• Encoded with GRU and concatenated 

to visual features.

Early Fusion

14ACL	2019
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Avg.

Max. FC

FC

FC

Att.

Question Feature
MLP

MLP

MLP

*

*

Att. FC

§ Attention
• Question is encoded with GRU.
• Attention is applied over features 

from early fusion module w.r.t. a 
question feature.

§ Consensus
• Each module plays as a voter.
• The answers that get high scores 

from multiple voters have a high 
chance to be selected as the final 
answer.

"Where is the man sitting?"GRU

Attention & Late Fusion
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man, snowboard, 
snow, trees, sky,  

white …

softmax

§ Object Property
• Properties from detected objects can 

be considered as recommended 
answers. 

• man, snowboard, white…

§ Extra Score 
• An extra score is added to those 

recommended answers.
• Extra score = c * standard deviation 

over all original scores. c is tuned to 
1 using validation dataset.

"On the snow"

0.15 0.01 0.21 0.23 …

0.05 0 0.05 0 …

On the snow

+

water …boatssnowboard

Extra Score

Original Score

Later Fusion (Answer Recommendation)
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• Question-answer pairs from Visual Genome

• Paragraph caption annotations from Krause et al. (2017)

• We follow the image splits of Krause et al. (2017) and                  

exclude those who do not have question-answer pair

• So, the final question-answer pairs split:  

171,648 / 29,759 / 29,490 (train / validation / test) 

2Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li Fei-Fei. 2017. A hierarchical approach for generating descriptive image paragraphs. CVPR, 2017 

2

1

1Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, 
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li Jia-Li, David Ayman Shamma, Michael Bernstein, Li Fei-Fei

Dataset

19ACL	2019
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Model Test Accuracy (%)
VQA baseline 44.68
VQA + MFB baseline 44.94
VTQA (full model) 46.86

• Run each model 5 times and average them.
• MFB: Multimodal Factorized Bilinear pooling

§ Our VTQA model stat. significantly outperforms the baseline VQA model (p < 0.001).
§ Applied MFB (which is employed in near state-of-the-art models) for comparing with stronger 

baseline. 

Results

201Zhou Yu, Jun Yu, Jianping Fan, Dacheng Tao. Multi-modal factorized bilinear pooling with co-attention learning for visual question answering. ICCV 2017. 

1
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Model Val Accuracy (%)
1. VTQA + EF (base model) 45.41
2. VTQA + EF + LF 46.36
3. VTQA + EF + AR 46.95
4. VTQA + EF + LF + AR 47.60

• EF: Early Fusion, LF: Late Fusion, AR: Answer Recommendation.

44

44.5

45

45.5

46

46.5

47

47.5

48

VTQA	+	EF VTQA	+	EF	+	LF VTQA	+	EF	+	AR VTQA	+	EF	+	LF	+	AR 

Val	Accuracy	(%)

Ablation Study

§ Our LF improves the accuracy by 0.95% (from 1 to 2).
§ Our AR improves the accuracy by 1.54% (from 1 to 3) and 1.24% (from 2 to 4).
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TextQA Model 

22

TextQA Val Accuracy (%)
GT Para-Capt. 43.96
Generated Para-Capt. 42.07

• GT: Ground-Truth 

41

41.5

42

42.5

43

43.5

44

44.5

GenP GT

TextQA

Generated	Para-Capt.																															GT	Para-Capt.
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TextQA Val Accuracy (%)
GT Para-Capt. 43.96
Generated Para-Capt. 42.07

Human Eval. Accuracy (%)
GT Para-Capt. 55.00
Generated Para-Capt. 42.67

TextQA Model vs. Human Evaluation 

23

• GT: Ground-Truth 
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• GT: Ground-Truth 

§ But, our model does not seem to fully extract information from GT paragraph caption now (43.96 vs. 55.00).

TextQA Model vs. Human Evaluation 
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• GT: Ground-Truth 

§ But, our model does not seem to fully extract information from GT paragraph caption now (43.96 vs. 55.00).

§ Also, generated paragraph captions are not good enough to give useful information compared to GT paragraph 
captions.

TextQA Model vs. Human Evaluation 
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Attention Visualization

26

Q: how many glasses are in the picture    A: 2

The paragraph contains a direct clue for the question
à “there are two glasses on the table”

Q: how many glasses are in the picture A: 2

§ Examples where image-only VQA model is wrong but our image+para-capt. VTQA model fixes the answer
ACL	2019
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Attention Visualization

27

Q: where was the photo taken A: in kitchen

The paragraph contains a direct clue for the question
à “a young girl is standing in the kitchen”

Q: where was the photo taken A: in kitchen

§ Examples where image-only VQA model is wrong but our image+para-capt. VTQA model fixes the answer
ACL	2019
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Attention Visualization

28

Q: what is being cooked A: hot dogs

§ Examples where image-only VQA model is wrong but our image+para-capt. VTQA model fixes the answer

Q: what is being cooked    A: hot dogs

The paragraph contains a clue that help infer the answer
à “there is a hot dog on the grill”

ACL	2019
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Attention Visualization

29

Q: what is the crowd watching A: tennis match

§ Examples where image-only VQA model is wrong but our image+para-capt. VTQA model fixes the answer

Q: what is the crowd watching    A: tennis match

The paragraph has a couple of sentences that give indirect clues
à “a man is standing on a tennis court playing tennis”
à “the tennis court is blue and white”
à “the spectators are sitting in the stands watching the game”

ACL	2019
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Attention Visualization (Failed Case)

30

Q: what is the girl holding A: bag

Q: what is the girl holding
Ground-truth A: bag
Model’s A: suitcase

The paragraph misleads the model to the wrong answer
à “the woman is holding a suitcase”

ACL	2019
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Attention Visualization (Failed Case)

Q: what is the man riding A: bike

Q: what is the man riding
Ground-truth A: bike
Model’s A: frisbee

The paragraph misleads the model to the nearest wrong answer
à “the man is holding a white frisbee”

ACL	2019
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Dense-Caption Matching and Frame-Selection 
Gating for Temporal Localization in VideoQA

Hyounghun Kim       Zineng Tang       Mohit Bansal
ACL 2020
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Task / Dataset

• We explore the TVQA dataset in this paper.

• The TVQA dataset consists of question and answer pairs, video frames, 
and corresponding subtitles.  

• The task is to choose the correct answer among 5 candidates.
ACL	2020

What is on the couch behind Joey when he is at the 
counter?

A A chick
B A soccer ball
C A duck
D A pillow
E Janice's coat

What is Janice holding on to after Chandler sends 
Joey to his room?

A Chandler's tie
B Chandler's hands
C Her Breakfast
D Her coat
E Chandler's coffee cup.

00:00

Why does Joey want Chandler to kiss Janice when they are 
in the kitchen?

A Because Joey is glad that Chandler is happy
B Because Joey likes to watch people kiss
C    Because then she will leave  
D Because Joey thinks Janice is hot
E   Because then Chandler will move away from the toast.

00:00.755 --> 00:02.655  
(Chandler:) Go to your room!
00:06.961 --> 00:08.622 
(Janice:) I gotta go, I gotta go.

00:08.829 --> 00:10.057 
(Janice:) Not without a kiss.
00:10.264 --> 00:12.391 
(Chandler:) Maybe I won't kiss you so you'll stay.

00:12.600 --> 00:14.761 
(Joey:) Kiss her. Kiss her!
00:16.771 --> 00:19.137 
(Janice:) I‘ll see you later, sweetie. Bye, Joey.

00:39.327 --> 00:40.760 
(Chandler:) She makes me happy. 
00:41.596 --> 00:44.087 
(Joey:) Okay. All right.

…

00:1000:06 00:17 00:39 00:45 01:04

…

Figure 1: Examples from the TVQA dataset. All questions and answers are attached to 60-90 seconds long clips.
For visualization purposes, we only show a few of the most relevant frames here. As illustrated above, some
questions can be answered using subtitles or videos alone, while some require information from both modalities.

of two parts, a main question part, e.g. “What
are Leonard and Sheldon arguing about” and a
grounding part, e.g. “when they are sitting on the
couch”. This also leads to an interesting secondary
task of QA temporal localization.

Our contribution is the TVQA dataset, built on
6 popular TV shows spanning 3 genres: medical
dramas, sitcoms, and crime shows. On this data,
we collected 152.5K human-written QA pairs (ex-
amples shown in Fig.1). There are 4 salient ad-
vantages of our dataset. First, it is large-scale and
natural, containing 21,793 video clips from 925
episodes. On average, each show has 7.3 sea-
sons, providing long range character interactions
and evolving relationships. Each video clip is as-
sociated with 7 questions, with 5 answers (1 cor-
rect) for each question. Second, our video clips are
relatively long (60-90 seconds), thereby contain-
ing more social interactions and activities, mak-
ing video understanding more challenging. Third,
we provide the dialogue (character name + subti-
tle) for each QA video clip. Understanding the re-
lationship between the provided dialogue and the
question-answer pairs is crucial for correctly an-
swering many of the collected questions. Fourth,
our questions are compositional, requiring algo-
rithms to localize relevant moments (START and
END points are provided for each question).

With the above rich annotation, our dataset
supports three tasks: QA on the grounded clip,
question-driven moment localization, and QA on
the full video clip. We provide baseline experi-
ments on both QA tasks and introduce a state-of-
the-art language and vision-based model (leaving
moment localization for future work).

2 Related Work

Visual Question Answering: Several image-
based VQA datasets have recently been con-
structed, e.g., DAQUAR (Malinowski and Fritz,
2014), VQA (Antol et al., 2015), COCO-Q (Ren
et al., 2015a), FM-IQA (Gao et al., 2015), Vi-
sual Madlibs (Yu et al., 2015), Visual7W (Zhu
et al., 2016), CLEVR (Johnson et al., 2017),
etc. Additionally, several video-based QA datasets
have also been proposed, e.g. TGIF-QA (Jang
et al., 2017), MovieFIB (Maharaj et al., 2017b),
VideoQA (Zhu et al., 2017), LSMDC (Rohrbach
et al., 2015), TRECVID (Over et al., 2014),
MovieQA (Tapaswi et al., 2016), PororoQA (Kim
et al., 2017) and MarioQA (Mun et al., 2017).
However, none of these datasets provides a truly
realistic, multimodal QA scenario where both vi-
sual and language understanding are required to
answer a large portion of questions, either due to
unrealistic video sources (PororoQA, MarioQA)
or data collection strategy being more focused on
either visual (MovieFIB, VideoQA, TGIF-QA) or
language (MovieQA) sources. In comparison, our
TVQA collection strategy takes a directly multi-
modal approach to construct a large-scale, real-
video dataset by letting humans ask and answer
questions while watching TV-show videos with as-
sociated dialogues.
Text Question Answering: The related task of
text-based question answering has been exten-
sively explored (Richardson et al., 2013; Weston
et al., 2015; Rajpurkar et al., 2016; Hermann et al.,
2015; Hill et al., 2015). Richardson et al. (2013)
collected MCTest, a multiple choice QA dataset
intended for open-domain reading comprehension.

1

1. Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. 2018. TVQA: Localized, compositional video question answering. In EMNLP.
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Motivation

1. Dense-captions have diverse visual 
clues in the symbolic textual form. 
Thus, help provide cues for 
answering questions by 
matching/aligning keyword/phrase. 

ACL	2020

2. Frame gates pass relevant frames which has useful information for 
answering questions.

3. Localization/frame selection task can be cast as multi-label 
classification task and allow applying new customized losses.

Figure 3. Example captions generated and localized by our model on test images. We render the top few most confident predictions. On
the bottom row we additionally contrast the amount of information our model generates compared to the Full image RNN.

Preprocessing. We collapse words that appear less than
15 times into a special <UNK> token, giving a vocabulary
of 10,497 words. We strip referring phrases such as “there
is...”, or “this seems to be a”. For efficiency we discard all
annotations with more than 10 words (7% of annotations).
We also discard all images that have fewer than 20 or more
than 50 annotations to reduce the variation in the number
of regions per image. We are left with 87,398 images; we
assign 5,000 each to val/test splits and the rest to train.

For test time evaluation we also preprocess the ground
truth regions in the validation/test images by merging heav-
ily overlapping boxes into single boxes with several refer-
ence captions. For each image we iteratively select the box
with the highest number of overlapping boxes (based on
IoU with threshold of 0.7), and merge these together (by
taking the mean) into a single box with multiple reference
captions. We then exclude this group and repeat the process.

4.1. Dense Captioning
In the dense captioning task the model receives a single im-
age and produces a set of regions, each annotated with a
confidence and a caption.
Evaluation metrics. Intuitively, we would like our model
to produce both well-localized predictions (as in object de-
tection) and accurate descriptions (as in image captioning).

Inspired by evaluation metrics in object detection [10,

30] and image captioning [48], we propose to measure the
mean Average Precision (AP) across a range of thresholds
for both localization and language accuracy. For localiza-
tion we use intersection over union (IoU) thresholds .3, .4,
.5, .6, .7. For language we use METEOR score thresholds
0, .05, .1, .15, .2, .25. We adopt METEOR since this metric
was found to be most highly correlated with human judg-
ments in settings with a low number of references [48]. We
measure the average precision across all pairwise settings
of these thresholds and report the mean AP.

To isolate the accuracy of language in the predicted cap-
tions without localization we also merge ground truth cap-
tions across each test image into a bag of references sen-
tences and evaluate predicted captions with respect to these
references without taking into account their spatial position.
Baseline models. Following Karpathy and Fei-Fei [21], we
train only the Image Captioning model (excluding the local-
ization layer) on individual, resized regions. We refer to this
approach as a Region RNN model. To investigate the differ-
ences between captioning trained on full images or regions
we also train the same model on full images and captions
from MS COCO (Full Image RNN model).

