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Announcements 

  Coding-HW1 (on word vector training+evaluation_
+visualization) due today midnight! 

  Midterm project presentation next week (look for details 
in my email last week). 

  Please send 1-2 paragraph project description asap 
today if you haven’t yet (was due yesterday Sep21). 
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NP-SBJ = ARG0 VP

DT NNP NNP NNP

The San Francisco Examiner

VBD = TARGET NP = ARG1 PP-TMP = ARGM-TMP

issued DT JJ NN IN NP

a special edition around NN NP-TMP

noon yesterday

Figure 22.5 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line
shows the path feature NP"S#VP#VBD for ARG0, the NP-SBJ constituent The San Francisco Examiner.

• The headword of the constituent, Examiner. The headword of a constituent
can be computed with standard head rules, such as those given in Chapter 11
in Fig. ??. Certain headwords (e.g., pronouns) place strong constraints on the
possible semantic roles they are likely to fill.

• The headword part of speech of the constituent, NNP.
• The path in the parse tree from the constituent to the predicate. This path is

marked by the dotted line in Fig. 22.5. Following Gildea and Jurafsky (2000),
we can use a simple linear representation of the path, NP"S#VP#VBD. " and
# represent upward and downward movement in the tree, respectively. The
path is very useful as a compact representation of many kinds of grammatical
function relationships between the constituent and the predicate.

• The voice of the clause in which the constituent appears, in this case, active
(as contrasted with passive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than do active ones.

• The binary linear position of the constituent with respect to the predicate,
either before or after.

• The subcategorization of the predicate, the set of expected arguments that
appear in the verb phrase. We can extract this information by using the phrase-
structure rule that expands the immediate parent of the predicate; VP ! VBD
NP PP for the predicate in Fig. 22.5.

• The named entity type of the constituent.
• The first words and the last word of the constituent.
The following feature vector thus represents the first NP in our example (recall

that most observations will have the value NONE rather than, for example, ARG0,
since most constituents in the parse tree will not bear a semantic role):

ARG0: [issued, NP, Examiner, NNP, NP"S#VP#VBD, active, before, VP ! NP PP,
ORG, The, Examiner]

Other features are often used in addition, such as sets of n-grams inside the
constituent, or more complex versions of the path features (the upward or downward
halves, or whether particular nodes occur in the path).

It’s also possible to use dependency parses instead of constituency parses as the
basis of features, for example using dependency parse paths instead of constituency
paths.

Named6Entity6type6of6constit
ORGANIZATION

First6and6last6words6of6constit
The,6Examiner

Linear6position,clause re:6predicate

before



Path-based Features for SRL 
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Path Features

Results

! Features:
! Path from target to filler
! Filler’s syntactic type, headword, case
! Target’s identity
! Sentence voice, etc.
! Lots of other second-order features

! Gold vs parsed source trees

! SRL is fairly easy on gold trees

! Harder on automatic parses



Some SRL Results 
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Path Features

Results

! Features:
! Path from target to filler
! Filler’s syntactic type, headword, case
! Target’s identity
! Sentence voice, etc.
! Lots of other second-order features

! Gold vs parsed source trees

! SRL is fairly easy on gold trees

! Harder on automatic parses

  So major feature categories in traditional feature-based SRL 
models were: 
  Headword, syntactic type, case, etc. of candidate node/

constituent 
  Linear and tree path from predicate target to node 
  Active vs. passive voice 
  Second order and higher order features 

  Accuracy for such feature-based SRL models then highly depends 
on accuracy of underlying parse tree! 
  So quite high SRL results when  

     using ground-truth parses 
  Much lower results with 

     automatically-predicted parses! 



Schematic of Frame Semantics (FrameNet) 
Schematic)of)Frame)Semantics

Computational Linguistics Volume 40, Number 1

1. Introduction

FrameNet (Fillmore, Johnson, and Petruck 2003) is a linguistic resource storing consider-
able information about lexical and predicate-argument semantics in English. Grounded
in the theory of frame semantics (Fillmore 1982), it suggests—but does not formally
define—a semantic representation that blends representations familiar from word-sense
disambiguation (Ide and Véronis 1998) and semantic role labeling (SRL; Gildea and
Jurafsky 2002). Given the limited size of available resources, accurately producing
richly structured frame-semantic structures with high coverage will require data-driven
techniques beyond simple supervised classification, such as latent variable modeling,
semi-supervised learning, and joint inference.

In this article, we present a computational and statistical model for frame-semantic
parsing, the problem of extracting from text semantic predicate-argument structures
such as those shown in Figure 1. We aim to predict a frame-semantic representation
with two statistical models rather than a collection of local classifiers, unlike earlier ap-
proaches (Baker, Ellsworth, and Erk 2007). We use a probabilistic framework that cleanly
integrates the FrameNet lexicon and limited available training data. The probabilistic
framework we adopt is highly amenable to future extension through new features, more
relaxed independence assumptions, and additional semi-supervised models.

Carefully constructed lexical resources and annotated data sets from FrameNet,
detailed in Section 3, form the basis of the frame structure prediction task. We de-
compose this task into three subproblems: target identification (Section 4), in which
frame-evoking predicates are marked in the sentence; frame identification (Section 5),
in which the evoked frame is selected for each predicate; and argument identification
(Section 6), in which arguments to each frame are identified and labeled with a role from
that frame. Experiments demonstrating favorable performance to the previous state of
the art on SemEval 2007 and FrameNet data sets are described in each section. Some
novel aspects of our approach include a latent-variable model (Section 5.2) and a semi-
supervised extension of the predicate lexicon (Section 5.5) to facilitate disambiguation of
words not in the FrameNet lexicon; a unified model for finding and labeling arguments

Figure 1
An example sentence from the annotations released as part of FrameNet 1.5 with three targets
marked in bold. Note that this annotation is partial because not all potential targets have been
annotated with predicate-argument structures. Each target has its evoked semantic frame
marked above it, enclosed in a distinct shape or border style. For each frame, its semantic roles
are shown enclosed within the same shape or border style, and the spans fulfilling the roles are
connected to the latter using dotted lines. For example, manner evokes the CONDUCT frame, and
has the AGENT and MANNER roles fulfilled by Austria and most un-Viennese, respectively.
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[Das et al., 2014] 



PropBank vs. FrameNet Representations 
FrameNet and)PropBank representations

Computational Linguistics Volume 40, Number 1

(a)

(b)
Figure 2
(a) A phrase-structure tree taken from the Penn Treebank and annotated with PropBank
predicate-argument structures. The verbs created and pushed serve as predicates in this
sentence. Dotted arrows connect each predicate to its semantic arguments (bracketed phrases).
(b) A partial depiction of frame-semantic structures for the same sentence. The words in bold
are targets, which instantiate a (lemmatized and part-of-speech–tagged) lexical unit and evoke
a semantic frame. Every frame annotation is shown enclosed in a distint shape or border style,
and its argument labels are shown together on the same vertical tier below the sentence.
See text for explanation of abbreviations.

phrase-structure syntax trees from the Wall Street Journal section of the Penn Treebank
(Marcus, Marcinkiewicz, and Santorini 1993) annotated with predicate-argument
structures for verbs. In Figure 2(a), the syntax tree for the sentence is marked with
various semantic roles. The two main verbs in the sentence, created and pushed, are
the predicates. For the former, the constituent more than 1.2 million jobs serves as the
semantic role ARG1 and the constituent In that time serves as the role ARGM-TMP. Similarly
for the latter verb, roles ARG1, ARG2, ARGM-DIR, and ARGM-TMP are shown in the figure.
PropBank defines core roles ARG0 through ARG5, which receive different interpretations
for different predicates. Additional modifier roles ARGM-* include ARGM-TMP (temporal)
and ARGM-DIR (directional), as shown in Figure 2(a). The PropBank representation
therefore has a small number of roles, and the training data set comprises some
40,000 sentences, thus making the semantic role labeling task an attractive one from the
perspective of machine learning.

There are many instances of influential work on semantic role labeling using
PropBank conventions. Pradhan et al. (2004) present a system that uses support vector
machines (SVMs) to identify the arguments in a syntax tree that can serve as semantic
roles, followed by classification of the identified arguments to role names via a collection
of binary SVMs. Punyakanok et al. (2004) describe a semantic role labeler that uses inte-
ger linear programming for inference and uses several global constraints to find the best

12
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Neural SRL 

2 Model
Two major factors contribute to the success of our
deep SRL model: (1) applying recent advances
in training deep recurrent neural networks such as
highway connections (Srivastava et al., 2015) and
RNN-dropouts (Gal and Ghahramani, 2016),2 and
(2) using an A⇤ decoding algorithm (Lewis and
Steedman, 2014; Lee et al., 2016) to enforce struc-
tural consistency at prediction time without adding
more complexity to the training process.

Formally, our task is to predict a sequence y

given a sentence-predicate pair (w, v) as input.
Each yi 2 y belongs to a discrete set of BIO tags
T . Words outside argument spans have the tag O,
and words at the beginning and inside of argument
spans with role r have the tags Br and Ir respec-
tively. Let n = |w| = |y| be the length of the
sequence.

Predicting an SRL structure under our model
involves finding the highest-scoring tag sequence
over the space of all possibilities Y:

ˆ

y = argmax

y2Y
f(w,y) (1)

We use a deep bidirectional LSTM (BiLSTM) to
learn a locally decomposed scoring function con-
ditioned on the input:

Pn
t=1 log p(yt | w).

To incorporate additional information (e.g.,
structural consistency, syntactic input), we aug-
ment the scoring function with penalization terms:

f(w,y) =

nX

t=1

log p(yt | w)�
X

c2C
c(w, y1:t) (2)

Each constraint function c applies a non-negative
penalty given the input w and a length-t prefix
y1:t. These constraints can be hard or soft depend-
ing on whether the penalties are finite.

2.1 Deep BiLSTM Model
Our model computes the distribution over tags us-
ing stacked BiLSTMs, which we define as follows:

il,t = �(Wl
i [hl,t+�l ,xl,t] + b

l
i) (3)

ol,t = �(Wl
o[hl,t+�l ,xl,t] + b

l
o) (4)

fl,t = �(Wl
f[hl,t+�l ,xl,t] + b

l
f + 1) (5)

c̃l,t = tanh(Wl
c[hl,t+�l ,xl,t] + b

l
c) (6)

cl,t = il,t � c̃l,t + fl,t � ct+�l (7)
hl,t = ol,t � tanh(cl,t) (8)

2We thank Mingxuan Wang for suggesting highway con-
nections with simplified inputs and outputs. Part of our model
is extended from his unpublished implementation.
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Figure 1: Highway LSTM with four layers. The
curved connections represent highway connec-
tions, and the plus symbols represent transform
gates that control inter-layer information flow.

where xl,t is the input to the LSTM at layer l and
timestep t. �l is either 1 or �1, indicating the di-
rectionality of the LSTM at layer l.

To stack the LSTMs in an interleaving pattern,
as proposed by Zhou and Xu (2015), the layer-
specific inputs xl,t and directionality �l are ar-
ranged in the following manner:

xl,t =

(
[Wemb(wt),Wmask(t = v)] l = 1

hl�1,t l > 1

(9)

�l =

(
1 if l is even
�1 otherwise

(10)

The input vector x1,t is the concatenation of token
wt’s word embedding and an embedding of the bi-
nary feature (t = v) indicating whether wt word
is the given predicate.

Finally, the locally normalized distribution over
output tags is computed via a softmax layer:

p(yt | x) / exp(Wy
taghL,t + btag) (11)

Highway Connections To alleviate the vanish-
ing gradient problem when training deep BiL-
STMs, we use gated highway connections (Zhang
et al., 2016; Srivastava et al., 2015). We include
transform gates rt to control the weight of lin-
ear and non-linear transformations between layers
(See Figure 1). The output hl,t is changed to:

rl,t = �(Wl
r[hl,t�1,xt] + b

l
r) (12)

h

0
l,t = ol,t � tanh(cl,t) (13)

hl,t = rl,t � h0
l,t + (1� rl,t) �Wl

hxl,t (14)
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Neural SRL 

[He et al., 2017] 

Development WSJ Test Brown Test Combined

Method P R F1 Comp. P R F1 Comp. P R F1 Comp. F1

Ours (PoE) 83.1 82.4 82.7 64.1 85.0 84.3 84.6 66.5 74.9 72.4 73.6 46.5 83.2
Ours 81.6 81.6 81.6 62.3 83.1 83.0 83.1 64.3 72.9 71.4 72.1 44.8 81.6

Zhou 79.7 79.4 79.6 - 82.9 82.8 82.8 - 70.7 68.2 69.4 - 81.1
FitzGerald (Struct.,PoE) 81.2 76.7 78.9 55.1 82.5 78.2 80.3 57.3 74.5 70.0 72.2 41.3 -
Täckström (Struct.) 81.2 76.2 78.6 54.4 82.3 77.6 79.9 56.0 74.3 68.6 71.3 39.8 -
Toutanova (Ensemble) - - 78.6 58.7 81.9 78.8 80.3 60.1 - - 68.8 40.8 -
Punyakanok (Ensemble) 80.1 74.8 77.4 50.7 82.3 76.8 79.4 53.8 73.4 62.9 67.8 32.3 77.9

Table 1: Experimental results on CoNLL 2005, in terms of precision (P), recall (R), F1 and percentage of
completely correct predicates (Comp.). We report results of our best single and ensemble (PoE) model.
The comparison models are Zhou and Xu (2015), FitzGerald et al. (2015), Täckström et al. (2015),
Toutanova et al. (2008) and Punyakanok et al. (2008).

Development Test

Method P R F1 Comp. P R F1 Comp.

Ours (PoE) 83.5 83.2 83.4 67.5 83.5 83.3 83.4 68.5
Ours 81.8 81.4 81.5 64.6 81.7 81.6 81.7 66.0

Zhou - - 81.1 - - - 81.3 -
FitzGerald (Struct.,PoE) 81.0 78.5 79.7 60.9 81.2 79.0 80.1 62.6
Täckström (Struct.) 80.5 77.8 79.1 60.1 80.6 78.2 79.4 61.8
Pradhan (revised) - - - - 78.5 76.6 77.5 55.8

Table 2: Experimental results on CoNLL 2012 in the same metrics as above. We compare our best
single and ensemble (PoE) models against Zhou and Xu (2015), FitzGerald et al. (2015), Täckström
et al. (2015) and Pradhan et al. (2013).

All tokens are lower-cased and initialized with
100-dimensional GloVe embeddings pre-trained
on 6B tokens (Pennington et al., 2014) and up-
dated during training. Tokens that are not covered
by GloVe are replaced with a randomly initialized
UNK embedding.

Training We use Adadelta (Zeiler, 2012) with
✏ = 1e

�6 and ⇢ = 0.95 and mini-batches of size
80. We set RNN-dropout probability to 0.1 and
clip gradients with norm larger than 1. All the
models are trained for 500 epochs with early stop-
ping based on development results. 4

Ensembling We use a product of experts (Hin-
ton, 2002) to combine predictions of 5 mod-
els, each trained on 80% of the training corpus
and validated on the remaining 20%. For the
CoNLL 2012 corpus, we split the training data
from each sub-genre into 5 folds, such that the
training data will have similar genre distributions.

Constrained Decoding We experimented with
different types of constraints on the CoNLL 2005

4Training the full model on CoNLL 2005 takes about 5
days on a single Titan X Pascal GPU.

and CoNLL 2012 development sets. Only the BIO
hard constraints significantly improve over the en-
semble model. Therefore, in our final results, we
only use BIO hard constraints during decoding. 5

3.3 Results

In Table 1 and 2, we compare our best single
and ensemble model with previous work. Our en-
semble (PoE) has an absolute improvement of 2.1
F1 on both CoNLL 2005 and CoNLL 2012 over
the previous state of the art. Our single model
also achieves more than a 0.4 improvement on
both datasets. In comparison with the best re-
ported results, our percentage of completely cor-
rect predicates improves by 5.9 points. While the
continuing trend of improving SRL without syn-
tax seems to suggest that neural end-to-end sys-
tems no longer needs parsers, our analysis in Sec-
tion 4.4 will show that accurate syntactic informa-
tion can improve these deep models.

5A⇤ search in this setting finds the optimal sequence for
all sentences and is therefore equivalent to Viterbi decoding.
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Development WSJ Test Brown Test Combined

Method P R F1 Comp. P R F1 Comp. P R F1 Comp. F1

Ours (PoE) 83.1 82.4 82.7 64.1 85.0 84.3 84.6 66.5 74.9 72.4 73.6 46.5 83.2
Ours 81.6 81.6 81.6 62.3 83.1 83.0 83.1 64.3 72.9 71.4 72.1 44.8 81.6

Zhou 79.7 79.4 79.6 - 82.9 82.8 82.8 - 70.7 68.2 69.4 - 81.1
FitzGerald (Struct.,PoE) 81.2 76.7 78.9 55.1 82.5 78.2 80.3 57.3 74.5 70.0 72.2 41.3 -
Täckström (Struct.) 81.2 76.2 78.6 54.4 82.3 77.6 79.9 56.0 74.3 68.6 71.3 39.8 -
Toutanova (Ensemble) - - 78.6 58.7 81.9 78.8 80.3 60.1 - - 68.8 40.8 -
Punyakanok (Ensemble) 80.1 74.8 77.4 50.7 82.3 76.8 79.4 53.8 73.4 62.9 67.8 32.3 77.9

Table 1: Experimental results on CoNLL 2005, in terms of precision (P), recall (R), F1 and percentage of
completely correct predicates (Comp.). We report results of our best single and ensemble (PoE) model.
The comparison models are Zhou and Xu (2015), FitzGerald et al. (2015), Täckström et al. (2015),
Toutanova et al. (2008) and Punyakanok et al. (2008).

