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Automatic Document Summarization 



Single-Document Summarization 
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Statistical NLP
Spring 2011

Lecture 25: Summarization
Dan Klein – UC Berkeley

Document Summarization  Full document to a salient, non-redundant summary of ~100 words 



Multi-Document Summarization 

2

Multi-document Summarization

… 27,000+ more

Extractive Summarization

  Several news sources with articles on the same topic (can use 
overlapping info across articles as a good feature for summarization) 



Extractive Summarization 
  Directly selecting existing sentences from input document instead of 

rewriting them 

2

Multi-document Summarization

… 27,000+ more

Extractive Summarization



Graph-based Extractive Summ 

5

• Maximum Marginal Relevance
• Graph algorithms

mid-‘90s

present ss11

ss33

ss22

ss44
Nodes are sentences

Edges are similarities

Stationary distribution 
represents node centrality

Selection

• Maximum Marginal Relevance
• Graph algorithms
• Word distribution models

mid-‘90s

present

Input document distribution Summary distribution

~
ww PPAA(w)(w)

Obama ?
speech ?
health ?

Montana ?

ww PPDD(w)(w)
Obama 0.017
speech 0.024
health 0.009

Montana 0.002

Selection

[Mihalcea et al., 2004, 2005; inter alia]	



Maximize Concept Coverage 

[Gillick and Favre, 2009]	

15

[Gillick and Favre, 2008]

Universal health care is a divisive issue.

Obama addressed the House on Tuesday.

President Obama remained calm.

conceptconcept valuevalue
obama 3
health 2
house 1

ss11

ss22

ss33

ss44

The health care bill is a major test for the 
Obama administration.

summarysummary lengthlength valuevalue
{s1, s3} 17 5

{s2, s3, s4} 17 6

Length limit: 
18 words

greedy

optimal

Selection

Maximize Concept Coverage

[Gillick and Favre 09]

Optimization problem: Set Coverage

Value of
concept c

Set of concepts 
present in summary sSet of extractive summaries

of document set D

Results
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6.85
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Optimization problem: Set Coverage
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present in summary sSet of extractive summaries

of document set D

Results

2009
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Bigram Recall

2009
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  A set coverage optimization problem 



Maximize Concept Coverage 

[Gillick et al., 2008]	[Gillick and Favre, 2009]	
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[Gillick, Riedhammer, Favre, Hakkani-Tur, 2008]

total concept value

summary length limit

maintain consistency between 
selected sentences and concepts

Integer Linear Program for the maximum coverage model

Selection

[Gillick and Favre, 2009]

This ILP is tractable for reasonable 
problems

Selection

  Can be solved using an integer linear program with constraints: 

ci an indicator for the presence of concept i in the summary, and sj an indicator for the 
presence of sentence j in the summary. We add Occij to indicate the occurrence of 
concept i in sentence j. Equations (1) and (2) ensure the logical consistency of the 
solution: selecting a sentence necessitates selecting all the concepts it contains and 
selecting a concept is only possible if it is present in at least one selected sentence.  



Beyond Extraction: Compression 

[Berg-Kirkpatrick et al., 2011]	
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Problems with Extraction

It is therefore unsurprising that Lindsay pleaded 
not guilty yesterday afternoon to the charges 
filed against her, according to her publicist. 

What would a human do?

Problems with Extraction

It is therefore unsurprising that Lindsay pleaded 
not guilty yesterday afternoon to the charges 
filed against her, according to her publicist. 

What would a human do?

  If you had to write a concise summary, making effective use of the 
100-word limit, you would remove some information from the lengthy 
sentences in the original article 



Beyond Extraction: Compression 
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Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]
[Berg-Kirkpatrick et al., 2011]	

  Model should learn the subtree deletions/cuts that allow compression 



Beyond Extraction: Compression 

[Berg-Kirkpatrick et al., 2011]	
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Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

New Optimization problem: Safe Deletions

Set branch cut deletions
made in creating summary s

Value of
deletion d

How do we know how much a given deletion costs?