At test time we consider three sources of region propos-
als. First, to establish an upper bound we evaluate the model
on ground truth boxes (GT). Second, similar to [21] we use

• We present 3 contributions to improve video+dialogue QA:
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are concatenated to create 5 QA pairs.

• Subtitles and dense captions are aligned with each 
frame which is extracted at 0.5 fps.

• All the input features are encoded with the 
convolutional layer.ACL	2020
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• First, the QAs are aligned with subtitle and video in 
the word/object level.

• Next, the fused features are aligned again in the 
frame level. 

• The same dual-level attention is done with dense 
captions in the place of the video feature.
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• After the dual-level attention, we obtain two fused 
features: QA-SUB-VID and QA-SUB-DENSE.

• They are complementary, so need to be integrated.

• We use multi-head self-attention to combine them.

(slides by Hyounghun Kim)
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Figure 4: Self-Cross Attention. We combine informa-
tion each from the video (fused with subtitle and QA)
and dense caption (fused with subtitle and QA) via the
multi-head self attention. Before being fed to the multi-
head self attention module, video and dense caption fea-
tures are concatenated. Thus, self and cross attentions
are performed simultaneously.

We apply the same procedure to the dense cap-
tion feature by substituting video features with
dense caption features to obtain u

sd. To integrate
u

sv and u

sd, we employ multi-head self attention
(Figure 4). To be specific, we concatenate u

sv and
u

sd frame-wise then feed them to the self attention
function.
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[h1; . . . ;hk]
(15)

where g

a

denotes self-attention.

u

svd = �self-att([u
sv;usd]) (16)

In this way, usv and u

sd attend to themselves while
attending to each other simultaneously. We split
the output, usvd into the same shape as the input,
then add the two.

z = u

svd[0 : T
F

] + u

svd[T
F

: 2T
F

] (17)

3.4 Frame-Selection Gates

To select appropriate information from the frame-
length features, we employ max-pooling and gates.
Features from the video-dense caption integration
are fed to the CNN encoder. A fully-connected
layer and sigmoid function are applied sequentially
to the output feature to get frame scores that indi-
cate how relevant each frame is for answering a
given question. We get weighted features by mul-
tiplying the output feature from the CNN encoder

with the scores.

ẑ = �en2(z) (18)

g

L = sigmoid(fL(ẑ)) (19)

z

gl = ẑ � g

L (20)

We calculate another frame scores with a different
function f

G to get another weighted feature.

g

G = sigmoid(fG(ẑ)) (21)

z

gg = ẑ � g

G (22)

Finally, following Lei et al. (2020)’s work, we also
apply frame-wise max-pooling.

z

max = maxpool(ẑ) (23)

The three features (from local gate, global gate, and
max-pooling, respectively), are then concatenated
and fed to the classifier to give scores for each
candidate answer.

logit = clssifier([zmax; zgg; zgl]) (24)

We get the logits for the five candidate answers and
choose the highest value as the predicted answer.

loss

cls

= �log(
e

s

g

P
k

e

s

k

) (25)

where s

g

is the logit of ground-truth answer.

3.5 Novel Frame-Selection Supervision Loss
Functions

We cast frame selection as a multi-label classifica-
tion task. The frame scores from the local gate, gL,
are supervised by human importance annotations,
which are time spans (start-end points pair) annota-
tors think needed for selecting correct answers. To
this end, we transform the time span into ground-
truth frame scores, i.e., if a frame is within the time
span, the frame has ‘1’ as its label and a frame out-
side the span gets ‘0’. In this way, we can assign
a label to each frame, and frames should get as
close scores as their ground-truth labels. We train
the local gate network with binary cross-entropy
(BCE) loss.

loss

bce

= �
T

FX

i

(ylog(sf
i

) + (1� y)log(1� s

f

i

))

(26)

where s

f

i

is a frame score of i-th frame, and y is a
corresponding ground-truth label.

ACL	2020

• The integrated feature still needs to be filtered to get 
more relevant information and select useful spatial-
temporal information.

• Thus, frame-selection gates are applied. 

• We use max-pooling, global gate, and local gate which 
is supervised by human importance annotations.
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In-and-Out Frame Score Margin For addi-
tional supervision other than the binary cross-
entropy loss, we create a novel loss function, In-
and-Out Frame Score Margin (IOFSM).

loss

io

= 1 + Avg(OFS)� Avg(IFS) (27)

where OFS (Out Frame Score) is scores of frames
whose labels are ‘0’ and IFS (In Frame Score) is
scores of frames whose labels are ‘1’.

Balanced Binary Cross-Entropy In our multi-
label classification setting, each frame can be con-
sidered as one training example. Thus, the total
number of examples and the proportion between
positive and negative examples vary for every in-
stance. This variation can cause unbalanced train-
ing since negative examples usually dominate. To
balance the unbalanced training, we apply a simple
but effective modification to the original BCE, and
we call it Balanced Binary Cross-Entropy (BBCE).
To be specific, instead of summing or averaging
through the entire frame examples, we divide the
positive and negative examples and calculate the
average cross-entropy scores separately, then sum
them together.

loss

bbce

= �
⇣ T

F

inX

i

log(sfin
i

)/T
F

in

+

T

F

outX

j

log(1� s

f
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j

)/T
F

out
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(28)

where s

f

in

i

and s

f

out

j

are i-th in-frame score and
j-th out-frame score respectively, and T

F

in

and
T

F

out

are the number of in-frames and out-frames
respectively.

Thus, the total loss is:

loss = loss

cls

+ loss(b)bce + loss

io

(29)

4 Experimental Setup

TVQA Dataset TVQA dataset (Lei et al., 2018)
consists of video frames, subtitles, and question-
answer pairs from 6 TV shows. The number of
examples for train/validation/test-public dataset are
122,039/15,253/7,623. Each example has five can-
didate answers with one of them the ground-truth.

4At the time of the ACL2020 submission deadline, the pub-
licly visible rank-1 entry was 70.52%. Since then, two more
entries have appeared in the leaderboard; however, our method
still outperforms their scores by a large margin (71.48% and
71.13% versus 74.09%).

So, TVQA is a classification task, in which mod-
els select one from the five candidate answers, and
models can be evaluated on the accuracy metric.

Dense Captions We use Yang et al. (2017)’s pre-
trained model to extract dense captions from each
video frame. We extract the dense captions in
advance and use them as extra input data to the
model.5

Training Details We use GloVe (Pennington
et al., 2014) word vectors with dimension size of
300 and RoBERTa (Liu et al., 2019) with 768 di-
mension. The dimension of the visual feature is
300, and the base hidden size of the whole model is
128. We use Adam (Kingma and Ba, 2015) as the
optimizer. We set the initial learning rate to 0.001
and drop it to 0.0002 after running 10 epochs. For
dropout, we use the probability of 0.1.

5 Results and Ablation Analysis
As seen from Table 1, our model outperforms the
state-of-the-art models in the TVQA leaderboard.
Especially our model gets balanced scores for all
the TV shows while some other models have high
variances across the shows. As seen from Table 2,
the standard deviation and ‘max-min’ value over
our model’s scores for each TV show are 0.65
and 1.83, respectively, which are the lowest val-
ues among all models in the list. This low variance
could mean that our model is more consistent and
robust across all the TV shows.

Model Ablations As shown in Table 3, our ba-
sic dual-attention and frame selection gates model
shows substantial improvement over the strong sin-
gle attention and frame span baseline (row 4 vs
1: p < 0.0001), which is from the best published
model (Lei et al., 2020). Each of our dual-attention
and frame selection gates alone shows a small im-
provement in performance than the baseline (row
3 vs 1 and 2 vs 1, respectively).6 However, when
they are applied together, the model works much
better. The reason why they are more effective
when put together is that frame selection gates ba-
sically select frames based on useful information

5This is less computationally expensive and dense cap-
tions from the separately trained model will be less biased
towards the questions of TVQA dataset, and hence provide
more diverse aspects of image frames of a video clip.

6Although the improvements are not much, but perform-
ing word/object level attention and then frame level attention
is more intuitive and interpretable than a non-dual-attention
method, allowing us to show how the model works: see visu-
alization in Sec. 6.
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128. We use Adam (Kingma and Ba, 2015) as the
optimizer. We set the initial learning rate to 0.001
and drop it to 0.0002 after running 10 epochs. For
dropout, we use the probability of 0.1.
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As seen from Table 1, our model outperforms the
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the standard deviation and ‘max-min’ value over
our model’s scores for each TV show are 0.65
and 1.83, respectively, which are the lowest val-
ues among all models in the list. This low variance
could mean that our model is more consistent and
robust across all the TV shows.

Model Ablations As shown in Table 3, our ba-
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shows substantial improvement over the strong sin-
gle attention and frame span baseline (row 4 vs
1: p < 0.0001), which is from the best published
model (Lei et al., 2020). Each of our dual-attention
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more diverse aspects of image frames of a video clip.

6Although the improvements are not much, but perform-
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method, allowing us to show how the model works: see visu-
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IOFSM:

BBCE:

• To give higher weights to the relevant frames 
(in-frame) and lower weights to the less 
important frames (out-frame), we introduce new 
loss, In-and-out frame score margin (IOFSM).

• Also, for more balanced training signal, we 
introduce Balanced Binary Cross-Entropy 
(BBCE).
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Model Test-Public (%) Val (%)all bbt friends himym grey house castle
1 jacobssy (anonymous) 66.01 68.75 64.98 65.08 69.22 66.45 63.74 64.90
2 multi-stream (Lei et al., 2018) 66.46 70.25 65.78 64.02 67.20 66.84 63.96 65.85
3 PAMN (Kim et al., 2019b) 66.77 - - - - - - 66.38
4 Multi-task (Kim et al., 2019a) 67.05 - - - - - - 66.22
5 ZGF (anonymous) 68.77 - - - - - - 68.90
6 STAGE (Lei et al., 2020) 70.23 - - - - - - 70.50
7 akalsdnr (anonymous) 70.52 71.49 67.43 72.22 70.42 70.83 72.30 71.13
8 Ours (hstar) 74.09 74.04 73.03 74.34 73.44 74.68 74.86 74.20

Table 1: Our model outperforms the state-of-the-art models by a large margin. Moreover, the scores of our model
across all the TV shows are more balanced than the scores from other models, which means our model is more
consistent/robust and not biased to the dataset from specific TV shows.4

Model TV Show Score
avg. std. max-min

1 jacobssy (anonymous) 66.37 2.01 5.48
2 multi-stream (Lei et al., 2018) 66.34 2.15 6.29
3 akalsdnr (anonymous) 70.78 1.65 4.87
4 Ours 74.07 0.65 1.83

Table 2: Average and standard deviation of the test-
public scores from each TV show (for this comparison,
we only consider models that release the scores for each
TV show).8

Model Val Score (%)
1 Single-Att + Frame-Span 69.86
2 Single-Att + Frame-Selection Gates 70.08
3 Dual-Att + Frame-Span 70.20
4 Dual-Att + Frame-Selection Gates (w/o NewLoss) 71.26
5 Dual-Att + Frame-Selection Gates 72.51
6 Dual-Att + Frame-Selection Gates (w/o NewLoss) + RoBERTa 72.53
7 Dual-Att + Frame-Selection Gates + RoBERTa 73.34
8 Dual-Att + Frame-Selection Gates + RoBERTa + DenseCapts 74.20

Table 3: Model Ablation: our dual-attention / frame-
selection Gates, new loss functions, and dense cap-
tions help improve the model’s performance (NewLoss:
IOFSM+BBCE).

from each frame feature and our dual-attention can
help this selection by getting more relevant infor-
mation to each frame through the frame-level atten-
tion. Next, our new loss functions significantly help
over the dual-attention and frame selection gates
model by providing enhanced supervision (row 5
vs 4: p < 0.0001, row 7 vs 6: p < 0.005). Our
RoBERTa version is also significantly better than
the GloVe model (row 6 vs 4: p < 0.0005, row 7
vs 5: p < 0.01). Finally, employing dense captions
further improves the performance via useful textual
clue/keyword matching (row 8 vs 7: p < 0.005).7

7Statistical significance is computed using the bootstrap
test (Efron and Tibshirani, 1994).

8Two more entries have appeared in the leaderboard since
the ACL2020 submission deadline. However, our scores are
still more balanced than their scores across all TV shows (std.:
2.11 and 2.40 versus our 0.65, max-min: 5.50 and 7.38 versus
our 1.83).

Loss Val Score (%) IFS OFS
avg std avg std

1 BCE 71.26 0.468 0.108 0.103 0.120
2 IOFSM 70.75 0.739 0.127 0.143 0.298
3 BCE+IOFSM 72.22 0.593 0.128 0.111 0.159
4 BBCE 72.27 0.759 0.089 0.230 0.231
5 BBCE+IOFSM 72.51 0.764 0.098 0.182 0.246

Table 4: IOFSM and BBCE help improve the model’s
performance by changing in and out-frame scores.