Development Test

Method P R F1 Comp. P R F1 Comp.

Ours (PoE) 83.5 83.2 83.4 67.5 83.5 83.3 83.4 68.5
Ours 81.8 81.4 81.5 64.6 81.7 81.6 81.7 66.0

Zhou - - 81.1 - - - 81.3 -
FitzGerald (Struct.,PoE) 81.0 78.5 79.7 60.9 81.2 79.0 80.1 62.6
Täckström (Struct.) 80.5 77.8 79.1 60.1 80.6 78.2 79.4 61.8
Pradhan (revised) - - - - 78.5 76.6 77.5 55.8

Table 2: Experimental results on CoNLL 2012 in the same metrics as above. We compare our best
single and ensemble (PoE) models against Zhou and Xu (2015), FitzGerald et al. (2015), Täckström
et al. (2015) and Pradhan et al. (2013).

All tokens are lower-cased and initialized with
100-dimensional GloVe embeddings pre-trained
on 6B tokens (Pennington et al., 2014) and up-
dated during training. Tokens that are not covered
by GloVe are replaced with a randomly initialized
UNK embedding.

Training We use Adadelta (Zeiler, 2012) with
✏ = 1e

�6 and ⇢ = 0.95 and mini-batches of size
80. We set RNN-dropout probability to 0.1 and
clip gradients with norm larger than 1. All the
models are trained for 500 epochs with early stop-
ping based on development results. 4

Ensembling We use a product of experts (Hin-
ton, 2002) to combine predictions of 5 mod-
els, each trained on 80% of the training corpus
and validated on the remaining 20%. For the
CoNLL 2012 corpus, we split the training data
from each sub-genre into 5 folds, such that the
training data will have similar genre distributions.

Constrained Decoding We experimented with
different types of constraints on the CoNLL 2005

4Training the full model on CoNLL 2005 takes about 5
days on a single Titan X Pascal GPU.

and CoNLL 2012 development sets. Only the BIO
hard constraints significantly improve over the en-
semble model. Therefore, in our final results, we
only use BIO hard constraints during decoding. 5

3.3 Results

In Table 1 and 2, we compare our best single
and ensemble model with previous work. Our en-
semble (PoE) has an absolute improvement of 2.1
F1 on both CoNLL 2005 and CoNLL 2012 over
the previous state of the art. Our single model
also achieves more than a 0.4 improvement on
both datasets. In comparison with the best re-
ported results, our percentage of completely cor-
rect predicates improves by 5.9 points. While the
continuing trend of improving SRL without syn-
tax seems to suggest that neural end-to-end sys-
tems no longer needs parsers, our analysis in Sec-
tion 4.4 will show that accurate syntactic informa-
tion can improve these deep models.

5A⇤ search in this setting finds the optimal sequence for
all sentences and is therefore equivalent to Viterbi decoding.
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CoNLL 2005 dataset: 

CoNLL 2012 dataset: 
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[Marcheggiani et al., 2017] 

A Simple and Accurate Syntax-Agnostic Neural Model for
Dependency-based Semantic Role Labeling

Diego Marcheggiani1, Anton Frolov2, Ivan Titov1,3

1ILLC, University of Amsterdam
2Machine Intelligence Department, Yandex

3ILCC, School of Informatics, University of Edinburgh
marcheggiani@uva.nl

anton-fr@yandex-team.ru

ititov@inf.ed.ac.uk

Abstract

We introduce a simple and accurate neu-
ral model for dependency-based seman-
tic role labeling. Our model predicts
predicate-argument dependencies relying
on states of a bidirectional LSTM en-
coder. The semantic role labeler achieves
competitive performance on English, even
without any kind of syntactic information
and only using local inference. How-
ever, when automatically predicted part-
of-speech tags are provided as input, it
substantially outperforms all previous lo-
cal models and approaches the best re-
ported results on the English CoNLL-
2009 dataset. We also consider Chi-
nese, Czech and Spanish where our
approach also achieves competitive re-
sults. Syntactic parsers are unreliable
on out-of-domain data, so standard (i.e.,
syntactically-informed) SRL models are
hindered when tested in this setting. Our
syntax-agnostic model appears more ro-
bust, resulting in the best reported results
on standard out-of-domain test sets.

1 Introduction

The task of semantic role labeling (SRL), pio-
neered by Gildea and Jurafsky (2002), involves
the prediction of predicate argument structure, i.e.,
both identification of arguments as well as their as-
signment to an underlying semantic role. These
representations have been shown to be benefi-
cial in many NLP applications, including ques-
tion answering (Shen and Lapata, 2007) and in-
formation extraction (Christensen et al., 2011).
Semantic banks (e.g., PropBank (Palmer et al.,
2005)) often represent arguments as syntactic con-
stituents or, more generally, text spans (Baker

Sequa makes and repairs jet engines.

01 01 01

A0

A1

A0

A1

A1

Figure 1: A semantic dependency graph.

et al., 1998). In contrast, CoNLL-2008 and
2009 shared tasks (Surdeanu et al., 2008; Hajic
et al., 2009) popularized dependency-based se-
mantic role labeling where the goal is to iden-
tify syntactic heads of arguments rather than entire
constituents. Figure 1 shows an example of such a
dependency-based representation: node labels are
senses of predicates (e.g., “01” indicates that the
first sense from the PropBank sense repository is
used for predicate makes in this sentence) and edge
labels are semantic roles (e.g., A0 is a proto-agent,
‘doer’).

Until recently, state-of-the-art SRL systems
relied on complex sets of lexico-syntactic fea-
tures (Pradhan et al., 2005) as well as declara-
tive constraints (Punyakanok et al., 2008; Roth
and Yih, 2005). Neural SRL models instead ex-
ploited feature induction capabilities of neural net-
works, largely eliminating the need for complex
hand-crafted features. Initially achieving state-
of-the-art results only in the multilingual setting,
where careful feature engineering is not practi-
cal (Gesmundo et al., 2009; Titov et al., 2009),
neural SRL models now also outperform their tra-
ditional counterparts on standard benchmarks for
English (FitzGerald et al., 2015; Roth and Lapata,
2016; Swayamdipta et al., 2016; Foland and Mar-
tin, 2015).

Recently, it has been shown that an accurate
span-based SRL model can be constructed without
relying on syntactic features (Zhou and Xu, 2015).
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Figure 2: Predicting an argument and its label
with an LSTM encoder.

been previously believed to require syntactic infor-
mation. For the predicate disambiguation subtask
we use models from previous work.

In order to identify and classify arguments, we
propose a model composed of three components:

• a word representation component that from a
word w

i

in a sentence w build a word repre-
sentation x

i

;

• a Bidirectional LSTM (BiLSTM) encoder
which takes as input the word representation
x

i

and provide a dynamic representation of
the word and its context in a sentence;

• a classifier which takes as an input the BiL-
STM representation of the candidate argu-
ment and the BiLSTM representation of the
predicate to predict the role associated to the
candidate argument.

2.1 Word representation

We represent each word w as the concatenation
of four vectors: a randomly initialized word em-
bedding x

re 2 Rdw , a pre-trained word embed-
ding x

pe 2 Rdw , a randomly initialized part-of-
speech tag embedding x

pos 2 Rdp and a randomly
initialized lemma embedding x

le 2 Rdl that is
only active if the word is one of the predicates.
The randomly initialized embeddings x

re, x

pos,
and x

le are fine-tuned during training, while the
pre-trained ones are kept fixed, as in Dyer et al.
(2015). The final word representation is given by

x = x

re � x

pe � x

pos � x

le, where � represents the
concatenation operator.

2.2 Bidirectional LSTM encoder
One of the most effective ways to model se-
quences are recurrent neural networks (RNN) (El-
man, 1990), more precisely their gated versions,
for example, Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997).

Formally, we can define an LSTM as a function
LSTM

✓

(x1:i) that takes as input the sequence x1:i
and returns a hidden state h

i

2 Rdh . This state
can be regarded as a representation of the sen-
tence from the start to the position i, or, in other
words, it encodes the word at position i along with
its left context. Bidirectional LSTMs make use of
two LSTMs: one for the forward pass, and another
for the backward pass, LSTM

F

and LSTM

B

, re-
spectively. In this way the concatenation of for-
ward and backward LSTM states encodes both left
and right contexts of a word, BiLSTM(x1:n, i) =

LSTM

F

(x1:i) � LSTM

B

(x

n:i). In this work we
stack k layers of bidirectional LSTMs, each layer
takes the lower layer as its input.

2.3 Predicate-specific encoding
As we will show in the ablation studies in Sec-
tion 3, encoding a sentence with a bidirectional
LSTM in one shot and using it to predict the en-
tire semantic dependency graph does not result in
competitive SRL performance. Instead, similarly
to Zhou and Xu (2015), we produce predicate-
specific encodings of a sentence and use them
to predict arguments of the corresponding predi-
cate. This contrasts with most other applications
of LSTM encoders (for example, in syntactic pars-
ing (Kiperwasser and Goldberg, 2016; Cross and
Huang, 2016) or machine translation (Sutskever
et al., 2014)), where sentences are typically en-
coded once and then used to predict the entire
structured output (e.g., a syntactic tree or a target
sentence).

Specifically, when identifying arguments of a
given predicate, we add a predicate-specific fea-
ture to the representation of each word in the sen-
tence by concatenating a binary flag to the word
representation of Section 2.1. The flag is set to 1
for the word corresponding to the currently con-
sidered predicate, it is set to 0 otherwise. In this
way, sentences with more than one predicate will
be re-encoded by bidirectional LSTMs multiple
times.
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Abstract

Modeling crisp logical regularities is cru-
cial in semantic parsing, making it difficult
for neural models with no task-specific
prior knowledge to achieve good results.
In this paper, we introduce data recom-
bination, a novel framework for inject-
ing such prior knowledge into a model.
From the training data, we induce a high-
precision synchronous context-free gram-
mar, which captures important conditional
independence properties commonly found
in semantic parsing. We then train a
sequence-to-sequence recurrent network
(RNN) model with a novel attention-based
copying mechanism on datapoints sam-
pled from this grammar, thereby teaching
the model about these structural proper-
ties. Data recombination improves the ac-
curacy of our RNN model on three se-
mantic parsing datasets, leading to new
state-of-the-art performance on the stan-
dard GeoQuery dataset for models with
comparable supervision.

1 Introduction

Semantic parsing—the precise translation of nat-
ural language utterances into logical forms—has
many applications, including question answer-
ing (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007;
Liang et al., 2011; Berant et al., 2013), instruc-
tion following (Artzi and Zettlemoyer, 2013b),
and regular expression generation (Kushman and
Barzilay, 2013). Modern semantic parsers (Artzi
and Zettlemoyer, 2013a; Berant et al., 2013)
are complex pieces of software, requiring hand-
crafted features, lexicons, and grammars.

Meanwhile, recurrent neural networks (RNNs)

what are the major cities in utah ?
what states border maine ?

Original Examples

Train Model

Sequence-to-sequence RNN

Sample New Examples

Synchronous CFG

Induce Grammar

what are the major cities in [states border [maine]] ? 
what are the major cities in [states border [utah]]  ?
what states border [states border [maine]] ?
what states border [states border [utah]] ?

Recombinant Examples

Figure 1: An overview of our system. Given a
dataset, we induce a high-precision synchronous
context-free grammar. We then sample from this
grammar to generate new “recombinant” exam-
ples, which we use to train a sequence-to-sequence
RNN.

have made swift inroads into many structured pre-
diction tasks in NLP, including machine trans-
lation (Sutskever et al., 2014; Bahdanau et al.,
2014) and syntactic parsing (Vinyals et al., 2015b;
Dyer et al., 2015). Because RNNs make very few
domain-specific assumptions, they have the poten-
tial to succeed at a wide variety of tasks with min-
imal feature engineering. However, this flexibil-
ity also puts RNNs at a disadvantage compared
to standard semantic parsers, which can generalize
naturally by leveraging their built-in awareness of
logical compositionality.

In this paper, we introduce data recombina-
tion, a generic framework for declaratively inject-

12

GEO
x: “what is the population of iowa ?”
y: _answer ( NV , (

_population ( NV , V1 ) , _const (

V0 , _stateid ( iowa ) ) ) )

ATIS
x: “can you list all flights from chicago to milwaukee”
y: ( _lambda $0 e ( _and

( _flight $0 )

( _from $0 chicago : _ci )

( _to $0 milwaukee : _ci ) ) )

Overnight
x: “when is the weekly standup”
y: ( call listValue ( call

getProperty meeting.weekly_standup

( string start_time ) ) )

Figure 2: One example from each of our domains.
We tokenize logical forms as shown, thereby cast-
ing semantic parsing as a sequence-to-sequence
task.

ing prior knowledge into a domain-general struc-
tured prediction model. In data recombination,
prior knowledge about a task is used to build a
high-precision generative model that expands the
empirical distribution by allowing fragments of
different examples to be combined in particular
ways. Samples from this generative model are
then used to train a domain-general model. In the
case of semantic parsing, we construct a genera-
tive model by inducing a synchronous context-free
grammar (SCFG), creating new examples such
as those shown in Figure 1; our domain-general
model is a sequence-to-sequence RNN with a
novel attention-based copying mechanism. Data
recombination boosts the accuracy of our RNN
model on three semantic parsing datasets. On the
GEO dataset, data recombination improves test ac-
curacy by 4.3 percentage points over our baseline
RNN, leading to new state-of-the-art results for
models that do not use a seed lexicon for predi-
cates.

2 Problem statement

We cast semantic parsing as a sequence-to-
sequence task. The input utterance x is a sequence
of words x1, . . . , xm 2 V (in), the input vocabulary;
similarly, the output logical form y is a sequence
of tokens y1, . . . , yn 2 V (out), the output vocab-
ulary. A linear sequence of tokens might appear
to lose the hierarchical structure of a logical form,
but there is precedent for this choice: Vinyals et al.

(2015b) showed that an RNN can reliably predict
tree-structured outputs in a linear fashion.

We evaluate our system on three existing se-
mantic parsing datasets. Figure 2 shows sample
input-output pairs from each of these datasets.

• GeoQuery (GEO) contains natural language
questions about US geography paired with
corresponding Prolog database queries. We
use the standard split of 600 training exam-
ples and 280 test examples introduced by
Zettlemoyer and Collins (2005). We prepro-
cess the logical forms to De Brujin index no-
tation to standardize variable naming.

• ATIS (ATIS) contains natural language
queries for a flights database paired with
corresponding database queries written in
lambda calculus. We train on 4473 examples
and evaluate on the 448 test examples used
by Zettlemoyer and Collins (2007).

• Overnight (OVERNIGHT) contains logical
forms paired with natural language para-
phrases across eight varied subdomains.
Wang et al. (2015) constructed the dataset by
generating all possible logical forms up to
some depth threshold, then getting multiple
natural language paraphrases for each logi-
cal form from workers on Amazon Mechan-
ical Turk. We evaluate on the same train/test
splits as Wang et al. (2015).

In this paper, we only explore learning from log-
ical forms. In the last few years, there has an
emergence of semantic parsers learned from de-
notations (Clarke et al., 2010; Liang et al., 2011;
Berant et al., 2013; Artzi and Zettlemoyer, 2013b).
While our system cannot directly learn from deno-
tations, it could be used to rerank candidate deriva-
tions generated by one of these other systems.

3 Sequence-to-sequence RNN Model
Our sequence-to-sequence RNN model is based
on existing attention-based neural machine trans-
lation models (Bahdanau et al., 2014; Luong et al.,
2015a), but also includes a novel attention-based
copying mechanism. Similar copying mechanisms
have been explored in parallel by Gu et al. (2016)
and Gulcehre et al. (2016).

3.1 Basic Model
Encoder. The encoder converts the input se-
quence x1, . . . , xm into a sequence of context-
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Examples
(“what states border texas ?”,
answer(NV, (state(V0), next_to(V0, NV), const(V0, stateid(texas)))))
(“what is the highest mountain in ohio ?”,
answer(NV, highest(V0, (mountain(V0), loc(V0, NV), const(V0, stateid(ohio))))))
Rules created by ABSENTITIES
ROOT ! h “what states border STATEID ?”,
answer(NV, (state(V0), next_to(V0, NV), const(V0, stateid(STATEID ))))i

STATEID ! h “texas”, texas i
ROOT ! h “what is the highest mountain in STATEID ?”,
answer(NV, highest(V0, (mountain(V0), loc(V0, NV),

const(V0, stateid(STATEID )))))i
STATEID ! h“ohio”, ohioi
Rules created by ABSWHOLEPHRASES
ROOT ! h “what states border STATE ?”, answer(NV, (state(V0), next_to(V0, NV), STATE ))i
STATE ! h “states border texas”, state(V0), next_to(V0, NV), const(V0, stateid(texas))i
ROOT ! h “what is the highest mountain in STATE ?”,
answer(NV, highest(V0, (mountain(V0), loc(V0, NV), STATE )))i

Rules created by CONCAT-2
ROOT ! hSENT1 </s> SENT2, SENT1 </s> SENT2i
SENT ! h “what states border texas ?”,
answer(NV, (state(V0), next_to(V0, NV), const(V0, stateid(texas)))) i

SENT ! h “what is the highest mountain in ohio ?”,
answer(NV, highest(V0, (mountain(V0), loc(V0, NV), const(V0, stateid(ohio))))) i

Figure 3: Various grammar induction strategies illustrated on GEO. Each strategy converts the rules of
an input grammar into rules of an output grammar. This figure shows the base case where the input
grammar has rules ROOT ! hx, yi for each (x, y) pair in the training dataset.