IOFSM and BCE Loss Functions Ablation and
Analysis To see how In-and-Out Frame Score
Margin (IOFSM) and Binary Cross-Entropy (BCE)
loss affect the frame selection task, we compare
the model’s performance/behaviors according to
the combination of IOFSM and BCE. As shown in
Table 4, applying IOFSM on top of BCE gives a
better result. When we compare row 1 and 3 in Ta-
ble 4, the average in-frame score of BCE+IOFSM
is higher than BCE’s while the average out-frame
scores of both are almost the same. This can mean
two things: (1) IOFSM helps increase the scores
of in-frames, and (2) increased in-frame scores
help improve the model’s performance. On the
other hand, when we compare row 1 and 2, the
average in-frame score of IOFSM is higher than
BCE’s. But, the average out-frame score of IOFSM
is also much higher than BCE’s. This can mean
that out-frame scores have a large impact on the
performance as well as in-frame scores. This is
intuitively reasonable. Because information from
out-frames also flows to the next layer (i.e., classi-
fier) after being multiplied by the frame scores, the
score for the ‘negative’ label also has a direct im-
pact on the performance. So, making the scores as
small as possible is also important. Also, when we
compare the row 2 and others (2 vs. 1 and 3), the
gap between in-frame scores is much larger than
the gap between out-frame scores. But, considering
the scores are average values, and the number of
out-frames is usually much larger than in-frames,

• Our model outperforms the state-of-the-art models by a large margin on both 
validation and test-public splits.

• Also, our model’s scores across the TV shows are more balanced than any other 
models.
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Model Test-Public (%) Val (%)all bbt friends himym grey house castle
1 jacobssy (anonymous) 66.01 68.75 64.98 65.08 69.22 66.45 63.74 64.90
2 multi-stream (Lei et al., 2018) 66.46 70.25 65.78 64.02 67.20 66.84 63.96 65.85
3 PAMN (Kim et al., 2019b) 66.77 - - - - - - 66.38
4 Multi-task (Kim et al., 2019a) 67.05 - - - - - - 66.22
5 ZGF (anonymous) 68.77 - - - - - - 68.90
6 STAGE (Lei et al., 2020) 70.23 - - - - - - 70.50
7 akalsdnr (anonymous) 70.52 71.49 67.43 72.22 70.42 70.83 72.30 71.13
8 Ours (hstar) 74.09 74.04 73.03 74.34 73.44 74.68 74.86 74.20

Table 1: Our model outperforms the state-of-the-art models by a large margin. Moreover, the scores of our model
across all the TV shows are more balanced than the scores from other models, which means our model is more
consistent/robust and not biased to the dataset from specific TV shows.4

Model TV Show Score
avg. std. max-min

1 jacobssy (anonymous) 66.37 2.01 5.48
2 multi-stream (Lei et al., 2018) 66.34 2.15 6.29
3 akalsdnr (anonymous) 70.78 1.65 4.87
4 Ours 74.07 0.65 1.83

Table 2: Average and standard deviation of the test-
public scores from each TV show (for this comparison,
we only consider models that release the scores for each
TV show).8

Model Val Score (%)
1 Single-Att + Frame-Span 69.86
2 Single-Att + Frame-Selection Gates 70.08
3 Dual-Att + Frame-Span 70.20
4 Dual-Att + Frame-Selection Gates (w/o NewLoss) 71.26
5 Dual-Att + Frame-Selection Gates 72.51
6 Dual-Att + Frame-Selection Gates (w/o NewLoss) + RoBERTa 72.53
7 Dual-Att + Frame-Selection Gates + RoBERTa 73.34
8 Dual-Att + Frame-Selection Gates + RoBERTa + DenseCapts 74.20

Table 3: Model Ablation: our dual-attention / frame-
selection Gates, new loss functions, and dense cap-
tions help improve the model’s performance (NewLoss:
IOFSM+BBCE).

from each frame feature and our dual-attention can
help this selection by getting more relevant infor-
mation to each frame through the frame-level atten-
tion. Next, our new loss functions significantly help
over the dual-attention and frame selection gates
model by providing enhanced supervision (row 5
vs 4: p < 0.0001, row 7 vs 6: p < 0.005). Our
RoBERTa version is also significantly better than
the GloVe model (row 6 vs 4: p < 0.0005, row 7
vs 5: p < 0.01). Finally, employing dense captions
further improves the performance via useful textual
clue/keyword matching (row 8 vs 7: p < 0.005).7

7Statistical significance is computed using the bootstrap
test (Efron and Tibshirani, 1994).

8Two more entries have appeared in the leaderboard since
the ACL2020 submission deadline. However, our scores are
still more balanced than their scores across all TV shows (std.:
2.11 and 2.40 versus our 0.65, max-min: 5.50 and 7.38 versus
our 1.83).

Loss Val Score (%) IFS OFS
avg std avg std

1 BCE 71.26 0.468 0.108 0.103 0.120
2 IOFSM 70.75 0.739 0.127 0.143 0.298
3 BCE+IOFSM 72.22 0.593 0.128 0.111 0.159
4 BBCE 72.27 0.759 0.089 0.230 0.231
5 BBCE+IOFSM 72.51 0.764 0.098 0.182 0.246

Table 4: IOFSM and BBCE help improve the model’s
performance by changing in and out-frame scores.

IOFSM and BCE Loss Functions Ablation and
Analysis To see how In-and-Out Frame Score
Margin (IOFSM) and Binary Cross-Entropy (BCE)
loss affect the frame selection task, we compare
the model’s performance/behaviors according to
the combination of IOFSM and BCE. As shown in
Table 4, applying IOFSM on top of BCE gives a
better result. When we compare row 1 and 3 in Ta-
ble 4, the average in-frame score of BCE+IOFSM
is higher than BCE’s while the average out-frame
scores of both are almost the same. This can mean
two things: (1) IOFSM helps increase the scores
of in-frames, and (2) increased in-frame scores
help improve the model’s performance. On the
other hand, when we compare row 1 and 2, the
average in-frame score of IOFSM is higher than
BCE’s. But, the average out-frame score of IOFSM
is also much higher than BCE’s. This can mean
that out-frame scores have a large impact on the
performance as well as in-frame scores. This is
intuitively reasonable. Because information from
out-frames also flows to the next layer (i.e., classi-
fier) after being multiplied by the frame scores, the
score for the ‘negative’ label also has a direct im-
pact on the performance. So, making the scores as
small as possible is also important. Also, when we
compare the row 2 and others (2 vs. 1 and 3), the
gap between in-frame scores is much larger than
the gap between out-frame scores. But, considering
the scores are average values, and the number of
out-frames is usually much larger than in-frames,

• Our model outperforms the state-of-the-art models by a large margin on both 
validation and test-public splits.

• Also, our model’s scores across the TV shows are more balanced than any other 
models.
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Model Test-Public (%) Val (%)all bbt friends himym grey house castle
1 jacobssy (anonymous) 66.01 68.75 64.98 65.08 69.22 66.45 63.74 64.90
2 multi-stream (Lei et al., 2018) 66.46 70.25 65.78 64.02 67.20 66.84 63.96 65.85
3 PAMN (Kim et al., 2019b) 66.77 - - - - - - 66.38
4 Multi-task (Kim et al., 2019a) 67.05 - - - - - - 66.22
5 ZGF (anonymous) 68.77 - - - - - - 68.90
6 STAGE (Lei et al., 2020) 70.23 - - - - - - 70.50
7 akalsdnr (anonymous) 70.52 71.49 67.43 72.22 70.42 70.83 72.30 71.13
8 Ours (hstar) 74.09 74.04 73.03 74.34 73.44 74.68 74.86 74.20

Table 1: Our model outperforms the state-of-the-art models by a large margin. Moreover, the scores of our model
across all the TV shows are more balanced than the scores from other models, which means our model is more
consistent/robust and not biased to the dataset from specific TV shows.4

Model TV Show Score
avg. std. max-min

1 jacobssy (anonymous) 66.37 2.01 5.48
2 multi-stream (Lei et al., 2018) 66.34 2.15 6.29
3 akalsdnr (anonymous) 70.78 1.65 4.87
4 Ours 74.07 0.65 1.83

Table 2: Average and standard deviation of the test-
public scores from each TV show (for this comparison,
we only consider models that release the scores for each
TV show).8

Model Val Score (%)
1 Single-Att + Frame-Span 69.86
2 Single-Att + Frame-Selection Gates 70.08
3 Dual-Att + Frame-Span 70.20
4 Dual-Att + Frame-Selection Gates (w/o NewLoss) 71.26
5 Dual-Att + Frame-Selection Gates 72.51
6 Dual-Att + Frame-Selection Gates (w/o NewLoss) + RoBERTa 72.53
7 Dual-Att + Frame-Selection Gates + RoBERTa 73.34
8 Dual-Att + Frame-Selection Gates + RoBERTa + DenseCapts 74.20

Table 3: Model Ablation: our dual-attention / frame-
selection Gates, new loss functions, and dense cap-
tions help improve the model’s performance (NewLoss:
IOFSM+BBCE).

from each frame feature and our dual-attention can
help this selection by getting more relevant infor-
mation to each frame through the frame-level atten-
tion. Next, our new loss functions significantly help
over the dual-attention and frame selection gates
model by providing enhanced supervision (row 5
vs 4: p < 0.0001, row 7 vs 6: p < 0.005). Our
RoBERTa version is also significantly better than
the GloVe model (row 6 vs 4: p < 0.0005, row 7
vs 5: p < 0.01). Finally, employing dense captions
further improves the performance via useful textual
clue/keyword matching (row 8 vs 7: p < 0.005).7

7Statistical significance is computed using the bootstrap
test (Efron and Tibshirani, 1994).

8Two more entries have appeared in the leaderboard since
the ACL2020 submission deadline. However, our scores are
still more balanced than their scores across all TV shows (std.:
2.11 and 2.40 versus our 0.65, max-min: 5.50 and 7.38 versus
our 1.83).

Loss Val Score (%) IFS OFS
avg std avg std

1 BCE 71.26 0.468 0.108 0.103 0.120
2 IOFSM 70.75 0.739 0.127 0.143 0.298
3 BCE+IOFSM 72.22 0.593 0.128 0.111 0.159
4 BBCE 72.27 0.759 0.089 0.230 0.231
5 BBCE+IOFSM 72.51 0.764 0.098 0.182 0.246

Table 4: IOFSM and BBCE help improve the model’s
performance by changing in and out-frame scores.

IOFSM and BCE Loss Functions Ablation and
Analysis To see how In-and-Out Frame Score
Margin (IOFSM) and Binary Cross-Entropy (BCE)
loss affect the frame selection task, we compare
the model’s performance/behaviors according to
the combination of IOFSM and BCE. As shown in
Table 4, applying IOFSM on top of BCE gives a
better result. When we compare row 1 and 3 in Ta-
ble 4, the average in-frame score of BCE+IOFSM
is higher than BCE’s while the average out-frame
scores of both are almost the same. This can mean
two things: (1) IOFSM helps increase the scores
of in-frames, and (2) increased in-frame scores
help improve the model’s performance. On the
other hand, when we compare row 1 and 2, the
average in-frame score of IOFSM is higher than
BCE’s. But, the average out-frame score of IOFSM
is also much higher than BCE’s. This can mean
that out-frame scores have a large impact on the
performance as well as in-frame scores. This is
intuitively reasonable. Because information from
out-frames also flows to the next layer (i.e., classi-
fier) after being multiplied by the frame scores, the
score for the ‘negative’ label also has a direct im-
pact on the performance. So, making the scores as
small as possible is also important. Also, when we
compare the row 2 and others (2 vs. 1 and 3), the
gap between in-frame scores is much larger than
the gap between out-frame scores. But, considering
the scores are average values, and the number of
out-frames is usually much larger than in-frames,

Model Test-Public (%) Val (%)all bbt friends himym grey house castle
1 jacobssy (anonymous) 66.01 68.75 64.98 65.08 69.22 66.45 63.74 64.90
2 multi-stream (Lei et al., 2018) 66.46 70.25 65.78 64.02 67.20 66.84 63.96 65.85
3 PAMN (Kim et al., 2019b) 66.77 - - - - - - 66.38
4 Multi-task (Kim et al., 2019a) 67.05 - - - - - - 66.22
5 ZGF (anonymous) 68.77 - - - - - - 68.90
6 STAGE (Lei et al., 2020) 70.23 - - - - - - 70.50
7 akalsdnr (anonymous) 70.52 71.49 67.43 72.22 70.42 70.83 72.30 71.13
8 Ours (hstar) 74.09 74.04 73.03 74.34 73.44 74.68 74.86 74.20

Table 1: Our model outperforms the state-of-the-art models by a large margin. Moreover, the scores of our model
across all the TV shows are more balanced than the scores from other models, which means our model is more
consistent/robust and not biased to the dataset from specific TV shows.4

Model TV Show Score
avg. std. max-min

1 jacobssy (anonymous) 66.37 2.01 5.48
2 multi-stream (Lei et al., 2018) 66.34 2.15 6.29
3 akalsdnr (anonymous) 70.78 1.65 4.87
4 Ours 74.07 0.65 1.83

Table 2: Average and standard deviation of the test-
public scores from each TV show (for this comparison,
we only consider models that release the scores for each
TV show).8

Model Val Score (%)
1 Single-Att + Frame-Span 69.86
2 Single-Att + Frame-Selection Gates 70.08
3 Dual-Att + Frame-Span 70.20
4 Dual-Att + Frame-Selection Gates (w/o NewLoss) 71.26
5 Dual-Att + Frame-Selection Gates 72.51
6 Dual-Att + Frame-Selection Gates (w/o NewLoss) + RoBERTa 72.53
7 Dual-Att + Frame-Selection Gates + RoBERTa 73.34
8 Dual-Att + Frame-Selection Gates + RoBERTa + DenseCapts 74.20

Table 3: Model Ablation: our dual-attention / frame-
selection Gates, new loss functions, and dense cap-
tions help improve the model’s performance (NewLoss:
IOFSM+BBCE).

from each frame feature and our dual-attention can
help this selection by getting more relevant infor-
mation to each frame through the frame-level atten-
tion. Next, our new loss functions significantly help
over the dual-attention and frame selection gates
model by providing enhanced supervision (row 5
vs 4: p < 0.0001, row 7 vs 6: p < 0.005). Our
RoBERTa version is also significantly better than
the GloVe model (row 6 vs 4: p < 0.0005, row 7
vs 5: p < 0.01). Finally, employing dense captions
further improves the performance via useful textual
clue/keyword matching (row 8 vs 7: p < 0.005).7

7Statistical significance is computed using the bootstrap
test (Efron and Tibshirani, 1994).