Our approach generalizes data augmentation,
which is commonly employed to inject prior
knowledge into a model. Data augmenta-
tion techniques focus on modeling invariances—
transformations like translating an image or
adding noise that alter the inputs x, but do not
change the output y. These techniques have
proven effective in areas like computer vision
(Krizhevsky et al., 2012) and speech recognition
(Jaitly and Hinton, 2013).

In semantic parsing, however, we would like to
capture more than just invariance properties. Con-
sider an example with the utterance “what states
border texas ?”. Given this example, it should be
easy to generalize to questions where “texas” is
replaced by the name of any other state: simply
replace the mention of Texas in the logical form
with the name of the new state. Underlying this
phenomenon is a strong conditional independence
principle: the meaning of the rest of the sentence
is independent of the name of the state in ques-
tion. Standard data augmentation is not sufficient
to model such phenomena: instead of holding y

fixed, we would like to apply simultaneous trans-
formations to x and y such that the new x still
maps to the new y. Data recombination addresses

this need.

4.2 General Setting

In the general setting of data recombination, we
start with a training set D of (x, y) pairs, which
defines the empirical distribution p̂(x, y). We then
fit a generative model p̃(x, y) to p̂ which gener-
alizes beyond the support of p̂, for example by
splicing together fragments of different examples.
We refer to examples in the support of p̃ as re-
combinant examples. Finally, to train our actual
model p✓(y | x), we maximize the expected value
of log p✓(y | x), where (x, y) is drawn from p̃.

4.3 SCFGs for Semantic Parsing

For semantic parsing, we induce a synchronous
context-free grammar (SCFG) to serve as the
backbone of our generative model p̃. An SCFG
consists of a set of production rules X ! h↵,�i,
where X is a category (non-terminal), and ↵ and �

are sequences of terminal and non-terminal sym-
bols. Any non-terminal symbols in ↵ must be
aligned to the same non-terminal symbol in �, and
vice versa. Therefore, an SCFG defines a set of
joint derivations of aligned pairs of strings. In our
case, we use an SCFG to represent joint deriva-
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Figure 1: Overview of our semantic parsing model. The encoder performs entity embedding and linking
before encoding the question with a bidirectional LSTM. The decoder predicts a sequence of grammar
rules that generate a well-typed logical form.

3.1 Preliminaries

We follow (Pasupat and Liang, 2015) in using
the same table structure representation and �-DCS
language for expressing logical forms. In this
representation, tables are expressed as knowledge
graphs over 6 types of entities: cells, cell parts,
rows, columns, numbers and dates. Each entity
also has a name, which is typically a string value
in the table. Our parser uses both the entity names
and the knowledge graph structure to construct
embeddings for each entity.

The logical form language consists of a collec-
tion of named sets and entities, along with oper-
ators on them. The named sets are used to se-
lect table cells, e.g., united states is the set
of cells that contain the text “united states”. The
operators include functions from sets to sets, e.g.,
the next operator maps a row to the next row.
Columns are treated as functions from cells to
their rows, e.g., (country united states)

generates the rows whose country column con-
tains “united states”. Other operators include re-
versing relations (e.g., in order to map rows to
cells in a certain column), relations that interpret
cells as numbers and dates, and set and arithmetic
operations. The language also includes aggrega-
tion and quantification operations such as count

and argmax, along with � abstractions that can
be used to join binary relations.

Our parser also assigns a type to every �-DCS
expression, which is used to enforce type con-
straints on generated logical forms. The base
types are cells c, parts p, rows r, numbers i,
and dates d. Columns such as country have
the functional type hc, ri, representing functions

from cells c to rows r. Other operations have
more complex functional types, e.g., reverse

has type hhc, ri, hr, cii, which enables us to write
(reverse country).1 The parser assigns ev-
ery �-DCS constant a type, then applies standard
programming language type inference algorithms
(Pierce, 2002) to automatically assign types to
larger expressions.

3.2 Encoder

The encoder is a bidirectional LSTM augmented
with an entity embedding and linking module.

Notation. Throughout this section, we denote
entities as e, and their corresponding types as ⌧(e).
The set of all entities is denoted as E, and the en-
tities with type ⌧ as E⌧ . E includes the cells, cell
parts, and columns from the table in addition to
numeric entities detected in the question by NER.
The question is denoted as a sequence of tokens
[q1, ..., qn]. We use vw to denote a learned vec-
tor representation (embedding) of word w, e.g., vqi

denotes the vector representation of the ith ques-
tion token.

Entity Embedding. The encoder first constructs
an embedding for each entity in the knowledge
graph given its type and position in the graph. Let
W (e) denote the set of words in the name of en-

1Technically, reverse has the parametric polymorphic
type hh↵, �i, h�, ↵ii, where ↵ and � are type variables that
can be any type. This type allows reverse to reverse any
function. However, this is a detail that can largely be ig-
nored. We only use parametric polymorphism when typing
logical forms to generate the type-constrained grammar; the
grammar itself does not have type variables, but rather a fixed
number of concrete instances – such as hhc, ri, hr, cii – of
the above polymorphic type.
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Figure 1: Neural Programmer is a neural network augmented with a set of discrete operations. The
model runs for a fixed number of time steps, selecting an operation and a column from the table at
every time step. The induced program transfers information across timesteps using the row selector
variable while the output of the model is stored in the scalar answer and lookup answer variables.

the notorious difficulty of handling discrete operations in neural networks (Joulin & Mikolov, 2015;
Kaiser & Sutskever, 2016). Most of these approaches rely on complete programs as supervision
(Jia & Liang, 2016; Reed & Freitas, 2016) while others (Zaremba et al., 2016; Yin et al., 2015)
have been tried only on synthetic tasks. The work that is most similar to ours is that of Andreas
et al. (2016) on the dynamic neural module network. However, in their method, the neural network
is employed only to search over a small set of candidate layouts provided by the syntactic parse
of the question, and is trained using the REINFORCE algorithm (Williams, 1992). Hence, their
method cannot recover from parser errors, and it is not trivial to adapt the parser to the task at hand.
Additionally, all their modules or operations are parametrized by a neural network, so it is difficult
to apply their method on tasks that require discrete arithmetic operations. Finally, their experiments
concern a simpler dataset that requires fewer operations, and therefore a smaller search space, than
WikiTableQuestions which we consider in our work. We discuss other related work in Section 4.

Neural Programmer (Neelakantan et al., 2016) is a neural network augmented with a set of discrete
operations. It produces both a program, made up of those operations, and the result of running the
program against a given table. The operations make use of three variables: row selector, scalar
answer, and lookup answer, which are updated at every timestep. lookup answer and scalar answer
store answers while row selector is used to propagate information across time steps. As input, a
model receives a question along with a table (Figure 1). The model runs for a fixed number of
time steps, selecting an operation and a column from the table as the argument to the operation
at each time step. During training, soft selection (Bahdanau et al., 2014) is performed so that the
model can be trained end-to-end using backpropagation. This approach allows Neural Programmer
to explore the search space with better sample complexity than hard selection with the REINFORCE
algorithm (Williams, 1992) would provide. All the parameters of the model are learned from a weak
supervision signal that consists of only the final answer; the underlying program, which consists of
a sequence of operations and of selected columns, is latent.
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Abstract

Sequence-to-sequence models have shown
strong performance across a broad range
of applications. However, their applica-
tion to parsing and generating text using
Abstract Meaning Representation (AMR)
has been limited, due to the relatively lim-
ited amount of labeled data and the non-
sequential nature of the AMR graphs. We
present a novel training procedure that can
lift this limitation using millions of unla-
beled sentences and careful preprocessing
of the AMR graphs. For AMR parsing, our
model achieves competitive results of 62.1
SMATCH, the current best score reported
without significant use of external seman-
tic resources. For AMR generation, our
model establishes a new state-of-the-art
performance of BLEU 33.8. We present
extensive ablative and qualitative analysis
including strong evidence that sequence-
based AMR models are robust against
ordering variations of graph-to-sequence
conversions.

1 Introduction

Abstract Meaning Representation (AMR) is a se-
mantic formalism to encode the meaning of natu-
ral language text. As shown in Figure 1, AMR rep-
resents the meaning using a directed graph while
abstracting away the surface forms in text. AMR
has been used as an intermediate meaning repre-
sentation for several applications including ma-
chine translation (MT) (Jones et al., 2012), sum-
marization (Liu et al., 2015), sentence compres-
sion (Takase et al., 2016), and event extraction
(Huang et al., 2016). While AMR allows for rich
semantic representation, annotating training data
in AMR is expensive, which in turn limits the use

Obama was elected and his voters celebrated

Obama

elect.01 celebrate.01

vote.01

and *

op1 op2

ARG0
poss

ARG0

person
name

name
op1

person

ARG0-of

Figure 1: An example sentence and its cor-
responding Abstract Meaning Representation
(AMR). AMR encodes semantic dependencies be-
tween entities mentioned in the sentence, such as
“Obama” being the “arg0” of the verb “elected”.

of neural network models (Misra and Artzi, 2016;
Peng et al., 2017; Barzdins and Gosko, 2016).

In this work, we present the first success-
ful sequence-to-sequence (seq2seq) models that
achieve strong results for both text-to-AMR pars-
ing and AMR-to-text generation. Seq2seq models
have been broadly successful in many other appli-
cations (Wu et al., 2016; Bahdanau et al., 2015;
Luong et al., 2015; Vinyals et al., 2015). How-
ever, their application to AMR has been limited,
in part because effective linearization (encoding
graphs as linear sequences) and data sparsity were
thought to pose significant challenges. We show
that these challenges can be easily overcome, by
demonstrating that seq2seq models can be trained
using any graph-isomorphic linearization and that
unlabeled text can be used to significantly reduce
sparsity.

Our approach is two-fold. First, we introduce a
novel paired training procedure that enhances both
the text-to-AMR parser and AMR-to-text genera-
tor. More concretely, first we use self-training to
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IR-based Question Answering 

  Initial approaches to Q&A: pattern matching, pattern 
learning, query rewriting, information extraction 

[Jurafsky-SLP3] 

28.1 • IR-BASED FACTOID QUESTION ANSWERING 3
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Figure 28.2 IR-based factoid question answering has three stages: question processing, passage retrieval, and
answer processing.

also extract a focus, which is the string of words in the question that are likely to
be replaced by the answer in any answer string found. Some systems also classify
the question type: is this a definition question, a math question, a list question? For
example, for the following question:

Which US state capital has the largest population?

The query processing should produce results like the following:

Answer Type: city
Query: US state capital, largest, population
Focus: state capital

In the next two sections we summarize the two most commonly used tasks, an-
swer type detection and query formulation.

28.1.2 Answer Type Detection (Question Classification)
The task of question classification or answer type recognition is to determine thequestion

classification
answer type, the named-entity or similar class categorizing the answer. A questionanswer type

like “Who founded Virgin Airlines” expects an answer of type PERSON. A question
like “What Canadian city has the largest population?” expects an answer of type
CITY. If we know the answer type for a question, we can avoid looking at every
sentence or noun phrase in the entire suite of documents for the answer, instead
focusing on, for example, just people or cities.

As some of the above examples suggest, we might draw the set of possible an-
swer types for a question classifier from a set of named entities like PERSON, LO-
CATION, and ORGANIZATION described in Chapter 20. Usually, however, a richer,
often hierarchical set of answer types is used, an answer type taxonomy. Such tax-answer type

taxonomy
onomies can be built semi-automatically and dynamically, for example, from Word-
Net (Harabagiu et al. 2000,Pasca 2003), or they can be designed by hand.

Figure 28.4 shows one such hand-built ontology, the Li and Roth (2005) tagset;
a subset is shown graphically in Fig. 28.3. In this hierarchical tagset, each ques-
tion can be labeled with a coarse-grained tag like HUMAN or a fine-grained tag like
HUMAN:DESCRIPTION, HUMAN:GROUP, HUMAN:IND, and so on. Similar tags are
used in other systems; the HUMAN:DESCRIPTION type is often called a BIOGRAPHY
question because the answer is required to give a brief biography of the person rather
than just a name.

Question classifiers can be built by hand-writing rules, by supervised machine
learning, or with some combination. The Webclopedia QA Typology, for example,
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phrase table for translating from question phrases to synonymous phrases. These
are used by a number of modern question answering algorithms, generating all para-
phrases of a question as part of the process of finding an answer (Fader et al. 2013,
Berant and Liang 2014).

28.3 Using multiple information sources: IBM’s Watson

Of course there is no reason to limit ourselves to just text-based or knowledge-based
resources for question answering. The Watson system from IBM that won the Jeop-
ardy! challenge in 2011 is an example of a system that relies on a wide variety of
resources to answer questions.
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Figure 28.9 The 4 broad stages of Watson QA: (1) Question Processing, (2) Candidate Answer Generation,
(3) Candidate Answer Scoring, and (4) Answer Merging and Confidence Scoring.

Figure 28.9 shows the 4 stages of the DeepQA system that is the question an-
swering component of Watson.

The first stage is question processing. The DeepQA system runs parsing, named
entity tagging, and relation extraction on the question. Then, like the text-based
systems in Section 28.1, the DeepQA system extracts the focus, the answer type
(also called the lexical answer type or LAT), and performs question classification
and question sectioning.

Consider these Jeopardy! examples, with a category followed by a question:
Poets and Poetry: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907.
THEATRE: A new play based on this Sir Arthur Conan Doyle canine
classic opened on the London stage in 2007.

The questions are parsed, named entities are extracted (Sir Arthur Conan Doyle
identified as a PERSON, Yukon as a GEOPOLITICAL ENTITY, “Songs of a Sour-
dough” as a COMPOSITION), coreference is run (he is linked with clerk) and rela-
tions like the following are extracted:

authorof(focus,“Songs of a sourdough”)
publish (e1, he, “Songs of a sourdough”)
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provide a bit more detail about the various archi-
tectural roles.

Content Acquisition
The first step in any application of DeepQA to
solve a QA problem is content acquisition, or iden-
tifying and gathering the content to use for the
answer and evidence sources shown in figure 6. 

Content acquisition is a combination of manu-
al and automatic steps. The first step is to analyze
example questions from the problem space to pro-
duce a description of the kinds of questions that
must be answered and a characterization of the
application domain. Analyzing example questions
is primarily a manual task, while domain analysis
may be informed by automatic or statistical analy-
ses, such as the LAT analysis shown in figure 1.
Given the kinds of questions and broad domain of
the Jeopardy Challenge, the sources for Watson
include a wide range of encyclopedias, dictionar-
ies, thesauri, newswire articles, literary works, and
so on. 

Given a reasonable baseline corpus, DeepQA
then applies an automatic corpus expansion
process. The process involves four high-level steps:
(1) identify seed documents and retrieve related
documents from the web; (2) extract self-contained
text nuggets from the related web documents; (3)
score the nuggets based on whether they are

informative with respect to the original seed docu-
ment; and (4) merge the most informative nuggets
into the expanded corpus. The live system itself
uses this expanded corpus and does not have
access to the web during play.

In addition to the content for the answer and
evidence sources, DeepQA leverages other kinds of
semistructured and structured content. Another
step in the content-acquisition process is to identi-
fy and collect these resources, which include data-
bases, taxonomies, and ontologies, such as dbPe-
dia,7 WordNet (Miller 1995), and the Yago8

ontology.

Question Analysis
The first step in the run-time question-answering
process is question analysis. During question
analysis the system attempts to understand what
the question is asking and performs the initial
analyses that determine how the question will be
processed by the rest of the system. The DeepQA
approach encourages a mixture of experts at this
stage, and in the Watson system we produce shal-
low parses, deep parses (McCord 1990), logical
forms, semantic role labels, coreference, relations,
named entities, and so on, as well as specific kinds
of analysis for question answering. Most of these
technologies are well understood and are not dis-
cussed here, but a few require some elaboration.

Articles

FALL 2010  69

Figure 6. DeepQA High-Level Architecture.
[Ferrucci et al., 2010] 
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Figure 28.3 A subset of the Li and Roth (2005) answer types.

contains 276 hand-written rules associated with the approximately 180 answer types
in the typology (Hovy et al., 2002). A regular expression rule for detecting an answer
type like BIOGRAPHY (which assumes the question has been named-entity-tagged)
might be

(28.4) who {is | was | are | were} PERSON

Most modern question classifiers, however, are based on supervised machine
learning, and are trained on databases of questions that have been hand-labeled with
an answer type (Li and Roth, 2002). Typical features used for classification include
the words in the questions, the part-of-speech of each word, and named entities in
the questions.

Often, a single word in the question gives extra information about the answer
type, and its identity is used as a feature. This word is sometimes called the an-
swer type word or question headword, and may be defined as the headword of
the first NP after the question’s wh-word; headwords are indicated in boldface in the
following examples:

(28.5) Which city in China has the largest number of foreign financial companies?
(28.6) What is the state flower of California?

Finally, it often helps to use semantic information about the words in the ques-
tions. The WordNet synset ID of the word can be used as a feature, as can the IDs
of the hypernym and hyponyms of each word in the question.

In general, question classification accuracies are relatively high on easy ques-
tion types like PERSON, LOCATION, and TIME questions; detecting REASON and
DESCRIPTION questions can be much harder.