8Two more entries have appeared in the leaderboard since
the ACL2020 submission deadline. However, our scores are
still more balanced than their scores across all TV shows (std.:
2.11 and 2.40 versus our 0.65, max-min: 5.50 and 7.38 versus
our 1.83).

Loss Val Score (%) IFS OFS
avg std avg std

1 BCE 71.26 0.468 0.108 0.103 0.120
2 IOFSM 70.75 0.739 0.127 0.143 0.298
3 BCE+IOFSM 72.22 0.593 0.128 0.111 0.159
4 BBCE 72.27 0.759 0.089 0.230 0.231
5 BBCE+IOFSM 72.51 0.764 0.098 0.182 0.246

Table 4: IOFSM and BBCE help improve the model’s
performance by changing in and out-frame scores.

IOFSM and BCE Loss Functions Ablation and
Analysis To see how In-and-Out Frame Score
Margin (IOFSM) and Binary Cross-Entropy (BCE)
loss affect the frame selection task, we compare
the model’s performance/behaviors according to
the combination of IOFSM and BCE. As shown in
Table 4, applying IOFSM on top of BCE gives a
better result. When we compare row 1 and 3 in Ta-
ble 4, the average in-frame score of BCE+IOFSM
is higher than BCE’s while the average out-frame
scores of both are almost the same. This can mean
two things: (1) IOFSM helps increase the scores
of in-frames, and (2) increased in-frame scores
help improve the model’s performance. On the
other hand, when we compare row 1 and 2, the
average in-frame score of IOFSM is higher than
BCE’s. But, the average out-frame score of IOFSM
is also much higher than BCE’s. This can mean
that out-frame scores have a large impact on the
performance as well as in-frame scores. This is
intuitively reasonable. Because information from
out-frames also flows to the next layer (i.e., classi-
fier) after being multiplied by the frame scores, the
score for the ‘negative’ label also has a direct im-
pact on the performance. So, making the scores as
small as possible is also important. Also, when we
compare the row 2 and others (2 vs. 1 and 3), the
gap between in-frame scores is much larger than
the gap between out-frame scores. But, considering
the scores are average values, and the number of
out-frames is usually much larger than in-frames,

• Each component of our model helps 
increase performance. 

• Especially, our new losses, OFSM 
and BBCE (row 5 vs 4: p < 0.0001, 
row 7 vs 6: p < 0.005), and dense 
captions (row 8 vs 7: p < 0.005) 
improve performance significantly. 

• Using IOFSM alone decreases the 
score by increasing OFS std. 

• Using IOFSM+BBCE increases the 
score by increasing avg. IFS.
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 Frame-Level
Att.

Video

Q-A

Subtitle

Word/Object 
Level Att. Max-Pool

Global
Gate

Local
Gate

Classifier

Multi-Label
Classifier

Frame Score 
Margin

a1
a2
a3
a4
a5

... 0 0 0 0 1 1 1 1 1 0 0 0 ...

Inside Frames Outside Frames

Features  Dual-Level Attention  Gating Supervision

 Multi-Heads
Self-Cross

Att.

Video-DenseCapt.
Integration

Word/Object 
Level Att.

 Frame-Level
Att.

Dense Capt

Q-A

Subtitle

Word/Object 
Level Att.

Word/Object 
Level Att.

...

a woman wearing a white shirt
a picture on the wall

 Frame-Level
Att.

Video

Q-A

Subtitle

Word/Object 
Level Att. Max-Pool

Global
Gate

Local
Gate

Classifier

Multi-Label
Classifier

Frame Score 
Margin

a1
a2
a3
a4
a5

... 0 0 0 0 1 1 1 1 1 0 0 0 ...

Inside Frames Outside Frames

Features  Dual-Level Attention  Gating Supervision

 Multi-Heads
Self-Cross

Att.

Video-DenseCapt.
Integration

Word/Object 
Level Att.

 Frame-Level
Att.

Dense Capt

Q-A

Subtitle

Word/Object 
Level Att.

Word/Object 
Level Att.

...

the dog is brown
the hand of a person
a light on the wall

the man is wearing a black shirt
a man is sitting

Q: What is Castle doing when Kate
pulls up in her car ?"

A: Petting a dog

Beckett : What's up, Castle? You proposing?
               Oh, no. Just waiting for you. 
Beckett : That 's too bad. You two make a 
               cute couple. 

a1
a2
a3
a4
a5

... 0 0 0 0 1 1 1 1 1 0 0 0 ...

Inside Frames Outside Frames

Features  Dual-Level Attention  Gating SupervisionVideo-DenseCapt.
Integration

...

the dog is brown

the hand of a person a light on the wall
the man is wearing a black shirt
a man is sitting

Q: What is Castle doing when Kate 
     pulls up in her car ?"
A: Petting a dog 

Beckett : What's up, Castle? You proposing?
               Oh, no. Just waiting for you. 
Beckett : That 's too bad. You two make a 
               cute couple. 

Softmax

S
of

tm
ax

qa0 qa1 qai qaTqa... ...

st0

st1

stj

stTst

...
... sv0 sv1 svk svT... ... sd0 sd1 sdl sdT... ...

Softmax

S
of

tm
ax

qa0 qa1 qai qaTqa... ...

st0

st1

stj

stTst

...
...

A   B   C   D ....
E

F

G

.

.

what is cathy doing with her hand after she introduces 
her fiance to ted ? she is doing sign language . 

Before After

before after

-

Q-A

SUB

Softmax

S
oftm

ax

...
...

Softmax

S
oftm

ax

... ...

...
...

Softmax

S
oftm

ax

... ...

...
...

sv0 sv1 svk svT... ... sd0 sd1 sdl sdT... ...

Multi-Head Self Attention

... ... ... ...

Q: What is Cathy doing with her hand after she introduces 
     her fiance to Ted? 
A: She is doing sign language. 

before after

Video

Q-A

Subtitle

Dense Capt

Q-A

Subtitle

Word/Object
Level Att.

Word/Object
Level Att.

Word/Object
Level Att.

Word/Object
Level Att.

Frame-Level 
Att.

Frame-Level 
Att.

Multi-Heads
Self-Cross

Att.

Max-Pool

Global
Gate

Local
Gate

Classifier

Multi-Label
Classifier

Frame Score 
Margin

Q-A

S
U

B
V

ID

Q-A

SUB-QA

V
ID

-Q
A

Multi-Head Self Attention

Frame-Level Att. Frame-Level Att.

... ...

Input Embedding

Position Encoding

Layer Norm

Convolution

ReLu

Layer Norm

Q: Where did Esposito search after he searched Carol 's house downstairs? 
A: Upstairs. 

Esposito : Upstairs. go.  
Unkname : Carol!

Frame 20 Frame 25 

ACL	2020

• Dense captions help localize the 
relevant frame by matching 
keyword/phrase (e.g., “a woman sitting”, 
“holding a glass”). 

• Subtitles also help answer the question 
by providing a nearly exact clue for the 
answer (i.e., “... anything about acting.”).

• Object level attention helps by aligning 
the word in the QA and the object 
feature in a video frame (i.e., the 
woman’s hand and ‘sign’ in the QA).
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• Frame-level attention can align relevant 
frames from different features.

• In the example, to answer the question, 
the model needs to find a frame in 
which ‘he (Esposito) searched Carol’s 
house downstairs’, then find a frame 
which has a clue for ‘where did Esposito 
search’. Our frame-level attention can 
properly align the information fragments 
from different features (Frame 20 and 
25) to help answer questions.
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• Our new losses (IOFSM+BBCE) 
changes the score distribution over all 
frames.

• Before applying our losses (left side), 
overall scores are relatively low. After 
using the losses (right side), overall 
scores are increased, and especially, 
scores around in-frames get much 
higher.
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Modality-Balanced Models for Visual Dialogue 
Hyounghun Kim, Hao Tan, Mohit Bansal

University of North Carolina at Chapel Hill

Model Bias for VisDial: We show that models have different 
behaviors on VisDial (Das et al. 2017) when being evaluated on 
different metrics (NDCG, MMR, recall@k, etc.).

Image-Only Model: Our image-only model gives higher NDCG 
score which could imply that image-only model is better at 
generalization.

Image-History Joint Model: Our image-history joint model has 
higher non-NDCG (MMR, recall@k, etc.) which could imply that 
image-history model is good at keyword matching / memorizing to 
give accurate answers.

Combined Fusion Model: Explicitly maintain two models; 
complementary abilities for a more balanced multimodal model. 

Faster
R-CNN

LSTM

Cap: the giraffe is looking directly 
        at the camera
Q 1: is the photo in color
A 1: yes
Q 2: is there any people
A 2: no, only the giraffe
Q 3: is this at a zoo
A 3: yes
Q 4: is there a fence
A 4: no
......

Similarity Matrix
Q: is it indoors?

Attention

Attention

LSTM
Element-wise product

Concatenation

Softmax

Softmax

Dot product

LSTM

A 0: can't tell
A 1: nope
...

A 65: no, it's outside
...
A 99:1 guy has a shirt ...

MLP

MLP

Figure 2: The architecture of the image-history joint model. The visual features are obtained from Faster R-CNN and the history
features are encoded via LSTM. They are fused together via the similarity matrix calculated using cross-attention. The fused
features are combined with a question feature and dot products are calculated between the combined feature and candidate
answers to rank the answers.

question and answer at round t � 1, respectively. Then,
given a new current time-stamp question Q

t

, the history
HISTORY

t

, and the image, the model has to rank 100 can-
didate answers from the answerer’s perspective.

3.1 Features
Visual Features: For visual features, we use object features
which are extracted from an image by using Faster R-CNN
(Ren et al. 2015). The visual feature, V

rcnn

2 Rk⇥dv , is
a matrix whose rows correspond to objects, where k is the
number of objects (k=36 in our experiment), d

v

is dimension
size of visual feature (d

v

= 2048 for ResNet backbone).
Question Features: The word sequence of a question at
round r, W

qr = {w
qr1, wqr2, ..., wqrTqr

} is encoded via an
LSTM-RNN (Hochreiter and Schmidhuber 1997),

hqr
t

= LSTM
q

(w
qrt, h

qr
t�1) (1)

and, we take the last hidden state as a question representa-
tion: q

r

= hqr

Tqr
, where T

qr is the length of the question at
round r.
History Features: History H

r

is a history feature at round
r encoded from concatenation of a question and a ground
truth answer, such that

W
hr = {w

qr�11, .., wqr�1Tqr�1
, w

ar�11, .., war�1Tar�1
}

= {w
hr1, whr2, ..., whrThr

}
(2)

where T
ar�1 is the length of the answer of round r � 1, and

the length of history at round r is T
hr = T

qr�1 +T
ar�1 . The

history H
r

is also encoded with an LSTM,

hhr
t

= LSTM
h

(w
hrt, h

hr
t�1) (3)

We also take the last hidden state as history representation at
round r: H

r

= hhr
Thr

. Note that the first history feature H1

comes from the image caption C.

3.2 Image-Only Model
We first build a model which only uses visual features to
answer questions. We employ a state-of-the-art ‘bottom-up
and top-down’ approach from Anderson et al. (2018), in
which we apply the attention mechanism over detected ob-
ject features. We also adopt the multi-modal factorized bi-
linear pooling (MFB) method (Yu et al. 2017b) to calculate
attention weights over the visual features with respect to a
question feature. From projected visual features and a ques-
tion feature, we obtain z 2 Rk⇥dm by applying MFB:

V = Linear
dv⇥d

(V
rcnn

) (4)

where Linear
dv⇥d

is a linear projection which projects
points from a d

v

-dimension space to a d-dimension space.

z
r

= MFB(V, q) =
mX

i=1

((M
i

V >)� (N
i

q
r

· 1>
k

))> (5)

where M , N 2 Rdm⇥d⇥m are trainable parameters, d is the
dimension of projected visual features and a question fea-
ture, d

m

is dimension of the fused feature, and m is the
number of factors. 1

k

2 Rk is a vector whose elements
are all one. Following Yu et al. (2017b), we also apply the
power normalization and `2 normalization to obtain ẑ

r

. Af-
ter applying linear projection, the softmax operation is ap-
plied to get a weight vector ↵: ↵

r

= softmax(Lẑ>
r

). We
then get a visual representation vector, v

r

by weighted sum-
ming the projected visual features: v

r

=
P

k

i=1 ↵ri

V
i

, where
L 2 R1⇥dm is trainable parameter, and V

i

is the i-th row
vector of visual feature matrix V . The visual representa-
tion vector and a question feature vector are combined with
element-wise product after linear projection. After one more
linear projection, we get the final feature, fqr

vr
which is fur-

ther used to rank answers.

fqr
vr

= fc
f

(fc
v

(v
r

)� fc
q

(q
r

)) (6)

where fc⇤ is an fully-connected layer.

Models NDCG MRR R@1 R@5 R@10 Mean
FULL 57.81 64.47 50.87 81.38 90.03 4.10
H-5 58.24 64.29 50.61 81.35 90.22 4.10
H-1 59.29 62.86 49.07 79.76 89.08 4.35

Img-only 61.04 61.25 47.18 78.43 88.17 4.61

Table 2: Performance of models with the different amount
of history on validation dataset of VisDial v1.0 (Round
dropout is not applied to the joint model in these experi-
ments. FULL: full image-history joint model, H-k: image-
history joint model with k history, Img-only: image-only
model. For H-k models we include image caption feature
for a fair comparison with the full joint model).

Img-Only Model Joint Model Intersection Union
R@1 47.18 50.87 41.57 56.48

NDCG 61.04 58.97 55.65 64.36

Table 3: Intersection and Union of the answers from image-
only model and joint model which contribute to scoring for
R@1 and NDCG metrics.

5.2 Reduced Question-Answer Rounds

We next run our joint model with various lengths of history.
To be specific, we make our joint model use only k previ-
ous history features to answer a question. As shown in Table
2, there is a trade-off between the values of metrics and the
number of history features. As the number of history fea-
tures the joint model uses is increased, the score of NDCG
is decreased while other metrics are increased. On the other
hand, as the number of history features the joint model uses
is decreased the score of NDCG is increased while other
metrics are decreased. If we see the Visual Dialog primary
task metric of NDCG as a barometer of the model’s ability
to generalize and the other metrics can be seen as an indica-
tor of preciseness, this means that decreased size of history
gives a model the ability of generalization at the cost of pre-
ciseness. From this tendency, the image-only model has the
highest NDCG score.

5.3 Complementary Relation

If the image-only model is good at NDCG, can we exploit its
ability by combining it with the joint model? To figure out
this possibility, we compare each answer from the image-
only model and the joint model. To be specific, for R@1, we
list up the correct answers from each model and count an-
swers which are in both sets, i.e., the intersection. From the
intersection, we obtain the union of the two sets. For NDCG,
there is not one single correct answer. So we roughly calcu-
late the intersection by taking minimum values between the
two models’ scores and averaging them. As we can see in
Table 3, the intersections do not take the entire score of ei-
ther model for both metrics. This could mean image-only
and joint models have room to be improved by combining
them together.

Models NDCG MRR R@1 R@5 R@10 Mean
Img-Only 61.04 61.25 47.18 78.43 88.17 4.61

Joint 58.97 64.57 50.87 81.58 90.30 4.05
CDF 59.93 64.52 50.92 81.31 90.00 4.10

Ensemble 61.20 64.67 51.00 81.60 90.37 4.03

Table 4: Performance of the consensus dropout fusion model
and the ensemble model between our image-only model and
joint model on the validation dataset of VisDial v1.0 (Img-
Only: image-only model, Joint: image-history joint model,
CDF: consensus dropout fusion model).

5.4 Model Combination Results
Considering the complementary relation between image-
only model and joint model, combining the two models
would be a good approach to take the best from the both.
So, we integrate these two models via two methods: consen-
sus dropout fusion and ensemble (see Sec.3.4).

Consensus Dropout Fusion Results As shown in Table
4, consensus dropout fusion improves the score of NDCG
by around 1.0 from the score of the joint model while still
yielding comparable scores for other metrics. Unlike ensem-
ble way, consensus dropout fusion does not require much
increase in the number of model parameters.

Ensemble Model Results As also shown in Table 4, the
ensemble model seems to take the best results from each
model. Specifically, the NDCG score of the ensemble model
is comparable to that of the image-only model and the scores
of other metrics are comparable to those of the image-history
joint model. From this experiment, we can confirm that the
two models are in complementary relation.

5.5 Final Visual Dialog Test Results
For the evaluation on the test-standard dataset of VisDial
v1.0, we try 6 image-only model ensemble and 6 consen-
sus dropout fusion model ensemble. As shown in Table 5,
our two models show competitive results compared to the
state-of-the-art on the Visual Dialog challenge 2018 (DL-61
was the winner of the Visual Dialog challenge 2018). Specif-
ically, our image-only model shows much higher NDCG
score (60.16). On the other hand, our consensus dropout
fusion model shows more balanced results over all met-
rics while still outperforming on most evaluation metrics
(NDCG, MRR, R@1, and R@5). Compared to results of the
Visual Dialog challenge 2019, our models also show strong
results. Although ReDAN+ (Gan et al. 2019) and MReaL–
BDAI show higher NDCG scores, our consensus dropout fu-
sion model shows more balanced results over metrics while
still having a competitive NDCG score compared to DAN
(Kang, Lim, and Zhang 2019), with rank 3 based on NDCG
metric and high balance rank based on metric average.4

Ensemble on More Models We also run an ensemble
model from our image-only, joint, and consensus dropout

4We are model name ‘square’ on https://evalai.cloudcv.org/
web/challenges/challenge-page/161/leaderboard/483

• Performance of models with different amounts of history.
• The more history the less NDCG (vice versa).

Consensus Dropout Fusion (CDF):
• Dropout the final features from the 

joint model randomly. 
• Modulates the influence of the joint 

model. 

Models NDCG MRR R@1 R@5 R@10 Mean
FULL 57.81 64.47 50.87 81.38 90.03 4.10
H-5 58.24 64.29 50.61 81.35 90.22 4.10
H-1 59.29 62.86 49.07 79.76 89.08 4.35

Img-only 61.04 61.25 47.18 78.43 88.17 4.61

Table 2: Performance of models with the different amount
of history on validation dataset of VisDial v1.0 (Round
dropout is not applied to the joint model in these experi-
ments. FULL: full image-history joint model, H-k: image-
history joint model with k history, Img-only: image-only
model. For H-k models we include image caption feature
for a fair comparison with the full joint model).

Img-Only Model Joint Model Intersection Union
R@1 47.18 50.87 41.57 56.48

NDCG 61.04 58.97 55.65 64.36

Table 3: Intersection and Union of the answers from image-
only model and joint model which contribute to scoring for
R@1 and NDCG metrics.

5.2 Reduced Question-Answer Rounds

We next run our joint model with various lengths of history.
To be specific, we make our joint model use only k previ-
ous history features to answer a question. As shown in Table
2, there is a trade-off between the values of metrics and the
number of history features. As the number of history fea-
tures the joint model uses is increased, the score of NDCG
is decreased while other metrics are increased. On the other
hand, as the number of history features the joint model uses
is decreased the score of NDCG is increased while other
metrics are decreased. If we see the Visual Dialog primary
task metric of NDCG as a barometer of the model’s ability
to generalize and the other metrics can be seen as an indica-
tor of preciseness, this means that decreased size of history
gives a model the ability of generalization at the cost of pre-
ciseness. From this tendency, the image-only model has the
highest NDCG score.

5.3 Complementary Relation

If the image-only model is good at NDCG, can we exploit its
ability by combining it with the joint model? To figure out
this possibility, we compare each answer from the image-
only model and the joint model. To be specific, for R@1, we
list up the correct answers from each model and count an-
swers which are in both sets, i.e., the intersection. From the
intersection, we obtain the union of the two sets. For NDCG,
there is not one single correct answer. So we roughly calcu-
late the intersection by taking minimum values between the
two models’ scores and averaging them. As we can see in
Table 3, the intersections do not take the entire score of ei-
ther model for both metrics. This could mean image-only
and joint models have room to be improved by combining
them together.

Models NDCG MRR R@1 R@5 R@10 Mean
Img-Only 61.04 61.25 47.18 78.43 88.17 4.61

Joint 58.97 64.57 50.87 81.58 90.30 4.05
CDF 59.93 64.52 50.92 81.31 90.00 4.10

Ensemble 61.20 64.67 51.00 81.60 90.37 4.03

Table 4: Performance of the consensus dropout fusion model
and the ensemble model between our image-only model and
joint model on the validation dataset of VisDial v1.0 (Img-
Only: image-only model, Joint: image-history joint model,
CDF: consensus dropout fusion model).

5.4 Model Combination Results
Considering the complementary relation between image-
only model and joint model, combining the two models
would be a good approach to take the best from the both.
So, we integrate these two models via two methods: consen-
sus dropout fusion and ensemble (see Sec.3.4).

Consensus Dropout Fusion Results As shown in Table
4, consensus dropout fusion improves the score of NDCG
by around 1.0 from the score of the joint model while still
yielding comparable scores for other metrics. Unlike ensem-
ble way, consensus dropout fusion does not require much
increase in the number of model parameters.

Ensemble Model Results As also shown in Table 4, the
ensemble model seems to take the best results from each
model. Specifically, the NDCG score of the ensemble model
is comparable to that of the image-only model and the scores
of other metrics are comparable to those of the image-history
joint model. From this experiment, we can confirm that the
two models are in complementary relation.

5.5 Final Visual Dialog Test Results
For the evaluation on the test-standard dataset of VisDial
v1.0, we try 6 image-only model ensemble and 6 consen-
sus dropout fusion model ensemble. As shown in Table 5,
our two models show competitive results compared to the
state-of-the-art on the Visual Dialog challenge 2018 (DL-61
was the winner of the Visual Dialog challenge 2018). Specif-
ically, our image-only model shows much higher NDCG
score (60.16). On the other hand, our consensus dropout
fusion model shows more balanced results over all met-
rics while still outperforming on most evaluation metrics
(NDCG, MRR, R@1, and R@5). Compared to results of the
Visual Dialog challenge 2019, our models also show strong
results. Although ReDAN+ (Gan et al. 2019) and MReaL–
BDAI show higher NDCG scores, our consensus dropout fu-
sion model shows more balanced results over metrics while
still having a competitive NDCG score compared to DAN
(Kang, Lim, and Zhang 2019), with rank 3 based on NDCG
metric and high balance rank based on metric average.4

Ensemble on More Models We also run an ensemble
model from our image-only, joint, and consensus dropout

4We are model name ‘square’ on https://evalai.cloudcv.org/
web/challenges/challenge-page/161/leaderboard/483

• CDF model shows more balanced results while the 
ensemble model takes the best from both models.

(slides by Hyounghun Kim)
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Models NDCG MRR R@1 R@5 R@10 Mean
LF (Das et al. 2017) 45.31 55.42 40.95 72.45 82.83 5.95
HRE (Das et al. 2017) 45.46 54.16 39.93 70.45 81.50 6.41
MN (Das et al. 2017) 47.50 55.49 40.98 72.30 83.30 5.92
MN-att (Das et al. 2017) 49.58 56.90 42.43 74.00 84.35 5.59
LF-att (Das et al. 2017) 49.76 57.07 42.08 74.83 85.05 5.41
CorefNMN (Kottur et al. 2018) 54.7 61.5 47.55 78.10 88.80 4.40

Visual Dialog challenge 2018

RvA (Niu et al. 2018) 55.59 63.03 49.03 80.40 89.83 4.18
USTC-YTH (Yang, Zha, and Zhang 2019) 57.17 64.22 50.88 80.63 89.45 4.20
DL-61 (single) (Guo, Xu, and Tao 2019) 57.32 62.20 47.90 80.43 89.95 4.17
DL-61 (ensemble) (Guo, Xu, and Tao 2019) 57.88 63.42 49.30 80.77 90.68 3.97

Visual Dialog challenge 2019

DAN (single) (Kang, Lim, and Zhang 2019) 57.59 63.20 49.63 79.75 89.35 4.30
DAN (ensemble) (Kang, Lim, and Zhang 2019) 59.36 64.92 51.28 81.60 90.88 3.92
ReDAN+ (ensemble) (Gan et al. 2019) 64.47 53.73 42.45 64.68 75.68 6.63
MReaL–BDAI (not published) 74.02 52.62 40.03 65.85 79.15 6.76
Our Image-Only (ensemble) 60.16 61.26 47.15 78.73 88.48 4.46
Our Consensus Dropout Fusion (ensemble) 59.49 64.40 50.90 81.18 90.40 3.99

Table 5: Performance comparison between our models and other models on the test-standard dataset of VisDial v1.0. We run
two ensemble models each from 6 image-only models and 6 consensus dropout fusion models.

Models NDCG MRR R@1 R@5 R@10 Mean
CA 57.81 64.47 50.87 81.38 90.03 4.10
CA + RD 58.97 64.57 50.87 81.58 90.30 4.05

Table 6: The effect of round dropout: applying round
dropout improves model’s performance on NDCG by
around 1.2 while also improving other metrics. (CA: cross-
attention model (base model), RD: round dropout).

fusion models (6 of each and total 18 models) and evalu-
ate it on the test-standard dataset of the VisDial v1.0. This
model’s scores (NDCG: 59.90, MRR: 64.05, R@1: 50.28,
R@5: 80.95, R@10: 90.60, Mean: 4.00) are in between our
image-only ensemble model and our consensus dropout fu-
sion ensemble model, i.e., this ensemble model has a higher
NDCG than the consensus dropout fusion ensemble model
and higher non-NDCG scores than the image-only ensem-
ble model. This result shows that our image-only, joint, and
consensus dropout fusion models make up for each other by
being combined in an ensemble model as we expected.

6 Ablation Study
Round Dropout: As shown in Table 6, our round dropout
(see Sec.3.3) improves the NDCG score by 1.2. A possi-
ble interpretation is that round dropout could help the model
avoid from over-fitting to some patterns in the history fea-
tures by intentionally dropping some of the features in the
training session.
Consensus Dropout Fusion and Dropout Rate: We run
our consensus dropout fusion model (see Sec.3.4) with dif-
ferent instance dropout rates to figure out how the dropout
rates affect the performance of the model. As shown in
Table.7, as the dropout rate increases the NDCG score is also
increased while scores of non-NDCG metrics are decreased.
By changing the dropout rate, we can modulate the influence
of each model (image-only and joint models) over the com-
bined model. We choose a value of 0.25 for the dropout rate

Models NDCG MRR R@1 R@5 R@10 Mean
CDF (p=0.00) 59.40 64.61 51.01 81.73 90.30 4.06
CDF (p=0.15) 59.49 64.64 50.94 81.63 90.07 4.07
CDF (p=0.25) 59.93 64.52 50.92 81.31 90.00 4.10
CDF (p=0.35) 60.11 64.21 50.56 81.20 89.84 4.15

Table 7: Consensus dropout fusion and different dropout
rates. With different dropout rates, consensus dropout fusion
model yields different scores of all metrics. (CDF: consen-
sus dropout fusion model).