28.1.3 Query Formulation
Query formulation is the task of creating from the question a list of keywords
that form a query that can be sent to an information retrieval system. Exactly what
query to form depends on the application. If question answering is applied to the
Web, we might simply create a keyword from every word in the question, letting
the Web search engine automatically remove any stopwords. Often, we leave out
the question word (where, when, etc.). Alternatively, keywords can be formed from
only the terms found in the noun phrases in the question, applying stopword lists to
ignore function words and high-frequency, low-content verbs.
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Passage-based Q&A 

James the Turtle was always getting in trouble. Sometimes he'd reach 
into the freezer and empty out all the food. Other times he'd sled on the 
deck and get a splinter. … He went to the grocery store and pulled all the 
pudding off the shelves and ate two jars. Then he walked to the fast food 
restaurant and ordered 15 bags of fries. 
 
Q. What did James pull off of the shelves in the grocery store?  
(A) pudding, (B) fries, (C) food, (D) splinters 

Q. Where did James go after eating two jars of pudding?  
(A) grocery, (B) restaurant, (C) freezer, (D) home 
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Original Version Anonymised Version
Context

The BBC producer allegedly struck by Jeremy
Clarkson will not press charges against the “Top
Gear” host, his lawyer said Friday. Clarkson, who
hosted one of the most-watched television shows
in the world, was dropped by the BBC Wednesday
after an internal investigation by the British broad-
caster found he had subjected producer Oisin Tymon
“to an unprovoked physical and verbal attack.” . . .

the ent381 producer allegedly struck by ent212 will
not press charges against the “ ent153 ” host , his
lawyer said friday . ent212 , who hosted one of the
most - watched television shows in the world , was
dropped by the ent381 wednesday after an internal
investigation by the ent180 broadcaster found he
had subjected producer ent193 “ to an unprovoked
physical and verbal attack . ” . . .

Query
Producer X will not press charges against Jeremy
Clarkson, his lawyer says.

producer X will not press charges against ent212 ,
his lawyer says .

Answer
Oisin Tymon ent193

Table 3: Original and anonymised version of a data point from the Daily Mail validation set. The
anonymised entity markers are constantly permuted during training and testing.

To prevent such degenerate solutions and create a focused task we anonymise and randomise our
corpora with the following procedure, a) use a coreference system to establish coreferents in each
data point; b) replace all entities with abstract entity markers according to coreference; c) randomly
permute these entity markers whenever a data point is loaded.

Compare the original and anonymised version of the example in Table 3. Clearly a human reader can
answer both queries correctly. However in the anonymised setup the context document is required
for answering the query, whereas the original version could also be answered by someone with the
requisite background knowledge. Therefore, following this procedure, the only remaining strategy
for answering questions is to do so by exploiting the context presented with each question. Thus
performance on our two corpora truly measures reading comprehension capability. Naturally a
production system would benefit from using all available information sources, such as clues through
language and co-occurrence statistics.

Table 2 gives an indication of the difficulty of the task, showing how frequent the correct answer is
contained in the top N entity markers in a given document. Note that our models don’t distinguish
between entity markers and regular words. This makes the task harder and the models more general.

3 Models

So far we have motivated the need for better datasets and tasks to evaluate the capabilities of machine
reading models. We proceed by describing a number of baselines, benchmarks and new models to
evaluate against this paradigm. We define two simple baselines, the majority baseline (maximum
frequency) picks the entity most frequently observed in the context document, whereas the ex-
clusive majority (exclusive frequency) chooses the entity most frequently observed in the
context but not observed in the query. The idea behind this exclusion is that the placeholder is
unlikely to be mentioned twice in a single Cloze form query.

3.1 Symbolic Matching Models

Traditionally, a pipeline of NLP models has been used for attempting question answering, that is
models that make heavy use of linguistic annotation, structured world knowledge and semantic
parsing and similar NLP pipeline outputs. Building on these approaches, we define a number of
NLP-centric models for our machine reading task.

Frame-Semantic Parsing Frame-semantic parsing attempts to identify predicates and their argu-
ments, allowing models access to information about “who did what to whom”. Naturally this kind
of annotation lends itself to being exploited for question answering. We develop a benchmark that

3
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CNN Daily Mail
train valid test train valid test

# months 95 1 1 56 1 1
# documents 90,266 1,220 1,093 196,961 12,148 10,397
# queries 380,298 3,924 3,198 879,450 64,835 53,182
Max # entities 527 187 396 371 232 245
Avg # entities 26.4 26.5 24.5 26.5 25.5 26.0
Avg # tokens 762 763 716 813 774 780
Vocab size 118,497 208,045

Table 1: Corpus statistics. Articles were collected starting in
April 2007 for CNN and June 2010 for the Daily Mail, both until
the end of April 2015. Validation data is from March, test data
from April 2015. Articles of over 2000 tokens and queries whose
answer entity did not appear in the context were filtered out.

Top N Cumulative %
CNN Daily Mail

1 30.5 25.6
2 47.7 42.4
3 58.1 53.7
5 70.6 68.1
10 85.1 85.5

Table 2: Percentage of time that
the correct answer is contained in
the top N most frequent entities
in a given document.

(NLP) pipeline. Our results indicate that the neural models achieve a higher accuracy, and do so
without any specific encoding of the document or query structure.

2 Supervised training data for reading comprehension

The reading comprehension task naturally lends itself to a formulation as a supervised learning
problem. Specifically we seek to estimate the conditional probability p(a|c, q), where c is a context
document, q a query relating to that document, and a the answer to that query. For a focused
evaluation we wish to be able to exclude additional information, such as world knowledge gained
from co-occurrence statistics, in order to test a model’s core capability to detect and understand the
linguistic relationships between entities in the context document.

Such an approach requires a large training corpus of document–query–answer triples and until now
such corpora have been limited to hundreds of examples and thus mostly of use only for testing [9].
This limitation has meant that most work in this area has taken the form of unsupervised approaches
which use templates or syntactic/semantic analysers to extract relation tuples from the document to
form a knowledge graph that can be queried.

Here we propose a methodology for creating real-world, large scale supervised training data for
learning reading comprehension models. Inspired by work in summarisation [10, 11], we create two
machine reading corpora by exploiting online newspaper articles and their matching summaries. We
have collected 93k articles from the CNN1 and 220k articles from the Daily Mail2 websites. Both
news providers supplement their articles with a number of bullet points, summarising aspects of the
information contained in the article. Of key importance is that these summary points are abstractive
and do not simply copy sentences from the documents. We construct a corpus of document–query–
answer triples by turning these bullet points into Cloze [12] style questions by replacing one entity
at a time with a placeholder. This results in a combined corpus of roughly 1M data points (Table 1).
Code to replicate our datasets—and to apply this method to other sources—is available online3.

2.1 Entity replacement and permutation

Note that the focus of this paper is to provide a corpus for evaluating a model’s ability to read
and comprehend a single document, not world knowledge or co-occurrence. To understand that
distinction consider for instance the following Cloze form queries (created from headlines in the
Daily Mail validation set): a) The hi-tech bra that helps you beat breast X; b) Could Saccharin help
beat X ?; c) Can fish oils help fight prostate X ? An ngram language model trained on the Daily Mail
would easily correctly predict that (X = cancer), regardless of the contents of the context document,
simply because this is a very frequently cured entity in the Daily Mail corpus.

1
www.cnn.com

2
www.dailymail.co.uk

3
http://www.github.com/deepmind/rc-data/

2
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  Solves several issues with CNN/DM dataset: 
  Starts with the selection of a question article from Gigaword corpus 
  Question is formed by deleting a person named entity from the first sentence 

of the question article 
  An information retrieval system is then used to select a passage with high 

overlap with the first sentence of the question article, and an answer choice 
list is generated from the person named entities in the passage 

 
  Forms questions from two distinct articles rather than summary points 
  Allows using documents that don’t contain manually-written summaries  
  Reduces syntactic similarity between question & relevant passage sentences 
  Selectively remove problems so as to suppress four simple baselines — 

selecting the most mentioned person, the first mentioned person, and two 
language model baselines 

  The resulting dataset yields a larger gap between human and machine 
performance than existing ones, i.e., humans can answer more questions, 
while existing state-of-the-art models perform worse! 
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Passage: Britain’s decision on Thursday to drop extradition proceedings against Gen. Augusto Pinochet and allow him
to return to Chile is understandably frustrating ... Jack Straw, the home secretary, said the 84-year-old former dictator’s
ability to understand the charges against him and to direct his defense had been seriously impaired by a series of strokes.
... Chile’s president-elect, Ricardo Lagos, has wisely pledged to let justice run its course. But the outgoing government of
President Eduardo Frei is pushing a constitutional reform that would allow Pinochet to step down from the Senate and retain
parliamentary immunity from prosecution. ...
Question: Sources close to the presidential palace said that Fujimori declined at the last moment to leave the country and
instead he will send a high level delegation to the ceremony, at which Chilean President Eduardo Frei will pass the mandate
to XXX.
Choices: (1) Augusto Pinochet (2) Jack Straw (3) Ricardo Lagos

Passage: Tottenham won 2-0 at Hapoel Tel Aviv in UEFA Cup action on Thursday night in a defensive display which
impressed Spurs skipper Robbie Keane. ... Keane scored the first goal at the Bloomfield Stadium with Dimitar Berbatov,
who insisted earlier on Thursday he was happy at the London club, heading a second. The 26-year-old Berbatov admitted the
reports linking him with a move had affected his performances ... Spurs manager Juande Ramos has won the UEFA Cup in
the last two seasons ...
Question: Tottenham manager Juande Ramos has hinted he will allow XXX to leave if the Bulgaria striker makes it clear he
is unhappy.

Choices: (1) Robbie Keane (2) Dimitar Berbatov
Table 1: Sample reading comprehension problems from our dataset.

the first mentioned person, and two language model
baselines. This is also intended to produce problems
requiring deeper semantic analysis.
The resulting dataset yields a larger gap between

human and machine performance than existing ones.
Humans can answer questions in our dataset with
an 84% success rate compared to the estimates of
75% for CNN (Chen et al., 2016) and 82% for the
CBT named entities task (Hill et al., 2016). In spite
of this higher level of human performance, various
existing readers perform significantly worse on our
dataset than they do on the CNN dataset. For ex-
ample, the Attentive Reader (Hermann et al., 2015)
achieves 63% on CNN but only 55% on Who-did-
What and the Attention Sum Reader (Kadlec et al.,
2016) achieves 70% on CNN but only 59% on Who-
did-What.
In summary, we believe that our Who-did-What

dataset is more challenging, and requires deeper se-
mantic analysis, than existing datasets.

2 Related Work

Our Who-did-What dataset is related to several re-
cently developed datasets for machine comprehen-
sion. The MCTest dataset (Richardson et al., 2013)
consists of 660 fictional stories with 4 multiple
choice questions each. This dataset is too small
to train systems for the general problem of reading

comprehension.

The bAbI synthetic question answering dataset
(Weston et al., 2016) contains passages describing a
series of actions in a simulation followed by a ques-
tion. For this synthetic data a logical algorithm can
be written to solve the problems exactly (and, in fact,
is used to generate ground truth answers).

The Children’s Book Test (CBT) dataset, created
by Hill et al. (2016), consists of 113,719 cloze-style
named entity problems. Each problem consists of 20
consecutive sentences from a children’s story, a 21st
sentence in which a word has been deleted, and a list
of ten choices for the deleted word. The CBT dataset
tests story completion rather than reading compre-
hension. The next event in a story is often not de-
termined — surprises arise. This may explain why
human performance is lower for CBT than for our
dataset — 82% for CBT vs. 84% for Who-did-What.
The 16% error rate for humans on Who-did-What
seems to be largely due to noise in problem forma-
tion introduced by errors in named entity recogni-
tion and parsing. Reducing this noise in future ver-
sions of the dataset should significantly improve hu-
man performance. Another difference compared to
CBT is that Who-did-What has shorter choice lists
on average. Random guessing achieves only 10%
on CBT but 32% on Who-did-What. The reduction
in the number of choices seems likely to be responsi-
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After forming an initial set of problems we then
remove “duplicated” problems. Duplication arises
because Gigaword contains many copies of the same
article or articles where one is clearly an edited ver-
sion of another. Our duplication-removal process
ensures that no two problems have very similar ques-
tions. Here, similarity is defined as the ratio of the
size of the bag of words intersection to the size of
the smaller bag.
In order to focus our dataset on the most interest-

ing problems, we remove some problems to suppress
the performance of the following simple baselines:

• First person in passage: Select the person that ap-
pears first in the passage.

• Most frequent person: Select the most frequent
person in the passage.

• n-gram: Select the most likely answer to fill the
blank under a 5-gram language model trained on
Gigaword minus articles which are too similar to
one of the questions in word overlap and phrase
matching.

• Unigram: Select the most frequent last name us-
ing the unigram counts from the 5-gram model.

To minimize the number of questions removed we
solve an optimization problem defined by limiting
the performance of each baseline to a specified target
value while removing as few problems as possible,
i.e.,

max
α(C)

∑

C∈{0,1}|b|

α(C)|T (C)| (1)

subject to

∀i
∑

C:Ci=1

α(C)|T (C)|

N
≤ k

N =
∑

C∈{0,1}|b|

α(C)|T (C)| (2)

where T (C) is the subset of the questions solved by
the subset C of the suppressed baselines, and α(C)
is a keeping rate for question set T (C). Ci = 1 indi-
cates i-th baseline is in the subset and |b| is a number
of baselines. Then N is a total number of questions
and k is an upper bound for the baselins after sup-
pression. k is set to the random performance. The
ing structured lists of results.

Accuracy
Baseline Before After

First person in passage 0.60 0.32
Most frequent person 0.61 0.33
n-gram 0.53 0.33
Unigram 0.43 0.32
Random∗ 0.32 0.32

Table 2: Performance of suppressed baselines. ∗Random per-
formance is computed as a deterministic function of the number
of times each choice set size appears. Many questions have only
two choices and there are about three choices on average.

relaxed train valid test
train

# queries 185,978 127,786 10,000 10,000
Avg # choices 3.5 3.5 3.4 3.4
Avg # tokens 378 365 325 326
Vocab size 347,406 308,602

Table 3: Dataset statistics.

performance of these baselines before and after sup-
pression are shown in Table 2. The suppression re-
moved 49.9% of the questions.
Table 3 shows statistics of our dataset after sup-

pression. We split the final dataset into train, vali-
dation, and test by taking the validation and test to
be a random split of the most recent 20,000 prob-
lems as measured by question article date. In this
way there is very little overlap in semantic subject
matter between the training set and either validation
or test. We also provide a larger “relaxed” training
set formed by applying less baseline suppression (a
larger value of k in the optimization). The relaxed
training set then has a slightly different distribution
from the train, validation, and test sets which are all
fully suppressed.

4 Performance Benchmarks

We report the performance of several systems to
characterize our dataset:

• Word overlap: Select the choice c inserted to
the question q which is the most similar to any
sentence s in the passage, i.e., CosSim(bag(c +
q),bag(s)).

• Sliding window and Distance baselines (and their
combination) from Richardson et al. (2013).
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• Semantic features: NLP feature based system
from Wang et al. (2015).

• Attentive Reader: LSTM with attention mecha-
nism (Hermann et al., 2015).

• Stanford Reader: An attentive reader modified
with a bilinear term (Chen et al., 2016).

• Attention Sum (AS) Reader: GRU with a point-
attention mechanism (Kadlec et al., 2016).

• Gated-Attention (GA) Reader: Attention Sum
Reader with gated layers (Dhingra et al., 2016).

Table 4 shows the performance of each system on
the test data. For the Attention and Stanford Read-
ers, we anonymized the Who-did-What data by re-
placing named entities with entity IDs as in the CNN
and Daily Mail datasets.
We see consistent reductions in accuracy when

moving from CNN to our dataset. The Attentive
and Stanford Reader drop by up to 10% and the AS
and GA reader drop by up to 17%. The ranking of
the systems also changes. In contrast to the Atten-
tive/Stanford readers, the AS/GA readers explicitly
leverage the frequency of the answer in the passage,
a heuristic which appears beneficial for the CNN
and Daily Mail tasks. Our suppression of the most-
frequent-person baseline appears to more strongly
affect the performance of these latter systems.

5 Conclusion

We presented a large-scale person-centered cloze
dataset whose scalability and flexibility is suitable
for neural methods. This dataset is different in a va-
riety of ways from existing large-scale cloze datasets
and provides a significant extension to the training
and test data for machine comprehension.
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  Answer is a span in the document: 
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Abstract

We present the Stanford Question Answer-
ing Dataset (SQuAD), a new reading compre-
hension dataset consisting of 100,000+ ques-
tions posed by crowdworkers on a set of
Wikipedia articles, where the answer to each
question is a segment of text from the cor-
responding reading passage. We analyze the
dataset to understand the types of reason-
ing required to answer the questions, lean-
ing heavily on dependency and constituency
trees. We build a strong logistic regression
model, which achieves an F1 score of 51.0%,
a significant improvement over a simple base-
line (20%). However, human performance
(86.8%) is much higher, indicating that the
dataset presents a good challenge problem for
future research. The dataset is freely available
at https://stanford-qa.com.

1 Introduction

Reading Comprehension (RC), or the ability to read
text and then answer questions about it, is a chal-
lenging task for machines, requiring both under-
standing of natural language and knowledge about
the world. Consider the question “what causes pre-
cipitation to fall?” posed on the passage in Figure 1.
In order to answer the question, one might first lo-
cate the relevant part of the passage “precipitation ...
falls under gravity”, then reason that “under” refers
to a cause (not location), and thus determine the cor-
rect answer: “gravity”.

How can we get a machine to make progress
on the challenging task of reading comprehension?
Historically, large, realistic datasets have played

In meteorology, precipitation is any product

of the condensation of atmospheric water vapor

that falls under gravity. The main forms of pre-

cipitation include drizzle, rain, sleet, snow, grau-

pel and hail... Precipitation forms as smaller

droplets coalesce via collision with other rain

drops or ice crystals within a cloud. Short, in-

tense periods of rain in scattered locations are

called “showers”.

What causes precipitation to fall?

gravity

What is another main form of precipitation be-

sides drizzle, rain, snow, sleet and hail?

graupel

Where do water droplets collide with ice crystals

to form precipitation?

within a cloud

Figure 1: Question-answer pairs for a sample passage in the
SQuAD dataset. Each of the answers is a segment of text from
the passage.

a critical role for driving fields forward—famous
examples include ImageNet for object recognition
(Deng et al., 2009) and the Penn Treebank for
syntactic parsing (Marcus et al., 1993). Existing
datasets for RC have one of two shortcomings: (i)
those that are high in quality (Richardson et al.,
2013; Berant et al., 2014) are too small for training
modern data-intensive models, while (ii) those that
are large (Hermann et al., 2015; Hill et al., 2015) are
semi-synthetic and do not share the same character-
istics as explicit reading comprehension questions.

To address the need for a large and high-quality
reading comprehension dataset, we present the Stan-
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ford Question Answering Dataset v1.0 (SQuAD),
freely available at https://stanford-qa.com, con-
sisting of questions posed by crowdworkers on a
set of Wikipedia articles, where the answer to ev-
ery question is a segment of text, or span, from the
corresponding reading passage. SQuAD contains
107,785 question-answer pairs on 536 articles, and
is almost two orders of magnitude larger than previ-
ous manually labeled RC datasets such as MCTest
(Richardson et al., 2013).

In contrast to prior datasets, SQuAD does not
provide a list of answer choices for each question.
Rather, systems must select the answer from all pos-
sible spans in the passage, thus needing to cope with
a fairly large number of candidates. While ques-
tions with span-based answers are more constrained
than the more interpretative questions found in more
advanced standardized tests, we still find a rich di-
versity of questions and answer types in SQuAD.
We develop automatic techniques based on distances
in dependency trees to quantify this diversity and
stratify the questions by difficulty. The span con-
straint also comes with the important benefit that
span-based answers are easier to evaluate than free-
form answers.

To assess the difficulty of SQuAD, we imple-
mented a logistic regression model with a range of
features. We find that lexicalized and dependency
tree path features are important to the performance
of the model. We also find that the model perfor-
mance worsens with increasing complexity of (i) an-
swer types and (ii) syntactic divergence between the
question and the sentence containing the answer; in-
terestingly, there is no such degradation for humans.
Our best model achieves an F1 score of 51.0%,1

which is much better than the sliding window base-
line (20%). Over the last four months (since June
2016), we have witnessed significant improvements
from more sophisticated neural network-based mod-
els. For example, Wang and Jiang (2016) obtained
70.3% F1 on SQuAD v1.1 (results on v1.0 are sim-
ilar). These results are still well behind human
performance, which is 86.8% F1 based on inter-
annotator agreement. This suggests that there is
plenty of room for advancement in modeling and
learning on the SQuAD dataset.

1All experimental results in this paper are on SQuAD v1.0.

Dataset Question
source

Formulation Size

SQuAD crowdsourced RC, spans
in passage

100K

MCTest
(Richardson et al., 2013)

crowdsourced RC, multiple
choice

2640

Algebra
(Kushman et al., 2014)

standardized
tests

computation 514

Science
(Clark and Etzioni, 2016)

standardized
tests

reasoning,
multiple
choice

855

WikiQA
(Yang et al., 2015)

query logs IR, sentence
selection

3047

TREC-QA
(Voorhees and Tice, 2000)

query logs +
human editor

IR, free form 1479

CNN/Daily Mail
(Hermann et al., 2015)

summary +
cloze

RC, fill in
single entity

1.4M

CBT
(Hill et al., 2015)

cloze RC, fill in
single word

688K

Table 1: A survey of several reading comprehension and ques-
tion answering datasets. SQuAD is much larger than all datasets
except the semi-synthetic cloze-style datasets, and it is similar
to TREC-QA in the open-endedness of the answers.

2 Existing Datasets

We begin with a survey of existing reading com-
prehension and question answering (QA) datasets,
highlighting a variety of task formulation and cre-
ation strategies (see Table 1 for an overview).

Reading comprehension. A data-driven approach
to reading comprehension goes back to Hirschman
et al. (1999), who curated a dataset of 600 real 3rd–
6th grade reading comprehension questions. Their
pattern matching baseline was subsequently im-
proved by a rule-based system (Riloff and Thelen,
2000) and a logistic regression model (Ng et al.,
2000). More recently, Richardson et al. (2013) cu-
rated MCTest, which contains 660 stories created
by crowdworkers, with 4 questions per story and
4 answer choices per question. Because many of
the questions require commonsense reasoning and
reasoning across multiple sentences, the dataset re-
mains quite challenging, though there has been no-
ticeable progress (Narasimhan and Barzilay, 2015;
Sachan et al., 2015; Wang et al., 2015). Both curated
datasets, although real and difficult, are too small to
support very expressive statistical models.

Some datasets focus on deeper reasoning abili-
ties. Algebra word problems require understanding
a story well enough to turn it into a system of equa-
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tions, which can be easily solved to produce the an-
swer (Kushman et al., 2014; Hosseini et al., 2014).
BAbI (Weston et al., 2015), a fully synthetic RC
dataset, is stratified by different types of reasoning
required to solve each task. Clark and Etzioni (2016)
describe the task of solving 4th grade science exams,
and stress the need to reason with world knowledge.

Open-domain question answering. The goal of
open-domain QA is to answer a question from a
large collection of documents. The annual eval-
uations at the Text REtreival Conference (TREC)
(Voorhees and Tice, 2000) led to many advances
in open-domain QA, many of which were used in
IBM Watson for Jeopardy! (Ferrucci et al., 2013).
Recently, Yang et al. (2015) created the WikiQA
dataset, which, like SQuAD, use Wikipedia pas-
sages as a source of answers, but their task is sen-
tence selection, while ours requires selecting a spe-
cific span in the sentence.

Selecting the span of text that answers a question
is similar to answer extraction, the final step in the
open-domain QA pipeline, methods for which in-
clude bootstrapping surface patterns (Ravichandran
and Hovy, 2002), using dependency trees (Shen and
Klakow, 2006), and using a factor graph over mul-
tiple sentences (Sun et al., 2013). One key differ-
ence between our RC setting and answer extraction
is that answer extraction typically exploits the fact
that the answer occurs in multiple documents (Brill
et al., 2002), which is more lenient than in our set-
ting, where a system only has access to a single read-
ing passage.

Cloze datasets. Recently, researchers have con-
structed cloze datasets, in which the goal is to pre-
dict the missing word (often a named entity) in a
passage. Since these datasets can be automatically
generated from naturally occurring data, they can be
extremely large. The Children’s Book Test (CBT)
(Hill et al., 2015), for example, involves predicting
a blanked-out word of a sentence given the 20 previ-
ous sentences. Hermann et al. (2015) constructed a
corpus of cloze style questions by blanking out enti-
ties in abstractive summaries of CNN / Daily News
articles; the goal is to fill in the entity based on the
original article. While the size of this dataset is im-
pressive, Chen et al. (2016) showed that the dataset
requires less reasoning than previously thought, and

Figure 2: The crowd-facing web interface used to collect the
dataset encourages crowdworkers to use their own words while
asking questions.

concluded that performance is almost saturated.
One difference between SQuAD questions and

cloze-style queries is that answers to cloze queries
are single words or entities, while answers in
SQuAD often include non-entities and can be much
longer phrases. Another difference is that SQuAD
focuses on questions whose answers are entailed
by the passage, whereas the answers to cloze-style
queries are merely suggested by the passage.

3 Dataset Collection

We collect our dataset in three stages: curating
passages, crowdsourcing question-answers on those
passages, and obtaining additional answers.

Passage curation. To retrieve high-quality arti-
cles, we used Project Nayuki’s Wikipedia’s internal
PageRanks to obtain the top 10000 articles of En-
glish Wikipedia, from which we sampled 536 arti-
cles uniformly at random. From each of these ar-
ticles, we extracted individual paragraphs, stripping
away images, figures, tables, and discarding para-
graphs shorter than 500 characters. The result was
23,215 paragraphs for the 536 articles covering a
wide range of topics, from musical celebrities to ab-
stract concepts. We partitioned the articles randomly
into a training set (80%), a development set (10%),
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Reasoning Description Example Percentage

Lexical variation
(synonymy)

Major correspondences between
the question and the answer sen-
tence are synonyms.

Q: What is the Rankine cycle sometimes called?
Sentence: The Rankine cycle is sometimes re-
ferred to as a practical Carnot cycle.

33.3%

Lexical variation
(world knowledge)

Major correspondences between
the question and the answer sen-
tence require world knowledge to
resolve.

Q: Which governing bodies have veto power?
Sen.: The European Parliament and the Council of
the European Union have powers of amendment
and veto during the legislative process.

9.1%

Syntactic variation After the question is paraphrased
into declarative form, its syntac-
tic dependency structure does not
match that of the answer sentence
even after local modifications.

Q: What Shakespeare scholar is currently on the
faculty?
Sen.: Current faculty include the anthropol-
ogist Marshall Sahlins, ..., Shakespeare scholar
David Bevington.

64.1%

Multiple sentence
reasoning

There is anaphora, or higher-level
fusion of multiple sentences is re-
quired.

Q: What collection does the V&A Theatre & Per-
formance galleries hold?
Sen.: The V&A Theatre & Performance gal-
leries opened in March 2009. ... They
hold the UK’s biggest national collection of
material about live performance.

13.6%

Ambiguous We don’t agree with the crowd-
workers’ answer, or the question
does not have a unique answer.

Q: What is the main goal of criminal punishment?
Sen.: Achieving crime control via incapacitation
and deterrence is a major goal of criminal punish-
ment.

6.1%

Table 3: We manually labeled 192 examples into one or more of the above categories. Words relevant to the corresponding
reasoning type are bolded, and the crowdsourced answer is underlined.

Q: What department store is thought to be the first in the world?

S: Bainbridge’s is often cited as the world’s first department store.

Path:

first

xcomp ����thought nsubjpass�����! store

det��!what

+delete +substitute +insert
first

amod ���store nmod ��� cited

nsubjpass�����!Bainbridge’s

Edit cost:

1 +2 +1=4

Figure 3: An example walking through the computation of the
syntactic divergence between the question Q and answer sen-
tence S.

Stratification by syntactic divergence. We also
develop an automatic method to quantify the syntac-
tic divergence between a question and the sentence
containing the answer. This provides another way to
measure the difficulty of a question and to stratify
the dataset, which we return to in Section 6.3.

We illustrate how we measure the divergence with
the example in Figure 3. We first detect anchors
(word-lemma pairs common to both the question
and answer sentences); in the example, the anchor
is “first”. The two unlexicalized paths, one from

the anchor “first” in the question to the wh-word
“what”, and the other from the anchor in the answer
sentence and to the answer span “Bainbridge’s”, are
then extracted from the dependency parse trees. We
measure the edit distance between these two paths,
which we define as the minimum number of dele-
tions or insertions to transform one path into the
other. The syntactic divergence is then defined as
the minimum edit distance over all possible anchors.
The histogram in Figure 4a shows that there is a
wide range of syntactic divergence in our dataset.
We also show a concrete example where the edit dis-
tance is 0 and another where it is 6. Note that our
syntactic divergence ignores lexical variation. Also,
small divergence does not mean that a question is
easy since there could be other candidates with sim-
ilarly small divergence.

5 Methods

We developed a logistic regression model and com-
pare its accuracy with that of three baseline methods.



Facebook bAbI Tasks (Synthetic) 

[Weston et al. 2016]	

Under review as a conference paper at ICLR 2016

Table 1: Sample statements and questions from tasks 1 to 10.

Task 1: Single Supporting Fact Task 2: Two Supporting Facts
Mary went to the bathroom. John is in the playground.
John moved to the hallway. John picked up the football.
Mary travelled to the office. Bob went to the kitchen.
Where is Mary? A:office Where is the football? A:playground

Task 3: Three Supporting Facts Task 4: Two Argument Relations
John picked up the apple. The office is north of the bedroom.
John went to the office. The bedroom is north of the bathroom.
John went to the kitchen. The kitchen is west of the garden.
John dropped the apple. What is north of the bedroom? A: office
Where was the apple before the kitchen? A:office What is the bedroom north of? A: bathroom

Task 5: Three Argument Relations Task 6: Yes/No Questions
Mary gave the cake to Fred. John moved to the playground.
Fred gave the cake to Bill. Daniel went to the bathroom.
Jeff was given the milk by Bill. John went back to the hallway.
Who gave the cake to Fred? A: Mary Is John in the playground? A:no
Who did Fred give the cake to? A: Bill Is Daniel in the bathroom? A:yes

Task 7: Counting Task 8: Lists/Sets
Daniel picked up the football. Daniel picks up the football.
Daniel dropped the football. Daniel drops the newspaper.
Daniel got the milk. Daniel picks up the milk.
Daniel took the apple. John took the apple.
How many objects is Daniel holding? A: two What is Daniel holding? milk, football

Task 9: Simple Negation Task 10: Indefinite Knowledge
Sandra travelled to the office. John is either in the classroom or the playground.
Fred is no longer in the office. Sandra is in the garden.
Is Fred in the office? A:no Is John in the classroom? A:maybe
Is Sandra in the office? A:yes Is John in the office? A:no

Simple Negation and Indefinite Knowledge Tasks 9 and 10 test slightly more complex natural
language constructs. Task 9 tests one of the simplest forms of negation, that of supporting facts that
imply a statement is false e.g. “Fred is no longer in the office” rather than “Fred travelled to the
office”. (In this case, task 6 (yes/no questions) is a prerequisite to the task.) Task 10 tests if we
can model statements that describe possibilities rather than certainties, e.g. “John is either in the
classroom or the playground.”, where in that case the answer is “maybe” to the question “Is John
in the classroom?”.

Basic Coreference, Conjunctions and Compound Coreference Task 11 tests the simplest type
of coreference, that of detecting the nearest referent, e.g. “Daniel was in the kitchen. Then he went
to the studio.”. Real-world data typically addresses this as a labeling problem and studies more
sophisticated phenomena (Soon et al., 2001), whereas we evaluate it as in all our other tasks as a
question answering problem. Task 12 (conjunctions) tests referring to multiple subjects in a single
statement, e.g. “Mary and Jeff went to the kitchen.”. Task 13 tests coreference in the case where
the pronoun can refer to multiple actors, e.g. “Daniel and Sandra journeyed to the office. Then they
went to the garden”.

Time Reasoning While our tasks so far have included time implicitly in the order of the state-
ments, task 14 tests understanding the use of time expressions within the statements, e.g. “In the
afternoon Julie went to the park. Yesterday Julie was at school.”, followed by questions about the
order of events such as “Where was Julie before the park?”. Real-world datasets address the task of
evaluating time expressions typically as a labeling, rather than a QA task, see e.g. UzZaman et al.
(2012).

Basic Deduction and Induction Task 15 tests basic deduction via inheritance of properties, e.g.
“Sheep are afraid of wolves. Gertrude is a sheep. What is Gertrude afraid of?”. Task 16 similarly

4
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Table 2: Sample statements and questions from tasks 11 to 20.

Task 11: Basic Coreference Task 12: Conjunction
Daniel was in the kitchen. Mary and Jeff went to the kitchen.
Then he went to the studio. Then Jeff went to the park.
Sandra was in the office. Where is Mary? A: kitchen
Where is Daniel? A:studio Where is Jeff? A: park

Task 13: Compound Coreference Task 14: Time Reasoning
Daniel and Sandra journeyed to the office. In the afternoon Julie went to the park.
Then they went to the garden. Yesterday Julie was at school.
Sandra and John travelled to the kitchen. Julie went to the cinema this evening.
After that they moved to the hallway. Where did Julie go after the park? A:cinema
Where is Daniel? A: garden Where was Julie before the park? A:school

Task 15: Basic Deduction Task 16: Basic Induction
Sheep are afraid of wolves. Lily is a swan.
Cats are afraid of dogs. Lily is white.
Mice are afraid of cats. Bernhard is green.
Gertrude is a sheep. Greg is a swan.
What is Gertrude afraid of? A:wolves What color is Greg? A:white

Task 17: Positional Reasoning Task 18: Size Reasoning
The triangle is to the right of the blue square. The football fits in the suitcase.
The red square is on top of the blue square. The suitcase fits in the cupboard.
The red sphere is to the right of the blue square. The box is smaller than the football.
Is the red sphere to the right of the blue square? A:yes Will the box fit in the suitcase? A:yes
Is the red square to the left of the triangle? A:yes Will the cupboard fit in the box? A:no

Task 19: Path Finding Task 20: Agent’s Motivations
The kitchen is north of the hallway. John is hungry.
The bathroom is west of the bedroom. John goes to the kitchen.
The den is east of the hallway. John grabbed the apple there.
The office is south of the bedroom. Daniel is hungry.
How do you go from den to kitchen? A: west, north Where does Daniel go? A:kitchen
How do you go from office to bathroom? A: north, west Why did John go to the kitchen? A:hungry

tests basic induction via inheritance of properties. A full analysis of induction and deduction is
clearly beyond the scope of this work, and future tasks should analyse further, deeper aspects.

Positional and Size Reasoning Task 17 tests spatial reasoning, one of many components of the
classical SHRDLU system (Winograd, 1972) by asking questions about the relative positions of
colored blocks. Task 18 requires reasoning about the relative size of objects and is inspired by the
commonsense reasoning examples in the Winograd schema challenge (Levesque et al., 2011).