Models NDCG MRR R@1 R@5 R@10 Mean
Img+Img 61.97 62.24 48.20 79.49 88.83 4.41

Joint+Joint 59.84 65.60 52.06 82.46 90.87 3.88
Img+Joint 61.50 65.04 51.38 81.93 90.45 3.96

Table 8: Performance of ensemble models with different
combinations. Img+Img model (3 Img models) has highest
value of NDCG while Joint+Joint (3 Joint models) model
highest values for other metrics. Img+Joint model (3 Img +
3 Joint models) has more balanced results (Img: image-only
model, Joint: image-history joint model).

since it yields more balanced scores over all metrics.
Ensemble Combination: We try different combinations
from image-only and joint models to build ensemble models.
The total number of models amounts to 3, i.e., image-only +
image-only (I+I), joint + joint (J+J), and image-only + joint
(I+J) ensemble models. As shown in Table 8, scores of the
I+J ensemble model are comparable to same-kind ensemble
models (I+I and J+J). To be specific, for the NDCG metric,
the I+J model outperforms the J+J model, while, for other
metrics (MRR, recall@k, and mean rank), the I+J model
outperforms the I+I model. This might imply that the bal-
anced scores (i.e., high scores over all metrics) of the I+J
model are from the complementary relation between image-
only and image-history joint model.
Output Examples: Due to space constraints and no supple-

Cap: female tennis players stand on a tennis 
        court

Q1: do you see any other people
A1: yes, other 3 persons
Q2: what color is her hair
A2: not visible, covered by a hat
...
Q7: do they all have tennis racquets
A7: yes
Q8: is it day or night
A8: it is day

Q: do they have spectators
A: no, only 3 persons playing and 
    1 watching  

Cap: the blue utility truck is parked in front of 
        the gas station

Q1: what kind of truck is it
A1: concrete truck
Q2: is it a dark blue
A2: kind of like a sky blue
...
Q6: is there a store with the gas station
A6: yes
Q7: is it a big store
A7: no more like a convenience store

Q: what color is it
A: the building has a red awning and stone 
    front   

Cap: an orange cat with piercing yellow eyes 
        laying on a white towel

Q1: s the picture in color
A1: yes
Q2: is there just 1 animal
A2: yes
...
Q8: what color is the box
A8: black
Q9: is there anything in the box
A9: the cat, toy banana, tissue paper

Q: what else do you see
A: green, white, black, and some orange

Q: can you see the color of the phone
A: yes, white   

Q: what is the shape of the pizza
A: 2 triangle slices   

(mentions about 2 females in the history)
Q: do you see other people on the beach
A: 2 people   

Figure 5: Coreference and memorization examples of the image-history joint model (a darker blue square indicates a higher
score and a lighter blue square indicates a lower score): the left example shows that the model attends to the last QA pair
to resolve the coreference (i.e., ‘it’ to ‘convenience store’), and the middle example shows that the model might memorize
keywords/phrases to answer questions (‘3 persons’). Note that attention scores for captions are always high since they have
more general information than others. On the right, we show two examples for answer prediction of the image-only model.

Cap: a double decker bus sits next to 
        a brick wall

Q1: are there any people
A1: no
Q2: is it daytime
A2: yes it is
Q3: can you see the sky
A3: yes i can
Q4: is the sun up
A4: is it pretty cloudy
Q5: are there any buildings
A5: in the background i see 1
Q6: are there any birds in the sky
A6: 0 i see
Q7: is there a fence
A7: no i just see a wall in the 
      background
Q8: can you see any trees
A8: i see 1
Q9: what color is the wall
A9: concrete color
Q10: is the trees tall
A10: a little taller than the building

Cap: rows of wooden chairs and 
        benches in a classroom

Q1: is this inside or outside
A1: inside
Q2: do you see people
A2: no
Q3: is this a school
A3: yes
Q4: do you see a chalkboard
A4: no
Q5: do you see a teachers desk
A5: no
Q6: how many chairs are there
A6: i see 8
Q7: are they all wooden
A7: yes
Q8: do you see a closet
A8: no
Q9: is the light on
A9: yes
Q10: do you see benches
A10: yes, the chairs are like benches

Cap: chocolate cake with fresh
strawberries and small nuts

Q1: is it on a table
A1: i think it
Q2: is there any silverware
A2: no
Q3: can you see a tablecloth
A3: no
Q4: is it a bright picture
A4: yes
Q5: can you see a window
A5: no
Q6: are there any people
A6: no, close up picture
Q7: is it inside
A7: i think so
Q8: has the cake been cut
A8: it is a slice on a plate
Q9: what kind of nuts
A9: i can't tell but it looks delicious
Q10: what color is the plate
A10: white

Cap: a group of giraffes is standing
in a savannaha

Q1: how many giraffes are there
A1: 3
Q2: are they all adults.
A2: yes.
Q3: do you see grass
A3: yes
Q4: are there any trees
A4: yes
Q5: is it sunny
A5: yes
Q6: do the trees have any leaves

on them
A6: yes
Q7: are there any other animals

visible
A7: no
Q8: are the giraffes heads up
A8: yes
Q9: is the sky clear
A9: yes
Q10: does it look dry
A10: yes

Figure 6: Examples of only-image questions in blue which only need an image to be answered.

Modality-Balanced Models for Visual Dialogue 
Hyounghun Kim, Hao Tan, Mohit Bansal

University of North Carolina at Chapel Hill

Models NDCG MRR R@1 R@5 R@10 Mean
LF (Das et al. 2017) 45.31 55.42 40.95 72.45 82.83 5.95
HRE (Das et al. 2017) 45.46 54.16 39.93 70.45 81.50 6.41
MN (Das et al. 2017) 47.50 55.49 40.98 72.30 83.30 5.92
MN-att (Das et al. 2017) 49.58 56.90 42.43 74.00 84.35 5.59
LF-att (Das et al. 2017) 49.76 57.07 42.08 74.83 85.05 5.41
CorefNMN (Kottur et al. 2018) 54.7 61.5 47.55 78.10 88.80 4.40

Visual Dialog challenge 2018

RvA (Niu et al. 2018) 55.59 63.03 49.03 80.40 89.83 4.18
USTC-YTH (Yang, Zha, and Zhang 2019) 57.17 64.22 50.88 80.63 89.45 4.20
DL-61 (single) (Guo, Xu, and Tao 2019) 57.32 62.20 47.90 80.43 89.95 4.17
DL-61 (ensemble) (Guo, Xu, and Tao 2019) 57.88 63.42 49.30 80.77 90.68 3.97

Visual Dialog challenge 2019

DAN (single) (Kang, Lim, and Zhang 2019) 57.59 63.20 49.63 79.75 89.35 4.30
DAN (ensemble) (Kang, Lim, and Zhang 2019) 59.36 64.92 51.28 81.60 90.88 3.92
ReDAN+ (ensemble) (Gan et al. 2019) 64.47 53.73 42.45 64.68 75.68 6.63
MReaL–BDAI (not published) 74.02 52.62 40.03 65.85 79.15 6.76
Our Image-Only (ensemble) 60.16 61.26 47.15 78.73 88.48 4.46
Our Consensus Dropout Fusion (ensemble) 59.49 64.40 50.90 81.18 90.40 3.99

Table 5: Performance comparison between our models and other models on the test-standard dataset of VisDial v1.0. We run
two ensemble models each from 6 image-only models and 6 consensus dropout fusion models.

Models NDCG MRR R@1 R@5 R@10 Mean
CA 57.81 64.47 50.87 81.38 90.03 4.10
CA + RD 58.97 64.57 50.87 81.58 90.30 4.05

Table 6: The effect of round dropout: applying round
dropout improves model’s performance on NDCG by
around 1.2 while also improving other metrics. (CA: cross-
attention model (base model), RD: round dropout).

fusion models (6 of each and total 18 models) and evalu-
ate it on the test-standard dataset of the VisDial v1.0. This
model’s scores (NDCG: 59.90, MRR: 64.05, R@1: 50.28,
R@5: 80.95, R@10: 90.60, Mean: 4.00) are in between our
image-only ensemble model and our consensus dropout fu-
sion ensemble model, i.e., this ensemble model has a higher
NDCG than the consensus dropout fusion ensemble model
and higher non-NDCG scores than the image-only ensem-
ble model. This result shows that our image-only, joint, and
consensus dropout fusion models make up for each other by
being combined in an ensemble model as we expected.

6 Ablation Study
Round Dropout: As shown in Table 6, our round dropout
(see Sec.3.3) improves the NDCG score by 1.2. A possi-
ble interpretation is that round dropout could help the model
avoid from over-fitting to some patterns in the history fea-
tures by intentionally dropping some of the features in the
training session.
Consensus Dropout Fusion and Dropout Rate: We run
our consensus dropout fusion model (see Sec.3.4) with dif-
ferent instance dropout rates to figure out how the dropout
rates affect the performance of the model. As shown in
Table.7, as the dropout rate increases the NDCG score is also
increased while scores of non-NDCG metrics are decreased.
By changing the dropout rate, we can modulate the influence
of each model (image-only and joint models) over the com-
bined model. We choose a value of 0.25 for the dropout rate

Models NDCG MRR R@1 R@5 R@10 Mean
CDF (p=0.00) 59.40 64.61 51.01 81.73 90.30 4.06
CDF (p=0.15) 59.49 64.64 50.94 81.63 90.07 4.07
CDF (p=0.25) 59.93 64.52 50.92 81.31 90.00 4.10
CDF (p=0.35) 60.11 64.21 50.56 81.20 89.84 4.15

Table 7: Consensus dropout fusion and different dropout
rates. With different dropout rates, consensus dropout fusion
model yields different scores of all metrics. (CDF: consen-
sus dropout fusion model).

Models NDCG MRR R@1 R@5 R@10 Mean
Img+Img 61.97 62.24 48.20 79.49 88.83 4.41

Joint+Joint 59.84 65.60 52.06 82.46 90.87 3.88
Img+Joint 61.50 65.04 51.38 81.93 90.45 3.96

Table 8: Performance of ensemble models with different
combinations. Img+Img model (3 Img models) has highest
value of NDCG while Joint+Joint (3 Joint models) model
highest values for other metrics. Img+Joint model (3 Img +
3 Joint models) has more balanced results (Img: image-only
model, Joint: image-history joint model).

since it yields more balanced scores over all metrics.
Ensemble Combination: We try different combinations
from image-only and joint models to build ensemble models.
The total number of models amounts to 3, i.e., image-only +
image-only (I+I), joint + joint (J+J), and image-only + joint
(I+J) ensemble models. As shown in Table 8, scores of the
I+J ensemble model are comparable to same-kind ensemble
models (I+I and J+J). To be specific, for the NDCG metric,
the I+J model outperforms the J+J model, while, for other
metrics (MRR, recall@k, and mean rank), the I+J model
outperforms the I+I model. This might imply that the bal-
anced scores (i.e., high scores over all metrics) of the I+J
model are from the complementary relation between image-
only and image-history joint model.
Output Examples: Due to space constraints and no supple-

• Evaluation on test-standard dataset.

• Performance of ensemble models with different combinations. 
Img+Img model has the highest value of NDCG while 
Joint+Joint model has the highest values for other metrics. 
Img+Joint model has more balanced results. 
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HRE (Das et al. 2017) 45.46 54.16 39.93 70.45 81.50 6.41
MN (Das et al. 2017) 47.50 55.49 40.98 72.30 83.30 5.92
MN-att (Das et al. 2017) 49.58 56.90 42.43 74.00 84.35 5.59
LF-att (Das et al. 2017) 49.76 57.07 42.08 74.83 85.05 5.41
CorefNMN (Kottur et al. 2018) 54.7 61.5 47.55 78.10 88.80 4.40
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RvA (Niu et al. 2018) 55.59 63.03 49.03 80.40 89.83 4.18
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DL-61 (single) (Guo, Xu, and Tao 2019) 57.32 62.20 47.90 80.43 89.95 4.17
DL-61 (ensemble) (Guo, Xu, and Tao 2019) 57.88 63.42 49.30 80.77 90.68 3.97
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DAN (single) (Kang, Lim, and Zhang 2019) 57.59 63.20 49.63 79.75 89.35 4.30
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ReDAN+ (ensemble) (Gan et al. 2019) 64.47 53.73 42.45 64.68 75.68 6.63
MReaL–BDAI (not published) 74.02 52.62 40.03 65.85 79.15 6.76
Our Image-Only (ensemble) 60.16 61.26 47.15 78.73 88.48 4.46
Our Consensus Dropout Fusion (ensemble) 59.49 64.40 50.90 81.18 90.40 3.99

Table 5: Performance comparison between our models and other models on the test-standard dataset of VisDial v1.0. We run
two ensemble models each from 6 image-only models and 6 consensus dropout fusion models.