Path Finding The goal of task 19 is to find the path between locations: given the description
of various locations, it asks: how do you get from one to another? This is related to the work of
Chen & Mooney (2011) and effectively involves a search problem.

Agent’s Motivations Finally, task 20 questions, in the simplest way possible, why an agent per-
forms an action. It addresses the case of actors being in a given state (hungry, thirsty, tired, . . . ) and
the actions they then take, e.g. it should learn that hungry people might go to the kitchen, and so on.

As already stated, these tasks are meant to foster the development and understanding of machine
learning algorithms. A single model should be evaluated across all the tasks (not tuning per task)
and then the same model should be tested on additional real-world tasks.

In our data release, in addition to providing the above 20 tasks in English, we also provide them
(i) in Hindi; and (ii) with shuffled English words so they are no longer readable by humans. A
good learning algorithm should perform similarly on all three, which would likely not be the case
for a method using external resources, a setting intended to mimic a learner being first presented a
language and having to learn from scratch.

5



Facebook bAbI Tasks (Synthetic) 

[Weston et al. 2016]	

Under review as a conference paper at ICLR 2016

Table 3: Test accuracy (%) on our 20 Tasks for various methods (1000 training examples each). Our proposed
extensions to MemNNs are in columns 5-9: with adaptive memory (AM), N -grams (NG), nonlinear matching
function (NL), and combinations thereof. Bold numbers indicate tasks where our extensions achieve ≥ 95%
accuracy but the original MemNN model of Weston et al. (2014) did not. The last two columns (10-11) give
extra analysis of the MemNN

AM + NG + NL
method. Column 10 gives the amount of training data for each task needed to

obtain ≥ 95% accuracy, or FAIL if this is not achievable with 1000 training examples. The final column gives
the accuracy when training on all data at once, rather than separately.
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TASK N-
gr
am

Cl
as
sifi
er

LS
TM

St
ru
ctu
re
d S
VM

CO
RE
F+
SR
L
fea
tu
re
s

M
em
NN

W
es
to
n e
t a
l.
(2
01
4)

M
em
NN

AD
AP
TI
VE

M
EM

OR
Y

M
em
NN

AM
+
N-
GR
AM

S

M
em
NN

AM
+
NO
NL
IN
EA
R

M
em
NN

AM
+
NG

+
NL

No
. o
f e
x.
re
q.
≥
95

M
ul
tiT
as
k T
ra
in
in
g

1 - Single Supporting Fact 36 50 99 100 100 100 100 100 250 ex. 100
2 - Two Supporting Facts 2 20 74 100 100 100 100 100 500 ex. 100
3 - Three Supporting Facts 7 20 17 20 100 99 100 100 500 ex. 98
4 - Two Arg. Relations 50 61 98 71 69 100 73 100 500 ex. 80
5 - Three Arg. Relations 20 70 83 83 83 86 86 98 1000 ex. 99
6 - Yes/No Questions 49 48 99 47 52 53 100 100 500 ex. 100
7 - Counting 52 49 69 68 78 86 83 85 FAIL 86
8 - Lists/Sets 40 45 70 77 90 88 94 91 FAIL 93
9 - Simple Negation 62 64 100 65 71 63 100 100 500 ex. 100
10 - Indefinite Knowledge 45 44 99 59 57 54 97 98 1000 ex. 98
11 - Basic Coreference 29 72 100 100 100 100 100 100 250 ex. 100
12 - Conjunction 9 74 96 100 100 100 100 100 250 ex. 100
13 - Compound Coref. 26 94 99 100 100 100 100 100 250 ex. 100
14 - Time Reasoning 19 27 99 99 100 99 100 99 500 ex. 99
15 - Basic Deduction 20 21 96 74 73 100 77 100 100 ex. 100
16 - Basic Induction 43 23 24 27 100 100 100 100 100 ex. 94
17 - Positional Reasoning 46 51 61 54 46 49 57 65 FAIL 72
18 - Size Reasoning 52 52 62 57 50 74 54 95 1000 ex. 93
19 - Path Finding 0 8 49 0 9 3 15 36 FAIL 19
20 - Agent’s Motivations 76 91 95 100 100 100 100 100 250 ex. 100
Mean Performance 34 49 79 75 79 83 87 93 100 92

Methods The N -gram classifier baseline is inspired by the baselines in Richardson et al. (2013)
but applied to the case of producing a 1-word answer rather than a multiple choice question: we
construct a bag-of-N -grams for all sentences in the story that share at least one word with the
question, and then learn a linear classifier to predict the answer using those features4.

LSTMs are a popular method for sequence prediction (Sutskever et al., 2014) and outperform stan-
dard RNNs (Recurrent Neural Networks) for tasks similar to ours (Weston et al., 2014). They work
by reading the story until the point they reach a question and then have to output an answer. Note that
they are weakly supervised by answers only, and are hence at a disadvantage compared to strongly
supervised methods or methods that use external resources.

MemNNs (Weston et al., 2014) are a recently proposed class of models that have been shown to
perform well at QA. They work by a “controller” neural network performing inference over the
stored memories that consist of the previous statements in the story. The original proposed model
performs 2 hops of inference: finding the first supporting fact with the maximum match score with
the question, and then the second supporting fact with the maximum match score with both the
question and the first fact that was found. The matching function consists of mapping the bag-of-
words for the question and facts into an embedding space by summing word embeddings. The word
embeddings are learnt using strong supervision to optimize the QA task. After finding supporting
facts, a final ranking is performed to rank possible responses (answer words) given those facts. We
also consider some extensions to this model:

• Adaptive memories performing a variable number of hops rather than 2, the model is
trained to predict a hop or the special “STOP” class. A similar procedure can be applied to
output multiple tokens as well.

4Constructing N -grams from all sentences rather than using the filtered set gave worse results.
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(c) A two layer Deep LSTM Reader with the question encoded before the document.

Figure 1: Document and query embedding models.

We employ a Deep LSTM cell with skip connections from each input x(t) to every hidden layer,
and from every hidden layer to the output y(t):
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where || indicates vector concatenation h(t, k) is the hidden state for layer k at time t, and i, f ,
o are the input, forget, and output gates respectively. Thus our Deep LSTM Reader is defined by
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LSTM
(d, q) = y(|d|+ |q|) with input x(t) the concatenation of d and q separated by the delimiter |||.

The Attentive Reader The Deep LSTM Reader must propagate dependencies over long distances
in order to connect queries to their answers. The fixed width hidden vector forms a bottleneck for
this information flow that we propose to circumvent using an attention mechanism inspired by recent
results in translation and image recognition [6, 7]. This attention model first encodes the document
and the query using separate bidirectional single layer LSTMs [19].

We denote the outputs of the forward and backward LSTMs as �!y (t) and  �y (t) respectively. The
encoding u of a query of length |q| is formed by the concatenation of the final forward and backward
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We feed our documents one word at a time into a Deep LSTM 
encoder, after a delimiter we then also feed the query into the 
encoder. Alternatively we also experiment with processing the query 
then the document. The result is that this model processes each 
document query pair as a single long sequence. Given the 
embedded document and query the network predicts which token in 
the document answers the query. 
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Ability to reread from the document as 
each query token is read. The result is 
an attention mechanism that allows the 
model to recurrently accumulate 
information from the document as it sees 
each query token, ultimately outputting a 
final joint document query representation 
for the answer prediction. 
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. . . . . .

Figure 3: Attention heat maps from the Attentive Reader for two correctly answered validation set
queries (the correct answers are ent23 and ent63, respectively). Both examples require significant
lexical generalisation and co-reference resolution in order to be answered correctly by a given model.

token integrate long range contextual information via the bidirectional LSTM encoders. Figure 3
depicts heat maps for two queries that were correctly answered by the Attentive Reader.7 In both
cases confidently arriving at the correct answer requires the model to perform both significant lexical
generalsiation, e.g. ‘killed’ ! ‘deceased’, and co-reference or anaphora resolution, e.g. ‘ent119 was
killed’ ! ‘he was identified.’ However it is also clear that the model is able to integrate these signals
with rough heuristic indicators such as the proximity of query words to the candidate answer.

5 Conclusion

The supervised paradigm for training machine reading and comprehension models provides a
promising avenue for making progress on the path to building full natural language understanding
systems. We have demonstrated a methodology for obtaining a large number of document-query-
answer triples and shown that recurrent and attention based neural networks provide an effective
modelling framework for this task. Our analysis indicates that the Attentive and Impatient Read-
ers are able to propagate and integrate semantic information over long distances. In particular we
believe that the incorporation of an attention mechanism is the key contributor to these results.

The attention mechanism that we have employed is just one instantiation of a very general idea
which can be further exploited. However, the incorporation of world knowledge and multi-document
queries will also require the development of attention and embedding mechanisms whose complex-
ity to query does not scale linearly with the data set size. There are still many queries requiring
complex inference and long range reference resolution that our models are not yet able to answer.
As such our data provides a scalable challenge that should support NLP research into the future. Fur-
ther, significantly bigger training data sets can be acquired using the techniques we have described,
undoubtedly allowing us to train more expressive and accurate models.

7Note that these examples were chosen as they were short, the average CNN validation document contained
763 tokens and 27 entities, thus most instances were significantly harder to answer than these examples.
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CNN Daily Mail

valid test valid test

Maximum frequency 30.5 33.2 25.6 25.5
Exclusive frequency 36.6 39.3 32.7 32.8
Frame-semantic model 36.3 40.2 35.5 35.5
Word distance model 50.5 50.9 56.4 55.5

Deep LSTM Reader 55.0 57.0 63.3 62.2
Uniform Reader 39.0 39.4 34.6 34.4
Attentive Reader 61.6 63.0 70.5 69.0
Impatient Reader 61.8 63.8 69.0 68.0

Table 5: Accuracy of all the models and bench-
marks on the CNN and Daily Mail datasets. The
Uniform Reader baseline sets all of the m(t) pa-
rameters to be equal.

Figure 2: Precision@Recall for the attention
models on the CNN validation data.

Frame-semantic benchmark While the one frame-semantic model proposed in this paper is
clearly a simplification of what could be achieved with annotations from an NLP pipeline, it does
highlight the difficulty of the task when approached from a symbolic NLP perspective.

Two issues stand out when analysing the results in detail. First, the frame-semantic pipeline has a
poor degree of coverage with many relations not being picked up by our PropBank parser as they
do not adhere to the default predicate-argument structure. This effect is exacerbated by the type
of language used in the highlights that form the basis of our datasets. The second issue is that
the frame-semantic approach does not trivially scale to situations where several sentences, and thus
frames, are required to answer a query. This was true for the majority of queries in the dataset.

Word distance benchmark More surprising perhaps is the relatively strong performance of the
word distance benchmark, particularly relative to the frame-semantic benchmark, which we had
expected to perform better. Here, again, the nature of the datasets used can explain aspects of this
result. Where the frame-semantic model suffered due to the language used in the highlights, the word
distance model benefited. Particularly in the case of the Daily Mail dataset, highlights frequently
have significant lexical overlap with passages in the accompanying article, which makes it easy for
the word distance benchmark. For instance the query “Tom Hanks is friends with X’s manager,
Scooter Brown” has the phrase “... turns out he is good friends with Scooter Brown, manager for
Carly Rae Jepson” in the context. The word distance benchmark correctly aligns these two while
the frame-semantic approach fails to pickup the friendship or management relations when parsing
the query. We expect that on other types of machine reading data where questions rather than Cloze
queries are used this particular model would perform significantly worse.

Neural models Within the group of neural models explored here, the results paint a clear picture
with the Impatient and the Attentive Readers outperforming all other models. This is consistent with
our hypothesis that attention is a key ingredient for machine reading and question answering due to
the need to propagate information over long distances. The Deep LSTM Reader performs surpris-
ingly well, once again demonstrating that this simple sequential architecture can do a reasonable
job of learning to abstract long sequences, even when they are up to two thousand tokens in length.
However this model does fail to match the performance of the attention based models, even though
these only use single layer LSTMs.6

The poor results of the Uniform Reader support our hypothesis of the significance of the attention
mechanism in the Attentive model’s performance as the only difference between these models is
that the attention variables are ignored in the Uniform Reader. The precision@recall statistics in
Figure 2 again highlight the strength of the attentive approach.

We can visualise the attention mechanism as a heatmap over a context document to gain further
insight into the models’ performance. The highlighted words show which tokens in the document
were attended to by the model. In addition we must also take into account that the vectors at each

6Memory constraints prevented us from experimenting with deeper Attentive Readers.
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Like most such systems, DrQA builds an embedding for the question, builds an embedding for each token in the 
passage, computes a similarity function between the question and each passage word in context, and then uses the 
question-passage similarity scores to decide where the answer span starts and ends. 



Feature-based Model 

[Wang et al. 2015]	

passage, where a particular w 2 W denotes one
sentence.

Given a feature vector f(P,w, q, a) and a
weight vector ✓ with an entry for each feature, the
prediction â for a new P and q is given by:

â = argmax

a2A
max

w2W
✓>f(P,w, q, a)

Given triples {hP i, qi, aii}ni=1, we minimize an
`2-regularized max-margin loss function:

min

✓
�||✓||2 +

nX

i=1

⇢
�max

w2W
✓>f(P i, w, qi, ai)

+max

a2A

⇢
max

w02W
✓>f(P i, w0, qi, a) +�(a, ai)

��

where � is the weight of the `2 term and
�(a, ai) = 1 if a 6= ai and 0 otherwise. The latent
variable w makes the loss function non-convex.

3 Features

We start with two features from Richardson et al.
(2013). Our first feature corresponds to their slid-
ing window similarity baseline, which measures
weighted word overlap between the bag of words
constructed from the question/answer and the bag
of words in the window. We call this feature B.
The second feature corresponds to their word dis-
tance baseline, and is the minimal distance be-
tween two word occurrences in the passage that
are also contained in the question/answer pair. We
call this feature D. Space does not permit a de-
tailed description.

3.1 Frame Semantic Features
Frame semantic parsing (Das et al., 2014)
is the problem of extracting frame-specific
predicate-argument structures from sentences,
where the frames come from an inventory such as
FrameNet (Baker et al., 1998). This task can be
decomposed into three subproblems: target iden-
tification, in which frame-evoking predicates are
marked; frame label identification, in which the
evoked frame is selected for each predicate; and
argument identification, in which arguments to
each frame are identified and labeled with a role
from the frame. An example output of the SE-
MAFOR frame semantic parser (Das et al., 2014)
is given in Figure 1.
Three frames are identified. The target words
pulled, all, and shelves have respective frame la-
bels CAUSE MOTION, QUANTITY, and NATU-

Figure 1: Example output from SEMAFOR.

RAL FEATURES. Each frame has its own set of ar-
guments; e.g., the CAUSE MOTION frame has the
labeled Agent, Theme, and Goal arguments. Fea-
tures from these parses have been shown to be use-
ful for NLP tasks such as slot filling in spoken dia-
logue systems (Chen et al., 2013). We expect that
the passage sentence containing the answer will
overlap with the question and correct answer in
terms of predicates, frames evoked, and predicted
argument labels, and we design features to capture
this intuition. Given the frame semantic parse for a
sentence, let T be the bag of frame-evoking target
words/phrases.1 We define the bag of frame labels
in the parse as F . For each target t 2 T , there is an
associated frame label denoted Ft 2 F . Let R be
the bag of phrases assigned with an argument label
in the parse. We denote the bag of argument labels
in the parse by L. For each phrase r 2 R, there is
an argument label denoted Lr 2 L. We define a
frame semantic parse as a tuple hT, F,R, Li. We
define six features based on two parsed sentences
hT 1, F 1, R1, L1i and hT 2, F 2, R2, L2i:

• f1: # frame label matches: |{hs, ti : s 2
F 1, t 2 F 2, s = t}|

• f2: # argument label matches: |{hs, ti : s 2
L1, t 2 L2, s = t}|.

• f3: # target matches, ignoring frame labels:
|{hs, ti : s 2 T 1, t 2 T 2, s = t}|.

• f4: # argument matches, ignoring arg. labels:
|{hs, ti : s 2 R1, t 2 R2, s = t}|.

• f5: # target matches, using frame labels:
|{hs, ti : s 2 T 1, t 2 T 2, s = t, F 1

s = F 2
t }|.

• f6: # argument matches, using arg. labels:
|{hs, ti : s 2 R1, t 2 R2, s = t, L1

s = L2
t }|.

We use two versions of each of these six features:
one version for the passage sentence w and the
question q, and an additional version for w and the
candidate answer a.

3.2 Syntactic Features
If two sentences refer to the same event, then it is
likely that they have some overlapping dependen-

1By bag, we mean here a set with possible replicates.

  Weighted word overlap between the bag of words constructed from the 
question/answer and in the window (and their word embedding versions) 

  Minimal distance between two word occurrences in the passage that are also 
contained in the question/answer pair 

  Frame semantics (predicates, frames evoked, and predicted argument labels) 
match between passage sentence and question+answer 
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Figure 2: Transforming the question to a statement.

cies. To compare a Q/A pair to a sentence in the
passage, we first use rules to transform the ques-
tion into a statement and insert the candidate an-
swer into the trace position. Our simple rule set
is inspired by the rich history of QA research into
modeling syntactic transformations between ques-
tions and answers (Moschitti et al., 2007; Wang et
al., 2007; Heilman and Smith, 2010). Given Stan-
ford dependency tree and part-of-speech (POS)
tags for the question, let arc(u, v) be the label of
the dependency between child word u and head
word v, let POS (u) be the POS tag of u, let c be
the wh-word in the question, let r be the root word
in the question’s dependency tree, and let a be the
candidate answer. We use the following rules:2

• c = what, POS (r) = VB, and arc(c, r) = dobj.
Insert a after word u where arc(u, r) = nsubj.
Delete c and the word after c.

• c = what, POS (r) = NN, and arc(c, r) =
nsubj. Replace c by a.

• c = where, POS (r) = VB, and arc(c, r) = ad-

vmod. Delete c and the word after c. If r has a
child u such that arc(u, r) = dobj, insert a after
u; else, insert a after r and delete r.

• c = where, r = is, POS(r) = VBZ, and arc(c,
r) = advmod. Delete c. Find r’s child u such
that arc(u, r) = nsubj, move r to be right after
u. Insert a after r.

• c = who, POS(r) = NN, and arc(c, r) =
nsubj. Replace c by a.

• c = who, POS(r) 2 {VB, VBD}, and arc(c, r)
= nsubj. Replace c by a.

We use other rules in addition to those above:
change “why x?” to “the reason x is a”, and
change “how many x”, “how much x”, or “when
x” to “x a”.

Given each candidate answer, we attempt to
transform the question to a statement using the

2There are existing rule-based approaches to transforming
statements to questions (Heilman, 2011); our rules reverse
this process.

rules above.3 An example of the transformation
is given in Figure 2. In the parse, pull is the root
word and What is attached as a dobj. This matches
the first rule, so we delete did and insert the can-
didate answer pudding after pull, making the final
transformed sentence: James pull pudding off.

After this transformation of the question (and
a candidate answer) to a statement, we mea-
sure its similarity to the sentence in the window
using simple dependency-based similarity fea-
tures. Denoting a dependency as (u, v, arc(u, v)),
then two dependencies (u1, v1, arc(u1, v1)) and
(u2, v2, arc(u2, v2)) match if and only if u1 = u2,
v1 = v2, and arc(u1, v1) = arc(u2, v2). One
feature simply counts the number of dependency
matches between the transformed question and the
passage sentence. We include three additional
count features that each consider a subset of de-
pendencies from the following three categories:

(1) v = r and u = a; (2) v = r but u 6= a; and
(3) v 6= r. In Figure 2, the triples

(James, pull, nsubj) and (off, pull, prt) belong to
the second category while (pudding, pull, dobj)

belongs to the first.

3.3 Word Embeddings
Word embeddings (Mikolov et al., 2013) repre-
sent each word as a low-dimensional vector where
the similarity of vectors captures some aspect of
semantic similarity of words. They have been
used for many tasks, including semantic role label-
ing (Collobert et al., 2011), named entity recogni-
tion (Turian et al., 2010), parsing (Bansal et al.,
2014), and for the Facebook QA tasks (Weston et
al., 2015; Sukhbaatar et al., 2015). We first de-
fine the vector f+

w as the vector summation of all
words inside sentence w and f⇥

w as the element-
wise multiplication of the vectors in w. To define
vectors for answer a for question q, we concate-
nate q and a, then calculate f+

qa and f⇥
qa. For the

bag-of-words feature B, instead of merely count-
ing matches of the two bags of words, we also use
cos(f+

qa, f
+
w ) and cos(f⇥

qa, f
⇥
w ) as features, where

cos is cosine similarity. For syntactic features,
where ⌧w is the bag of dependencies of w and
⌧qa is the bag of dependencies for the transformed
question for candidate answer a, we use a feature
function that returns the following:

X

(u,v,`)2⌧w

X

(u0,v0,`0)2⌧qa
`=`0 cos(u, u

0
) cos(v, v0)

3If no rule applies, we return 0 for all syntactic features.

  Syntactic dependencies match between passage sentence and ques+ans 
converted to statement 

  Extra features computed after coreference resolution of pronouns/nominals to 
map to their entity clusters 
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  Several questions need multi-hop (e.g., path or count-based) 
reasoning to answer 

  Memory models perform multiple passes over the text to collect the 
multiple evidence pieces  

  Some example models:  
  End-to-End Memory Networks 
  Dynamic Memory Networks 
  Gated Attention Readers 
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2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
size d⇥V ). The query q is also embedded (again, in the simplest case via another embedding matrix
B with the same dimensions as A) to obtain an internal state u. In the embedding space, we compute
the match between u and each memory mi by taking the inner product followed by a softmax:

pi = Softmax(uTmi). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the transformed inputs ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k
(different ways to combine ok and uk are proposed later):

uk+1 = uk + ok. (4)

2
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Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Figure 3. Real example of an input list of sentences and the attention gates that are triggered by a specific question from the bAbI tasks
(Weston et al., 2015a). Gate values git are shown above the corresponding vectors. The gates change with each search over inputs. We
do not draw connections for gates that are close to zero. Note that the second iteration has wrongly placed some weight in sentence 2,
which makes some intuitive sense, as sentence 2 is another place John had been.

of TQ words, hidden states for the question encoder at time
t is given by qt = GRU(L[w

Q
t ], qt�1

), L represents the
word embedding matrix as in the previous section and w

Q
t

represents the word index of the tth word in the question.
We share the word embedding matrix across the input mod-
ule and the question module. Unlike the input module, the
question module produces as output the final hidden state
of the recurrent network encoder: q = qTQ

.

2.3. Episodic Memory Module

In its general form, the episodic memory module is com-
prised of an internal memory, an attention mechanism and
a recurrent network to update its memory. During each it-
eration, the attention mechanism attends over the fact rep-
resentations c by using a gating function (described below)
while taking into consideration the question representation
q and the previous memory m

i�1 to produce an episode ei.

The episode is then used, alongside the previous mem-
ories m

i�1, to update the episodic memory m

i
=

GRU(e

i
,m

i�1

). The initial state of this GRU is initialized
to the question vector itself: m

0

= q. For some tasks, it
is beneficial for episodic memory module to take multiple
passes over the input. After TM passes, the final memory
m

TM is given to the answer module.

Need for Multiple Episodes: The iterative nature of this
module allows it to attend to different inputs during each

pass. It also allows for a type of transitive inference, since
the first pass may uncover the need to retrieve additional
facts. For instance, in the example in Fig. 3, we are asked
Where is the football? In the first iteration, the model ought
attend to sentence 7 (John put down the football.), as the
question asks about the football. Only once the model sees
that John is relevant can it reason that the second iteration
should retrieve where John was. Similarly, a second pass
may help for sentiment analysis as we show in the experi-
ments section below.

Attention Mechanism: In our work, we use a gating func-
tion as our attention mechanism. For each pass i, the
mechanism takes as input a candidate fact ct, a previ-
ous memory m

i�1, and the question q to compute a gate:
g

i
t = G(ct,m

i�1

, q).

The scoring function G takes as input the feature set
z(c,m, q) and produces a scalar score. We first define a
large feature vector that captures a variety of similarities
between input, memory and question vectors: z(c,m, q) =

h
c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)

q, c

T
W

(b)
m

i
,

(5)
where � is the element-wise product. The function
G is a simple two-layer feed forward neural network
G(c,m, q) =

�

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
. (6)
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Figure 1: Gated-Attention Reader. Dashed lines represent dropout connections.

3.1.2 Gated-Attention Module
For brevity, let us drop the superscript k in this
subsection as we are focusing on a particular layer.
For each token di in D, the GA module forms a
token-specific representation of the query q̃i using
soft attention, and then multiplies the query rep-
resentation element-wise with the document token
representation. Specifically, for i = 1, . . . , |D|:

↵i = softmax(Q>di) (5)
q̃i = Q↵i

xi = di � q̃i (6)

In equation (6) we use the multiplication operator
to model the interactions between di and q̃i. In
the experiments section, we also report results for
other choices of gating functions, including addi-
tion xi = di + q̃i and concatenation xi = dikq̃i.

3.1.3 Answer Prediction
Let q(K)

` = qf` kqbT�`+1 be an intermediate out-
put of the final layer query Bi-GRU at the loca-
tion ` of the cloze token in the query, and D(K)

=

 !
GRU

(K)

D (X(K�1)
) be the full output of final layer

document Bi-GRU. To obtain the probability that
a particular token in the document answers the
query, we take an inner-product between these
two, and pass through a softmax layer:

s = softmax((q(K)
` )

TD(K)
) (7)

where vector s defines a probability distribution
over the |D| tokens in the document. The proba-
bility of a particular candidate c 2 C as being the

answer is then computed by aggregating the prob-
abilities of all document tokens which appear in c
and renormalizing over the candidates:

Pr(c|d, q) /
X

i2I(c,d)
si (8)

where I(c, d) is the set of positions where a token
in c appears in the document d. This aggregation
operation is the same as the pointer sum attention
applied in the AS Reader (Kadlec et al., 2016).

Finally, the candidate with maximum probabil-
ity is selected as the predicted answer:

a⇤ = argmaxc2C Pr(c|d, q). (9)

During the training phase, model parameters of
GA are updated w.r.t. a cross-entropy loss between
the predicted probabilities and the true answers.

3.1.4 Further Enhancements
Character-level Embeddings: Given a token w
from the document or query, its vector space repre-
sentation is computed as x = L(w)||C(w). L(w)
retrieves the word-embedding for w from a lookup
table L 2 R|V |⇥nl , whose rows hold a vector for
each unique token in the vocabulary. We also uti-
lize a character composition model C(w) which
generates an orthographic embedding of the token.
Such embeddings have been previously shown to
be helpful for tasks like Named Entity Recognition
(Yang et al., 2016) and dealing with OOV tokens
at test time (Dhingra et al., 2016). The embedding
C(w) is generated by taking the final outputs zfnc

and zbnc
of a Bi-GRU applied to embeddings from
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Analysis	of	AJen)on		
•  Context:	“…arrested	Illinois	governor	Rod	Blagojevich	and	his	chief	of	staff	John	

Harris	on	corrup)on	charges	…	included	Blogojevich	allegedly	conspiring	to	sell	
or	trade	the	senate	seat	leZ	vacant	by	President-elect	Barack	Obama…”	

•  Query:	“President-elect	Barack	Obama	said	Tuesday	he	was	not	aware	of	

alleged	corrup)on	by	X	who	was	arrested	on	charges	of	trying	to	sell	Obama’s	

senate	seat.”	

•  Answer:	Rod	Blagojevich	

Layer	1	 Layer	2	

Code	+	Data:	hJps://github.com/bdhingra/ga-reader	
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Table 1: Validation/Test accuracy (%) on WDW dataset for both “Strict”
and “Relaxed” settings. Results with “†” are cf previously published works.

Model Strict Relaxed

Val Test Val Test

Human † – 84 – –

Attentive Reader † – 53 – 55
AS Reader † – 57 – 59
Stanford AR † – 64 – 65
NSE † 66.5 66.2 67.0 66.7

GA-- † – 57 – 60.0
GA (update L(w)) 67.8 67.0 67.0 66.6
GA (fix L(w)) 68.3 68.0 69.6 69.1
GA (+feature, update L(w)) 70.1 69.5 70.9 71.0
GA (+feature, fix L(w)) 71.6 71.2 72.6 72.6

Table 2: Top: Performance of different gating
functions. Bottom: Effect of varying the num-
ber of hops K. Results on WDW without using
the qe-comm feature and with fixed L(w).

Gating Function Accuracy

Val Test

Sum 64.9 64.5
Concatenate 64.4 63.7
Multiply 68.3 68.0

K

1 (AS) † – 57
2 65.6 65.6
3 68.3 68.0
4 68.3 68.2

and CBT, but not for CNN and Daily Mail. This
is not surprising given that the latter datasets are
larger and less prone to overfitting.

Comparing with prior work, on the WDW
dataset the basic version of the GA Reader out-
performs all previously published models when
trained on the Strict setting. By adding the qe-
comm feature the performance increases by 3.2%
and 3.5% on the Strict and Relaxed settings re-
spectively to set a new state of the art on this
dataset. On the CNN and Daily Mail datasets the
GA Reader leads to an improvement of 3.2% and
4.3% respectively over the best previous single
models. They also outperform previous ensem-
ble models, setting a new state of that art for both
datasets. For CBT-NE, GA Reader with the qe-
comm feature outperforms all previous single and
ensemble models except the AS Reader trained on
the much larger BookTest Corpus (Bajgar et al.,
2016). Lastly, on CBT-CN the GA Reader with
the qe-comm feature outperforms all previously
published single models except the NSE, and AS
Reader trained on a larger corpus. For each of the
4 datasets on which GA achieves the top perfor-
mance, we conducted one-sample proportion tests
to test whether GA is significantly better than the
second-best baseline. The p-values are 0.319 for
CNN, <0.00001 for DailyMail, 0.028 for CBT-
NE, and <0.00001 for WDW. In other words,
GA statistically significantly outperforms all other
baselines on 3 out of those 4 datasets at the 5%

significance level. The results could be even more
significant under paired tests, however we did not
have access to the predictions from the baselines.

4.3 GA Reader Analysis

In this section we do an ablation study to see the
effect of Gated Attention. We compare the GA
Reader as described here to a model which is ex-
actly the same in all aspects, except that it passes
document embeddings D(k) in each layer directly
to the inputs of the next layer without using the
GA module. In other words X(k)

= D(k) for all
k > 0. This model ends up using only one query
GRU at the output layer for selecting the answer
from the document. We compare these two vari-
ants both with and without the qe-comm feature
on CNN and WDW datasets for three subsets of
the training data - 50%, 75% and 100%. Test set
accuracies for these settings are shown in Figure 2.
On CNN when tested without feature engineering,
we observe that GA provides a significant boost
in performance compared to without GA. When
tested with the feature it still gives an improve-
ment, but the improvement is significant only with
100% training data. On WDW-Strict, which is a
third of the size of CNN, without the feature we
see an improvement when using GA versus with-
out using GA, which becomes significant as the
training set size increases. When tested with the
feature on WDW, for a small data size without GA
does better than with GA, but as the dataset size
increases they become equivalent. We conclude
that GA provides a boost in the absence of feature
engineering, or as the training set size increases.

Next we look at the question of how to gate in-
termediate document reader states from the query,
i.e. what operation to use in equation 6. Table
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Table 3: Validation/Test accuracy (%) on CNN, Daily Mail and CBT. Results marked with “†” are cf previously published
works. Results marked with “‡” were obtained by training on a larger training set. Best performance on standard training sets
is in bold, and on larger training sets in italics.

Model CNN Daily Mail CBT-NE CBT-CN

Val Test Val Test Val Test Val Test

Humans (query) † – – – – – 52.0 – 64.4
Humans (context + query) † – – – – – 81.6 – 81.6

LSTMs (context + query) † – – – – 51.2 41.8 62.6 56.0
Deep LSTM Reader † 55.0 57.0 63.3 62.2 – – – –
Attentive Reader † 61.6 63.0 70.5 69.0 – – – –
Impatient Reader † 61.8 63.8 69.0 68.0 – – – –
MemNets † 63.4 66.8 – – 70.4 66.6 64.2 63.0
AS Reader † 68.6 69.5 75.0 73.9 73.8 68.6 68.8 63.4
DER Network † 71.3 72.9 – – – – – –
Stanford AR (relabeling) † 73.8 73.6 77.6 76.6 – – – –
Iterative Attentive Reader † 72.6 73.3 – – 75.2 68.6 72.1 69.2
EpiReader † 73.4 74.0 – – 75.3 69.7 71.5 67.4
AoA Reader † 73.1 74.4 – – 77.8 72.0 72.2 69.4
ReasoNet † 72.9 74.7 77.6 76.6 – – – –
NSE † – – – – 78.2 73.2 74.3 71.9
BiDAF † 76.3 76.9 80.3 79.6 – – – –

MemNets (ensemble) † 66.2 69.4 – – – – – –
AS Reader (ensemble) † 73.9 75.4 78.7 77.7 76.2 71.0 71.1 68.9
Stanford AR (relabeling,ensemble) † 77.2 77.6 80.2 79.2 – – – –
Iterative Attentive Reader (ensemble) † 75.2 76.1 – – 76.9 72.0 74.1 71.0
EpiReader (ensemble) † – – – – 76.6 71.8 73.6 70.6

AS Reader (+BookTest) † ‡ – – – – 80.5 76.2 83.2 80.8
AS Reader (+BookTest,ensemble) † ‡ – – – – 82.3 78.4 85.7 83.7

GA-- 73.0 73.8 76.7 75.7 74.9 69.0 69.0 63.9
GA (update L(w)) 77.9 77.9 81.5 80.9 76.7 70.1 69.8 67.3
GA (fix L(w)) 77.9 77.8 80.4 79.6 77.2 71.4 71.6 68.0
GA (+feature, update L(w)) 77.3 76.9 80.7 80.0 77.2 73.3 73.0 69.8
GA (+feature, fix L(w)) 76.7 77.4 80.0 79.3 78.5 74.9 74.4 70.7

2 (top) shows the performance on WDW dataset
for three common choices – sum (x = d + q),
concatenate (x = dkq) and multiply (x =

d�q). Empirically we find element-wise multipli-
cation does significantly better than the other two,
which justifies our motivation to “filter” out docu-
ment features which are irrelevant to the query.

At the bottom of Table 2 we show the effect of
varying the number of hops K of the GA Reader
on the final performance. We note that for K = 1,
our model is equivalent to the AS Reader with-
out any GA modules. We see a steep and steady
rise in accuracy as the number of hops is increased
from K = 1 to 3, which remains constant beyond

that. This is a common trend in machine learn-
ing as model complexity is increased, however we
note that a multi-hop architecture is important to
achieve a high performance for this task, and pro-
vide further evidence for this in the next section.