Models NDCG MRR R@1 R@5 R@10 Mean
CA 57.81 64.47 50.87 81.38 90.03 4.10
CA + RD 58.97 64.57 50.87 81.58 90.30 4.05

Table 6: The effect of round dropout: applying round
dropout improves model’s performance on NDCG by
around 1.2 while also improving other metrics. (CA: cross-
attention model (base model), RD: round dropout).

fusion models (6 of each and total 18 models) and evalu-
ate it on the test-standard dataset of the VisDial v1.0. This
model’s scores (NDCG: 59.90, MRR: 64.05, R@1: 50.28,
R@5: 80.95, R@10: 90.60, Mean: 4.00) are in between our
image-only ensemble model and our consensus dropout fu-
sion ensemble model, i.e., this ensemble model has a higher
NDCG than the consensus dropout fusion ensemble model
and higher non-NDCG scores than the image-only ensem-
ble model. This result shows that our image-only, joint, and
consensus dropout fusion models make up for each other by
being combined in an ensemble model as we expected.

6 Ablation Study
Round Dropout: As shown in Table 6, our round dropout
(see Sec.3.3) improves the NDCG score by 1.2. A possi-
ble interpretation is that round dropout could help the model
avoid from over-fitting to some patterns in the history fea-
tures by intentionally dropping some of the features in the
training session.
Consensus Dropout Fusion and Dropout Rate: We run
our consensus dropout fusion model (see Sec.3.4) with dif-
ferent instance dropout rates to figure out how the dropout
rates affect the performance of the model. As shown in
Table.7, as the dropout rate increases the NDCG score is also
increased while scores of non-NDCG metrics are decreased.
By changing the dropout rate, we can modulate the influence
of each model (image-only and joint models) over the com-
bined model. We choose a value of 0.25 for the dropout rate

Models NDCG MRR R@1 R@5 R@10 Mean
CDF (p=0.00) 59.40 64.61 51.01 81.73 90.30 4.06
CDF (p=0.15) 59.49 64.64 50.94 81.63 90.07 4.07
CDF (p=0.25) 59.93 64.52 50.92 81.31 90.00 4.10
CDF (p=0.35) 60.11 64.21 50.56 81.20 89.84 4.15

Table 7: Consensus dropout fusion and different dropout
rates. With different dropout rates, consensus dropout fusion
model yields different scores of all metrics. (CDF: consen-
sus dropout fusion model).

Models NDCG MRR R@1 R@5 R@10 Mean
Img+Img 61.97 62.24 48.20 79.49 88.83 4.41

Joint+Joint 59.84 65.60 52.06 82.46 90.87 3.88
Img+Joint 61.50 65.04 51.38 81.93 90.45 3.96

Table 8: Performance of ensemble models with different
combinations. Img+Img model (3 Img models) has highest
value of NDCG while Joint+Joint (3 Joint models) model
highest values for other metrics. Img+Joint model (3 Img +
3 Joint models) has more balanced results (Img: image-only
model, Joint: image-history joint model).

since it yields more balanced scores over all metrics.
Ensemble Combination: We try different combinations
from image-only and joint models to build ensemble models.
The total number of models amounts to 3, i.e., image-only +
image-only (I+I), joint + joint (J+J), and image-only + joint
(I+J) ensemble models. As shown in Table 8, scores of the
I+J ensemble model are comparable to same-kind ensemble
models (I+I and J+J). To be specific, for the NDCG metric,
the I+J model outperforms the J+J model, while, for other
metrics (MRR, recall@k, and mean rank), the I+J model
outperforms the I+I model. This might imply that the bal-
anced scores (i.e., high scores over all metrics) of the I+J
model are from the complementary relation between image-
only and image-history joint model.
Output Examples: Due to space constraints and no supple-

• Consensus dropout fusion and different dropout rates. 
With different dropout rates, consensus dropout fusion 
model yields different scores of all metrics. 
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Jie Lei, Licheng Yu, Tamara L. Berg, Mohit Bansal
UNC Chapel Hill

Outline
• Video Question Answering

• TVQA: Localized, Compositional Video Question Answering, EMNLP 2018 

• Language-driven Moment Localization
• TVR: A Large-Scale Dataset for Video-Subtitle Moment Retrieval, ECCV 2020

• Future Event Prediction
• What is More Likely to Happen Next? Video-and-Language Future Event 

Prediction, EMNLP 2020

(Slides by Jie Lei)



TVQA: Localized, Compositional Video 
Question Answering

Jie Lei, Licheng Yu, Mohit Bansal, Tamara L. Berg

tvqa.cs.unc.edu

EMNLP 2018, Brussels, Belgium
(Slides by Jie Lei)



UNC-CS TVQA Dataset - Example tvqa.cs.unc.edu

What is Sheldon holding when 
he is talking to Howard about 
the sword?

0) A comic book
1) A computer
2) A sword
3) A toy train
4) A drink

|10s2s |

(Slides by Jie Lei)



UNC-CS TVQA Dataset - Example tvqa.cs.unc.edu

What is Sheldon holding when 
he is talking to Howard about 
the sword?

0) A comic book
1) A computer
2) A sword
3) A toy train
4) A drink

|10s2s |

(Slides by Jie Lei)



Write a question:

[What/Why/...] ___ [when/before/after] ___

Question Localization+

What is Sheldon holding when 
he is talking to Howard about sword?

UNC-CS TVQA Dataset - Collection tvqa.cs.unc.edu

|
0s
|

62s

(Slides by Jie Lei)



A computer

1) A comic book
2) A sword
3) A toy train
4) A drink

What is Sheldon holding when 
he is talking to Howard about sword?

Mark the START and END timestamps:

UNC-CS TVQADataset - Collection tvqa.cs.unc.edu

| 10s2s |
START END

(Slides by Jie Lei)



6 TV shows, 3 genres:
• Sitcom: The Big Bang Theory, Friends, How I Met Your Mother
• Medical: Grey’s anatomy, House M.D.
• Crime: Castle

Data Statistics for each TV show. BBT 
= The Big Bang Theory, HIMYM = 
How I Met You Mother, Grey = Grey’s 
Anatomy, House = House M.D., Epi = 
Episode, Sea. = Season 

Show Genre #Sea. #Epi. #Clip #QA

BBT sitcom 10 220 4,198 29,384
Friends sitcom 10 226 5,337 37,357
HIMYM sitcom 5 72 1,512 10,584
Grey medical 3 58 1,427 9,989
House medical 8 176 4,621 32,345
Castle crime 8 173 4,698 32,886

Total — 44 925 21,793 152,545

Table 1: Data Statistics for each TV show. BBT = The Big Bang Theory,
HIMYM = How I Met You Mother, Grey = Grey’s Anatomy, House = House
M.D., Epi = Episode, Sea. = Season

1

UNC-CS TVQADataset - Statistics tvqa.cs.unc.edu

(Slides by Jie Lei)



UNC-CS TVQADataset - Statistics tvqa.cs.unc.edu

Show Top unique nouns

BBT
game, mom, laptop, water, store, dinner, book,
stair, computer, food, wine, glass, couch, date

Friends
shop, kiss, hair, sofa, jacket, counter, co↵ee,
everyone, coat, chair, kitchen, baby, apartment

HIMYM
bar, beer, drink, job, dad, sex, restaurant, wedding,
party, booth, dog, story, bottle, club, painting

Grey
nurse, side, father, hallway, scrub, chart, wife,
window, life, family, chief, locker, head, surgery

House
cane, team, blood, test, brain, pill, o�ce, pain,
symptom, diagnosis, hospital, co↵ee, cancer, drug

Castle
gun, victim, picture, case, photo, body, murder,
suspect, scene, crime, money, interrogation

Top unique nouns in questions and correct answers.

1

Top unique nouns in question and correct answer

Different show comes with different words

(Slides by Jie Lei)



• Task 1: Question answering without timestamp annotation

UNC-CS TVQATasks tvqa.cs.unc.edu

| 62s0s |

| 10s2s |
START END

• Task 2: Question answering with timestamp annotation

(Slides by Jie Lei)



A Question with
5 candidate answers

What is Sheldon holding when he is talking to Howard about sword?

0) A comic book
1) A computer
2) A sword
3) A toy train
4) A drink

UNC-CS Model - Input tvqa.cs.unc.edu

(Howard:)Sheldon, he‘s got Raj. Use your sleep spell. Sheldon. 
Sheldon.

(Sheldon:)I've got the Sword of Azeroth.
…

Subtitle sentences

Video frames

(Slides by Jie Lei)



ImageNet feature (img)ResNet101

He, Kaiming, et al. Deep residual learning for image recognition. CVPR 2016
Russakovsky, Olga, et al. Imagenet large scale visual recognition challenge. IJCV 2015

UNC-CS Model - Input tvqa.cs.unc.edu

Regional visual feature (reg)Object

Detector

Faster R-CNN trained
on Visual Genome

Visual concepts feature (cpt)

(Slides by Jie Lei)



Faster R-CNN detection example

The regional visual feature (image 
embeddings inside the bounding boxes) and
visual concepts feature (shown in the caption)
can be used to answer the question:

‘What is Sheldon holding when everyone is
at the door?’ (basket).

brown door, gold sign, red sign, woman, white shorts, 
green sweater, man, blue shirt, white basket, woman, 

gray pants, gray door, standing man, gray shirt, black pants

Ren, Shaoqing, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. NIPS 2015
Anderson, Peter, et al. Bottom-up and top-down attention for image captioning and VQA. CVPR 2018
Krishna, Ranjay, et al. Visual Genome: Connecting language and vision using crowdsourced dense image annotations. IJCV 2017

UNC-CS Model - Input tvqa.cs.unc.edu

(Slides by Jie Lei)



Question

+ Predicted
Answer ScoreSo

ftm
ax

LSTM

LSTM

Context
Matching

Context
Matching

LSTMFusion MaxPoolingRCNN

LSTM

a0 He tore up the folder 
…
a4 He pulled out a cell phone

FC

What did Sheldon do after 
Leonard said the name Maggie 
McGarry ?

Word
Embedding

Word
Embedding

FC

00:50.590 --> 00:53.090
(Leonard:) "Sincerely, Maggie 
McGarry."?
…
00:54:380 --> 00:59.300
(Sheldon:) actually call that number, they 
will hear this.

LSTM

LSTM

Context
Matching

Context
Matching

LSTMFusion MaxPooling

LSTM

a0 He tore up the folder 
…
a4 He pulled out a cell phone

What did Sheldon do after 
Leonard said the name Maggie 
McGarry ?

Word
Embedding

Word
Embedding

FCWord
Embedding

a4 He pulled out a cell phone

argmaxAnswers

Subtitle

Question

Answers

Video

Multiple streams, each stream deals with different contextual input

UNC-CS Model - Overview tvqa.cs.unc.edu

(Slides by Jie Lei)
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Video Test Accuracy
Method Feature w/o ts w/ ts

0 Random - 20.00 20.00
1 Longest Answer - 30.41 30.41
2 Retrieval-Glove - 22.48 22.48
3 Retrieval-SkipThought - 24.24 24.24
4 Retrieval-TFIDF - 20.88 20.88
5 NNS-Glove Q - 22.40 22.40
6 NNS-SkipThought Q - 23.79 23.79
7 NNS-TFIDF Q - 20.33 20.33
8 NNS-Glove S - 23.73 29.66
9 NNS-SkipThought S - 26.81 37.87
10 NNS-TFIDF S - 49.94 51.23

11 Our Q - 43.34 43.34
12 Our V+Q img 42.67 43.69
13 Our V+Q reg 42.75 44.85
14 Our V+Q cpt 43.38 45.41
15 Our S+Q - 63.14 66.23
16 Our S+V+Q img 63.57 66.97
17 Our S+V+Q reg 63.19 67.82
18 Our S+V+Q cpt 65.46 68.60

Accuracy for di↵erent methods on TVQA test set. Q = Question, S = Subtitle,
V = Video, img = ImageNet features, reg = regional visual features, cpt =
visual concept features, ts = timestamp annotation.

1

Accuracy for different methods on TVQA 
test set. Q = Question, S = Subtitle, V = 
Video, img = ImageNet features, reg = 
regional visual features, cpt = visual 
concept features, ts = timestamp annotation.

UNC-CS Experiments - Results tvqa.cs.unc.edu

Add Video

Add Subtitle

Add Video, Subtitle

Question only
Both visual and textual 

information are important!

(Slides by Jie Lei)
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Timestamp information is helpful
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TVQA dataset and code:

https://tvqa.cs.unc.edu/

UNC-CS Data & Code Release tvqa.cs.unc.edu

https://github.com/jayleicn/TVQA

(Slides by Jie Lei)



TVR: A Large-Scale Dataset for 
Video-Subtitle Moment Retrieval

Jie Lei, Licheng Yu, Tamara L. Berg, Mohit Bansal
UNC Chapel Hill

(Slides by Jie Lei)



TVR Moment Retrieval Example

20

|
00:5400:44

|

Query: Rachel explains to her dad on the 
phone why she can't marry her fiancé.
Query Type: video + subtitle

(Slides by Jie Lei)



TVR Moment Retrieval Example

21

||

Query: Rachel explains to her dad on the 
phone why she can't marry her fiancé.
Query Type: video + subtitle

00:5400:44
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TVR Data Ananlysis

22

Percentage of queries that have multiple actions or involve multiple people. We also show query examples, with 
unique person mentions underlined and actions in bold

• Compared to existing datasets, TVR queries typically have more people 
and actions and require both video and sub (subtitle) context. 