4.4 Ablation Study for Model Components

Table 4 shows accuracy on WDW by removing
one component at a time. The steepest reduc-
tion is observed when we replace pretrained GloVe
vectors with those pretrained on the corpus itself.
GloVe vectors were trained on a large corpus of
about 6 billion tokens (Pennington et al., 2014),
and provide an important source of prior knowl-
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Abstract

Standard accuracy metrics indicate that
reading comprehension systems are mak-
ing rapid progress, but the extent to which
these systems truly understand language
remains unclear. To reward systems
with real language understanding abili-
ties, we propose an adversarial evalua-
tion scheme for the Stanford Question An-
swering Dataset (SQuAD). Our method
tests whether systems can answer ques-
tions about paragraphs that contain adver-
sarially inserted sentences, which are au-
tomatically generated to distract computer
systems without changing the correct an-
swer or misleading humans. In this ad-
versarial setting, the accuracy of sixteen
published models drops from an average
of 75% F1 score to 36%; when the ad-
versary is allowed to add ungrammatical
sequences of words, average accuracy on
four models decreases further to 7%. We
hope our insights will motivate the de-
velopment of new models that understand
language more precisely.

1 Introduction

Quantifying the extent to which a computer sys-
tem exhibits intelligent behavior is a longstanding
problem in AI (Levesque, 2013). Today, the stan-
dard paradigm is to measure average error across
a held-out test set. However, models can succeed
in this paradigm by recognizing patterns that hap-
pen to be predictive on most of the test examples,
while ignoring deeper, more difficult phenomena
(Rimell et al., 2009; Paperno et al., 2016).

In this work, we propose adversarial evaluation
for NLP, in which systems are instead evaluated
on adversarially-chosen inputs. We focus on the

Article: Super Bowl 50
Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest quarterback ever to play
in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”
Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Figure 1: An example from the SQuAD dataset.
The BiDAF Ensemble model originally gets the
answer correct, but is fooled by the addition of an
adversarial distracting sentence (in blue).

SQuAD reading comprehension task (Rajpurkar
et al., 2016), in which systems answer questions
about paragraphs from Wikipedia. Reading com-
prehension is an appealing testbed for adversarial
evaluation, as existing models appear successful
by standard average-case evaluation metrics: the
current state-of-the-art system achieves 84.7% F1
score, while human performance is just 91.2%.1

Nonetheless, it seems unlikely that existing sys-
tems possess true language understanding and rea-
soning capabilities.

Carrying out adversarial evaluation on SQuAD
requires new methods that adversarially alter read-
ing comprehension examples. Prior work in com-
puter vision adds imperceptible adversarial pertur-
bations to input images, relying on the fact that
such small perturbations cannot change an image’s
true label (Szegedy et al., 2014; Goodfellow et al.,
2015). In contrast, changing even one word of a

1https://rajpurkar.github.io/
SQuAD-explorer/
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Image Reading
Classification Comprehension

Possible
Input

Tesla moved
to the city of
Chicago in 1880.

Similar
Input

Tadakatsu moved
to the city of
Chicago in 1881.

Semantics Same Different
Model’s Considers the two Considers the two
Mistake to be different to be the same
Model Overly Overly
Weakness sensitive stable

Table 1: Adversarial examples in computer vi-
sion exploit model oversensitivity to small per-
turbations. In contrast, our adversarial examples
work because models do not realize that a small
perturbation can completely change the meaning
of a sentence. Images from Szegedy et al. (2014).

the fraction over which the model is robustly cor-
rect, even in the face of adversarially-chosen alter-
ations. For this quantity to be meaningful, the ad-
versary must satisfy two basic requirements: first,
it should always generate (p0, q0, a0) tuples that are
valid—a human would judge a

0 as the correct an-
swer to q

0 given p

0. Second, (p0, q0, a0) should be
somehow “close” to the original example (p, q, a).

3.2 Semantics-preserving Adversaries
In image classification, adversarial examples are
commonly generated by adding an imperceptible
amount of noise to the input (Szegedy et al., 2014;
Goodfellow et al., 2015). These perturbations do
not change the semantics of the image, but they
can change the predictions of models that are over-
sensitive to semantics-preserving changes. For
language, the direct analogue would be to para-
phrase the input (Madnani and Dorr, 2010). How-
ever, high-precision paraphrase generation is chal-
lenging, as most edits to a sentence do actually
change its meaning.

3.3 Concatenative Adversaries
Instead of relying on paraphrasing, we use pertur-
bations that do alter semantics to build concatena-
tive adversaries, which generate examples of the
form (p + s, q, a) for some sentence s. In other
words, concatenative adversaries add a new sen-
tence to the end of the paragraph, and leave the
question and answer unchanged. Valid adversarial
examples are precisely those for which s does not
contradict the correct answer; we refer to such sen-
tences as being compatible with (p, q, a). We use

semantics-altering perturbations to that ensure that
s is compatible, even though it may have many
words in common with the question q. Existing
models are bad at distinguishing these sentences
from sentences that do in fact address the question,
indicating that they suffer not from oversensitivity
but from overstability to semantics-altering edits.
Table 1 summarizes this important distinction.

The decision to always append s to the end of
p is somewhat arbitrary; we could also prepend
it to the beginning, though this would violate the
expectation of the first sentence being a topic sen-
tence. Both are more likely to preserve the validity
of the example than inserting s in the middle of p,
which runs the risk of breaking coreference links.

Now, we describe two concrete concatenative
adversaries, as well as two variants. ADDSENT,
our main adversary, adds grammatical sentences
that look similar to the question. In contrast,
ADDANY adds arbitrary sequences of English
words, giving it more power to confuse models.
Figure 2 illustrates these two main adversaries.

3.3.1 ADDSENT

ADDSENT uses a four-step procedure to generate
sentences that look similar to the question, but do
not actually contradict the correct answer. Refer
to Figure 2 for an illustration of these steps.

In Step 1, we apply semantics-altering perturba-
tions to the question, in order to guarantee that the
resulting adversarial sentence is compatible. We
replace nouns and adjectives with antonyms from
WordNet (Fellbaum, 1998), and change named en-
tities and numbers to the nearest word in GloVe
word vector space2 (Pennington et al., 2014) with
the same part of speech.3 If no words are changed
during this step, the adversary gives up and im-
mediately returns the original example. For exam-
ple, given the question “What ABC division han-
dles domestic television distribution?”, we would
change “ABC” to “NBC” (a nearby word in vec-
tor space) and “domestic” to “foreign” (a WordNet
antonym), resulting in the question, “What NBC
division handles foreign television distribution?”

In Step 2, we create a fake answer that has the
same “type” as the original answer. We define a set

2 We use 100-dimensional GloVe vectors trained on
Wikipedia and Euclidean distance to define nearby words.

3 We choose the nearest word whose most common gold
POS tag in the Penn Treebank (Marcus et al., 1999) matches
the predicted POS tag of the original word, according to
CoreNLP. If none of the nearest 100 words satisfy this, we
just return the single closest word.
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Article: Nikola Tesla
Paragraph: "In January 1880, two of Tesla's uncles 
put together enough money to help him leave 
Gospi� for Prague where he was to study. 
Unfortunately, he arrived too late to enroll at 
Charles-Ferdinand University; he never studied 
Greek, a required subject; and he was illiterate in 
Czech, another required subject. Tesla did, however, 
attend lectures at the university, although, as an 
auditor, he did not receive grades for the courses."
Question: "What city did Tesla move to in 1880?"
Answer: Prague
Model Predicts: Prague

Tadakatsu moved the city of 
Chicago to in 1881.

Chicago

What city did Tesla move to 
in 1880?

What city did Tadakatsu move to 
in 1881?

Prague

Adversary Adds: Tadakatsu moved to the city 
of Chicago in 1881.
Model Predicts: Chicago

(Step 1)
Mutate

question

(Step 3)
Convert into 
statement

(Step 4)
Fix errors with
crowdworkers, 
verify resulting
sentences with
other crowdworkers

AddSent

spring attention income getting reached

spring attention income other reached

Adversary Adds: tesla move move other george
Model Predicts: george

Repeat many times

Randomly initialize d words:
AddAny

Greedily change one word

(Step 2) 
Generate 

fake answer

Figure 2: An illustration of the ADDSENT and ADDANY adversaries.

of 26 types, corresponding to NER and POS tags
from Stanford CoreNLP (Manning et al., 2014),
plus a few custom categories (e.g., abbreviations),
and manually associate a fake answer with each
type. Given the original answer to a question, we
compute its type and return the corresponding fake
answer. In our running example, the correct an-
swer was not tagged as a named entity, and has
the POS tag NNP, which corresponds to the fake
answer “Central Park.”

In Step 3, we combine the altered question and
fake answer into declarative form, using a set of
roughly 50 manually-defined rules over CoreNLP
constituency parses. For example, “What ABC di-
vision handles domestic television distribution?”
triggers a rule that converts questions of the
form “what/which NP1 VP1 ?” to “The NP1 of
[Answer] VP1”. After incorporating the alter-
ations and fake answer from the previous steps, we
generate the sentence, “The NBC division of Cen-
tral Park handles foreign television distribution.”

The raw sentences generated by Step 3 can be
ungrammatical or otherwise unnatural due to the
incompleteness of our rules and errors in con-
stituency parsing. Therefore, in Step 4, we fix er-
rors in these sentences via crowdsourcing. Each
sentence is edited independently by five workers
on Amazon Mechanical Turk, resulting in up to

five sentences for each raw sentence. Three addi-
tional crowdworkers then filter out sentences that
are ungrammatical or incompatible, resulting in a
smaller (possibly empty) set of human-approved
sentences. The full ADDSENT adversary runs the
model f as a black box on every human-approved
sentence, and picks the one that makes the model
give the worst answer. If there are no human-
approved sentences, the adversary simply returns
the original example.

A model-independent adversary. ADDSENT
requires a small number of queries to the model
under evaluation. To explore the possibility of an
adversary that is completely model-independent,
we also introduce ADDONESENT, which adds
a random human-approved sentence to the para-
graph. In contrast with prior work in computer
vision (Papernot et al., 2017; Narodytska and
Kasiviswanathan, 2016; Moosavi-Dezfooli et al.,
2017), ADDONESENT does not require any access
to the model or to any training data: it generates
adversarial examples based solely on the intuition
that existing models are overly stable.

3.3.2 ADDANY

For ADDANY, the goal is to choose any sequence
of d words, regardless of grammaticality. We use
local search to adversarially choose a distracting
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sentence s = w1w2 . . . wd. Figure 2 shows an
example of ADDANY with d = 5 words; in our
experiments, we use d = 10.

We first initialize words w1, . . . , wd randomly
from a list of common English words.4 Then, we
run 6 epochs of local search, each of which iterates
over the indices i 2 {1, . . . , d} in a random order.
For each i, we randomly generate a set of candi-
date words W as the union of 20 randomly sam-
pled common words and all words in q. For each
x 2 W , we generate the sentence with x in the i-th
position and wj in the j-th position for each j 6= i.
We try adding each sentence to the paragraph and
query the model for its predicted probability distri-
bution over answers. We update wi to be the x that
minimizes the expected value of the F1 score over
the model’s output distribution. We return imme-
diately if the model’s argmax prediction has 0 F1
score. If we do not stop after 3 epochs, we ran-
domly initialize 4 additional word sequences, and
search over all of these random initializations in
parallel.

ADDANY requires significantly more model ac-
cess than ADDSENT: not only does it query the
model many times during the search process, but
it also assumes that the model returns a probabil-
ity distribution over answers, instead of just a sin-
gle prediction. Without this assumption, we would
have to rely on something like the F1 score of the
argmax prediction, which is piecewise constant
and therefore harder to optimize. “Probabilistic”
query access is still weaker than access to gradi-
ents, as is common in computer vision (Szegedy
et al., 2014; Goodfellow et al., 2015).

We do not do anything to ensure that the sen-
tences generated by this search procedure do not
contradict the original answer. In practice, the
generated “sentences” are gibberish that use many
question words but have no semantic content (see
Figure 2 for an example).

Finally, we note that both ADDSENT and
ADDANY try to incorporate words from the ques-
tion into their adversarial sentences. While this is
an obvious way to draw the model’s attention, we
were curious if we could also distract the model
without such a straightforward approach. To this
end, we introduce a variant of ADDANY called
ADDCOMMON, which is exactly like ADDANY
except it only adds common words.

4 We define common words as the 1000 most frequent
words in the Brown corpus (Francis and Kucera, 1979).

Match Match BiDAF BiDAF
Single Ens. Single Ens.

Original 71.4 75.4 75.5 80.0
ADDSENT 27.3 29.4 34.3 34.2
ADDONESENT 39.0 41.8 45.7 46.9
ADDANY 7.6 11.7 4.8 2.7
ADDCOMMON 38.9 51.0 41.7 52.6

Table 2: Adversarial evaluation on the Match-
LSTM and BiDAF systems. All four systems can
be fooled by adversarial examples.

Model Original ADDSENT ADDONESENT
ReasoNet-E 81.1 39.4 49.8
SEDT-E 80.1 35.0 46.5
BiDAF-E 80.0 34.2 46.9
Mnemonic-E 79.1 46.2 55.3
Ruminating 78.8 37.4 47.7
jNet 78.6 37.9 47.0
Mnemonic-S 78.5 46.6 56.0
ReasoNet-S 78.2 39.4 50.3
MPCM-S 77.0 40.3 50.0
SEDT-S 76.9 33.9 44.8
RaSOR 76.2 39.5 49.5
BiDAF-S 75.5 34.3 45.7
Match-E 75.4 29.4 41.8
Match-S 71.4 27.3 39.0
DCR 69.3 37.8 45.1
Logistic 50.4 23.2 30.4

Table 3: ADDSENT and ADDONESENT on all six-
teen models, sorted by F1 score the original exam-
ples. S = single, E = ensemble.

4 Experiments

4.1 Setup

For all experiments, we measure adversarial F1
score (Rajpurkar et al., 2016) across 1000 ran-
domly sampled examples from the SQuAD devel-
opment set (the test set is not publicly available).
Downsampling was helpful because ADDANY
and ADDCOMMON can issue thousands of model
queries per example, making them very slow. As
the effect sizes we measure are large, this down-
sampling does not hurt statistical significance.

4.2 Main Experiments

Table 2 shows the performance of the Match-
LSTM and BiDAF models against all four adver-
saries. Each model incurred a significant accu-
racy drop under every form of adversarial evalua-
tion. ADDSENT made average F1 score across the
four models fall from 75.7% to 31.3%. ADDANY
was even more effective, making average F1 score
fall to 6.7%. ADDONESENT retained much of the
effectiveness of ADDSENT, despite being model-
independent. Finally, ADDCOMMON caused aver-
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Knowledge Base Q&A (Semantic Parsing) 

  Answering question by mapping it to a query (e.g., based 
on logical forms) executable on a structured database 
(here we use our semantic parsers discussed previously) 
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Punctuation location: True if the candidate answer is immediately followed by a
comma, period, quotation marks, semicolon, or exclamation mark.

Sequences of question terms: The length of the longest sequence of question
terms that occurs in the candidate answer.

An alternative approach to answer extraction, used solely in Web search, is
based on N-gram tiling, sometimes called the redundancy-based approach (BrillN-gram tiling

et al. 2002, Lin 2007). This simplified method begins with the snippets returned
from the Web search engine, produced by a reformulated query. In the first step,
N-gram mining, every unigram, bigram, and trigram occurring in the snippet is ex-N-gram mining

tracted and weighted. The weight is a function of the number of snippets in which
the N-gram occurred, and the weight of the query reformulation pattern that re-
turned it. In the N-gram filtering step, N-grams are scored by how well they matchN-gram

filtering
the predicted answer type. These scores are computed by hand-written filters built
for each answer type. Finally, an N-gram tiling algorithm concatenates overlapping
N-gram fragments into longer answers. A standard greedy method is to start with
the highest-scoring candidate and try to tile each other candidate with this candidate.
The best-scoring concatenation is added to the set of candidates, the lower-scoring
candidate is removed, and the process continues until a single answer is built.

For any of these answer-extraction methods, the exact answer phrase can just be
presented to the user by itself, or, more helpfully, accompanied by enough passage
information to provide helpful context.

28.2 Knowledge-based Question Answering

While an enormous amount of information is encoded in the vast amount of text
on the web, information obviously also exists in more structured forms. We use
the term knowledge-based question answering for the idea of answering a natural
language question by mapping it to a query over a structured database. Like the text-
based paradigm for question answering, this approach dates back to the earliest days
of natural language processing, with systems like BASEBALL (Green et al., 1961)
that answered questions from a structured database of baseball games and stats.

Systems for mapping from a text string to any logical form are called semantic
parsers (???). Semantic parsers for question answering usually map either to some
version of predicate calculus or a query language like SQL or SPARQL, as in the
examples in Fig. 28.7.

Question Logical form
When was Ada Lovelace born? birth-year (Ada Lovelace, ?x)

What states border Texas? l x.state(x) ^ borders(x,texas)
What is the largest state argmax(lx.state(x),lx.size(x))
How many people survived the sinking of

the Titanic
(count (!fb:event.disaster.survivors

fb:en.sinking of the titanic))

Figure 28.7 Sample logical forms produced by a semantic parser for question answering. These range from
simple relations like birth-year, or relations normalized to databases like Freebase, to full predicate calculus.

The logical form of the question is thus either in the form of a query or can easily
be converted into one. The database can be a full relational database, or simpler
structured databases like sets of RDF triples. Recall from Chapter 20 that an RDF
triple is a 3-tuple, a predicate with two arguments, expressing some simple relation

[Jurafsky-SLP3] 