TVR: A Large-Scale Dataset for Video-Subtitle Moment Retrieval 7

Table 2: Percentage of queries that have multiple actions or involve multiple
people. Statistics is based on 100 manually labeled queries from each dataset. We
also show query examples, with unique person mentions underlined and actions
in bold. Compared to existing datasets, TVR queries typically have more people
and actions and require both video and sub (subtitle) context

Dataset

#actions #people

Query examples (query type)�2 (%) �2 (%)

TACoS [28] 20 0
She rinses the peeled carrots o↵ in the sink. (video)
The person removes roots and outer leaves and rewashes the leek. (video)

CharadesSTA [8] 6 12
A person is eating food slowly. (video)
A person is opening the door to a bedroom. (video)

ActivityNet
44 44

He then grabs a metal mask and positions himself correctly on the floor. (video)
Caption [21] The same man comes back and lifts the weight over his head again. (video)

DiDeMo [13] 6 10
A dog shakes its body. (video)
A lady in a cowboy hat claps and jumps excitedly. (video)

TVR 67 66
Bert leans down and gives Amy a hug who is standing next to Penny. (video)
Taub argues with the patient that fighting in Hockey undermines the sport. (sub)
Chandler points at Joey while describing a woman who wants to date him. (video+sub)

has more unique 4-grams and almost every query is unique, making the textual
understanding of TVR more challenging. As TVR is collected on TV shows,
query-moment matching often involves understanding rich interactions between
characters. Table 2 shows a comparison of the percentages of queries that involve
more than one action or person across di↵erent datasets. 66% of TVR queries
involve at least two people and 67% involve at least two actions, both of which are
significantly higher than those of other datasets. This makes TVR an interesting
testbed for studying multimodal interactions between people. Additionally, each
TVR query is labeled with a query type, indicating whether this query is based
on video, subtitle or both, which can be used for deeper analyses of the systems.

4 Cross-modal Moment Localization (XML)

In VCMR, the goal is to retrieve a moment from a large video corpus V ={v
i

}n
i=1

given a query q
j

. Each video v
i

is represented as a list of consecutive short
clips, i.e., v

i

=[c
i,1, ci,2, ..., ci,l]. In TVR, each short clip is also associated with

temporally aligned subtitle sentences. The retrieved moment is denoted as
v
i

[t
st

:t
ed

]=[c
i,tst , ci,tst+1, ..., ci,ted ]. To address VCMR, we propose a hierarchical

Cross-modal Moment Localization (XML) network. XML performs video retrieval
(VR) in its shallower layers and more fine-grained moment retrieval in its deeper
layers. It uses a late fusion design with a novel Convolutional Start-End (ConvSE)
detector, making the moment predictions e�cient and accurate.

4.1 XML Backbone Network

Input Representations. To represent videos, we consider both appearance and
motion features. For appearance, we extract 2048D ResNet-152 [12] features at
3FPS and max-pool the features every 1.5 seconds to get a clip-level feature.

(Slides by Jie Lei)



TVR Task

23

Video Corpus Moment Retrieval (VCMR)
• A query + A video corpus         Retrieve the matched moment from the corpus. 

• Retrieve the GT video. (Video Retrieval)
• Localize the moment from the retrieved video. (Single Video Moment Retrieval)

Query: Rachel explains to her dad on the phone why she can't marry her fiancé.
Query Type: video + subtitle

00:00:00,327  --> 00:00:04,320

Whitney: This is my fiancé, …

00:00:59,486 --> 00:01:02,046

Whitney: We'll do the paternity …

00:01:25,979 --> 00:01:28,573

Kutner: You're in good spirits …
…00:00:32,192 --> 00:00:34,626

House: Nine months later, …
……

…

00:00:03,897 --> 00:00:07,731

Ross: Somebody seems to be …

00:00:43,003 --> 00:00:45,597

Mr. Waltham: In a moment, …

00:00:56,950 --> 00:01:01,353

Joshua: I need a whole new …
…00:00:36,497 --> 00:00:38,761

Rachel: Okay, bye. Call me …
……

V
id
eo
1

00:00:07,786 --> 00:00:13,156

Monica: Who wasn't invited ...

00:00:44,223 --> 00:00:52,929

Rachel: Daddy, I can't marry him…

00:00:58,771 --> 00:01:05,032

"If I let go of my hair, …"
…00:00:35,180 --> 00:00:37,774

"Tuna or egg salad! Decide!"
……

V
id
eo
2

V
id
eo
3

(Slides by Jie Lei)



Our Model: Cross-modal Moment Localization (XML) 

24

;[SHOI FC

SHOI CURVV

SHOI CURVV

FC

FC

...
00:26.568ĺ�00:27.818
LHRQDUG:�SRXQGV�OLNH�
D�EUHDNWKURXJK
...

I3D
+R

HVN
HW

R
RB

ERTD
R
RB

ERTD

SKHOGRQ�DQG�LHRQDUG�JR�
GRZQVWDLUV�VLGH�E\�VLGH.

L2-N
RUP

L2-N
RUP VLGHR

RHWULHYDO
SFRUH

PD[PD[

EOHPHQW-ZLVH�AGGLWLRQ

MDWUL[�MXOWLSOLFDWLRQ

PE PRVLWLRQDO�EQFRGLQJ

PE

PE

PE

SRIWPD[

CRQYSE�DHWHFWRU

QXHU\-COLS�SLPLODULW\

CRQY.�FLOWHU�RHVSRQVH

SWDUW-EQG�PUREDELOLWLHV

D\QDPLF�PURJUDPPLQJ

SVMR�SFRUHV

AJJUHJDWLRQ�FXQFWLRQ VCMR
SFRUHV

XML�Backbone ConvSE

FC

FC

FC

]

(Slides by Jie Lei)



Our Model: Cross-modal Moment Localization (XML) 

25

Single Video Moment Retrieval
• We first compute query-clip similarity scores                              .
• We then apply Convlutional Start-End (ConvSE) detector:

• The scores are normalized with softmax to output the probabilities                         .

CRQYSE�DeWecWRU

QXeU\-CliS�SimilaUiW\

CRQY.�FilWeU�ReVSRQVe

t

t

(Slides by Jie Lei)



Experiments

26

Baseline comparison on TVR test-public set, VCMR task. 

TVR: A Large-Scale Dataset for Video-Subtitle Moment Retrieval 11

Table 3: Baseline comparison on TVR test-public set, VCMR task. Model refer-
ences: MCN [13], CAL [7], MEE [26], ExCL [10]

Model w/ video w/ sub.
IoU=0.5 IoU=0.7 Runtime #

R@1 R@5 R@10 R@100 R@1 R@5 R@10 R@100 (seconds)

Chance - - 0.00 0.02 0.04 0.33 0.00 0.00 0.00 0.07
Proposal based Methods

MCN X X 0.02 0.15 0.24 2.20 0.00 0.07 0.09 1.03 -
CAL X X 0.09 0.31 0.57 3.42 0.04 0.15 0.26 1.89 -
Retrieval + Re-ranking

MEE+MCN X X 0.92 3.69 5.58 17.91 0.42 1.89 2.98 10.84 66.8
MEE+CAL X X 0.97 3.75 5.80 18.66 0.39 1.69 2.98 11.52 161.5
MEE+ExCL X X 0.92 2.53 3.60 6.01 0.33 1.19 1.73 2.87 1307.2

XML X X 7.25 16.24 21.65 44.44 3.25 8.71 12.49 29.51 25.5

truth; (ii) predicted span has high overlap with the ground truth where temporal
intersection over union (IoU) is used to measure overlap.

Implementation Details. All baseline comparisons are configured to use the
same hidden size as XML. We train the baselines following the original papers.
We use the same features for all the models. To support retrieval using subtitle for
the baselines, we add a separate subtitle stream and average the final predictions
from both streams. Non-maximum suppression is not used as we do not observe
consistent performance gain on the val set.

5.2 Baselines Comparison

In this section, we compare XML with baselines on TVR test-public set (5,445
queries and 1,089 videos). We report the runtime for top-performing methods,
averaged across 3 runs on an RTX 2080Ti GPU. Time spent on data loading, pre-
processing, backend model (i.e., ResNet-152, I3D, RoBERTa) feature extraction,
etc, is ignored since they should be similar for all methods. We mainly focus on
the VCMR task here. In Sec. B and Sec. C, we include additional experiments: (1)
model performance on single video moment retrieval and video retrieval tasks; (2)
computation and storage cost comparison in a 1M videos corpus; (3) Temporal
Endpoint Feature (TEF) [13] model results; (4) feature and model architecture
ablation studies; (5) VCMR results on DiDeMo [13] dataset, etc.

Proposal based Methods. MCN [13] and CAL [7] pose the moment retrieval
task as a ranking problem in which all moment proposal candidates are ranked
based on their squared Euclidean Distance with the queries. For VCMR, they
require directly ranking all the proposals (95K in the following experiments) in
the video corpus for each query, which can be costly and di�culty. In contrast,
XML uses a hierarchical design that performs video retrieval in its shallow layers
and moment retrieval on the retrieved videos in its deeper layers. In Table 3,
XML is showing to have significantly higher performance than MCN and CAL.

Retrieval+Re-ranking Methods. We also compare to methods under the
retrieval+re-ranking setting [7] where we first retrieve a set of candidate videos

(Slides by Jie Lei)



Experiments
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Performance of XML models that use only 
video, subtitle, or both as inputs.

• Use both video and subtitle performs the best.

(Slides by Jie Lei)



Experiments
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Performance comparison of moment generation 
methods, under the same XML backbone. 

• TAG and SlidingWindow rely on handcrafted 
rules, while ConvSE learns from data.

• ConvSE performs consistently better across 
different IoU thresholds. 

(Slides by Jie Lei)



https://github.com/jayleicn/TVRetrieval

https://tvr.cs.unc.edu/

29

Data & Code Release

TV show Retrieval (TVR):

TV show Captions (TVC):
-- We collected additional descriptions for each TVR moment.

https://github.com/jayleicn/TVCaption

https://tvr.cs.unc.edu/tvc.html

(Slides by Jie Lei)



What is More Likely to Happen Next? Video-and-
Language Future Event Prediction

Jie Lei, Licheng Yu, Tamara L. Berg, Mohit Bansal
UNC Chapel Hill

(Slides by Jie Lei)



00:21,320 --> 00:23,381 
[Mark] Oh yeah! Maybe a shake. 

(Premise Summary : A woman with a white shirt with black buttons grinds fruit slush in a blender.)

A. The woman in the white shirt pours the slush into a cup.

Premise Event

(Which event is more likely to happen right after the premise?)

(Rationale: There are hollowed out watermelon rinds sitting around the blender.)

(Rationale: Slushy drinks are more commonly served in a cup, but there are hollowed out 
watermelon rinds sitting around the blender.)

B. The woman in the white shirt pours the slush into a watermelon rind and passes it to Mark.

Future Events

00:26,436 --> 00:31,230
Dean: When I got back to my apartment, that phone was on my doormat. It had a text on it.

(Premise Summary: The man being questioned references finding the cell phone in the 
evidence bag and there being a text on it. Detective Beckett reaches toward the evidence bag.)

A. Beckett takes the phone and reads the text. 

Premise Event

(Which event is more likely to happen right after the premise?)

(Rationale: The detective probably wouldn't hand a piece of evidence to a suspect.)

(Rationale: Dean mentioned a text on the phone, Beckett has reached toward the evidence bag.)
B. Beckett picks up the phone and hands it to Dean.

Future Events
VLEP Task & Example

A VLEP example with a YouTube Vlog video.

• Task: Given a video (with dialogue) as premise, predict what is most likely to happen 
next by selecting from two provided future events. This task requires using event 
schema knowledge, which is quite challenging for modern AI systems. 

31
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• Human-and-Model-in-the-Loop Adversarial Data Collection.

• Adversarial Matching.
• We sample negatives from existing human positives that is close to the given premise but not overly 

similar to the true positive. 

�

MRdel
More-Likel\�EYent

Less-Likel\�EYentWUiWeU

Premise�EYent

Feedback

DaWa�PRRl
VeUifieUV

NR*

TUaLQ

DeY
TeVW

...
00:35,430�-->�00:36,550
Thanks�Joel,�appreciate�it.
...
VideR�(ZiWh�dialRgXeV)

AgUee
DiVagUee

2
1

2

2

3

3

4

2 SWeS�2:�GeW�mRdel�feedback

FXtXre�EYent�Pair

4 SWeS�4:�ReWUaiQ�mRdel�fRU�Qe[W�URXQd

1 SWeS�1:�WUiWe�eYeQWV

3 SWeS�3:�VeUif\�eYeQWV

[Nie et al., ACL 2020 , Zellers et al., CVPR 2019]

Adversarial collection procedure. 

VLEP Dataset Collection
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• We collected 28.7K examples with 10K TV show and YouTube Vlog video clips from different 
genres. We also show top unique verbs in each genre.

Data statistics by genre.

Top unique verbs in each genre.

VLEP Dataset

33
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• A transformer-based method. 
• Video feature: 2D appearance feature + 3D action feature.
• Text feature: from a RoBERTa model fine-tuned on event schemas from ATOMIC knowledge base.
• A multimodal transformer encoder for both video and text.

[Sap et al., AAAI 2019]

Model overview

file a police 
report

X repels Y’s
attack

leave the 
scene

attack X 
again

run home

X want to
Y want to

An ATOMIC example. Example sentence: X repels Y’s 
attack, then X want to file a police report.

Method

34

YLdeR fXWXUe�eYeQW
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• We split data into 70% training, 15% development, 15% testing splits.
• Left: Video, dialogue are both useful for the task, when combined, we obtain the best 

performance of 67.46%, but is still far below human performance of 90.5%.
• Right: event schema knowledge is useful for the task, without ATOMIC sentences for fine-

tuning, we see a lower performance.

Results on VLEP test splits.

Effect of ATOMIC fine-tuning. 

Experiments

35
(Slides by Jie Lei)
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Data Release
https://github.com/jayleicn/VideoLanguageFuturePred

(Slides by Jie Lei)

https://github.com/jayleicn/VideoLanguageFuturePred


Jie Lei, Licheng Yu, Tamara L. Berg, Mohit Bansal
UNC Chapel Hill

Thanks!
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