  Model should learn the subtree deletions/cuts that allow compression 



Beyond Extraction: Compression 

[Berg-Kirkpatrick et al., 2011]	
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Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

New Optimization problem: Safe Deletions

Set branch cut deletions
made in creating summary s

Value of
deletion d

How do we know how much a given deletion costs?

  The new optimization problem looks to maximize the concept values 
as well as safe deletion values in the candidate summary: 

  To decide the value/cost of a deletion, we decide relevant deletion 
features and the model learns their weights: 

21

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

New Optimization problem: Safe Deletions

Set branch cut deletions
made in creating summary s

Value of
deletion d

How do we know how much a given deletion costs?



Beyond Extraction: Compression 

[Berg-Kirkpatrick et al., 2011]	

Features

COUNT: Bucketed document counts

STOP: Stop word indicators

POSITION: First document position 
indicators

CONJ: All two- and three-way 
conjunctions of above

BIAS: Always one

f(b)Bigram Features Cut Features f(c)

COORD: Coordinated phrase, four 
versions: NP,  VP,  S,  SBAR

S-ADJUNCT: Adjunct to matrix verb, 
four versions:  CC,  PP, 
ADVP,  SBAR

REL-C: Relative clause indicator

ATTR-C: Attribution clause indicator

ATTR-PP: PP attribution indicator

TEMP-PP: Temporal PP indicator

TEMP-NP Temporal NP indicator

BIAS: Always one

  Some example features for concept bigrams and cuts/deletions: 



Neural Abstractive Summarization 

  Mostly based on sequence-to-sequence RNN models 

  Later added attention, coverage, pointer/copy, hierarchical encoder/
attention, metric rewards RL, etc. 

  Examples: Rush et al., 2015; Nallapati et al., 2016; See et al., 2017; 
Paulus et al., 2017 



Feature-Augmented Encoder-Decoder 

tion 3 contextualizes our models with respect to
closely related work on the topic of abstractive text
summarization. We present the results of our ex-
periments on three different data sets in Section 4.
We also present some qualitative analysis of the
output from our models in Section 5 before con-
cluding the paper with remarks on our future di-
rection in Section 6.

2 Models

In this section, we first describe the basic encoder-
decoder RNN that serves as our baseline and then
propose several novel models for summarization,
each addressing a specific weakness in the base-
line.

2.1 Encoder-Decoder RNN with Attention
and Large Vocabulary Trick

Our baseline model corresponds to the neural ma-
chine translation model used in Bahdanau et al.
(2014). The encoder consists of a bidirectional
GRU-RNN (Chung et al., 2014), while the decoder
consists of a uni-directional GRU-RNN with the
same hidden-state size as that of the encoder, and
an attention mechanism over the source-hidden
states and a soft-max layer over target vocabu-
lary to generate words. In the interest of space,
we refer the reader to the original paper for a de-
tailed treatment of this model. In addition to the
basic model, we also adapted to the summariza-
tion problem, the large vocabulary ‘trick’ (LVT)
described in Jean et al. (2014). In our approach,
the decoder-vocabulary of each mini-batch is re-
stricted to words in the source documents of that
batch. In addition, the most frequent words in the
target dictionary are added until the vocabulary
reaches a fixed size. The aim of this technique
is to reduce the size of the soft-max layer of the
decoder which is the main computational bottle-
neck. In addition, this technique also speeds up
convergence by focusing the modeling effort only
on the words that are essential to a given example.
This technique is particularly well suited to sum-
marization since a large proportion of the words in
the summary come from the source document in
any case.

2.2 Capturing Keywords using Feature-rich
Encoder

In summarization, one of the key challenges is to
identify the key concepts and key entities in the

document, around which the story revolves. In
order to accomplish this goal, we may need to
go beyond the word-embeddings-based represen-
tation of the input document and capture addi-
tional linguistic features such as parts-of-speech
tags, named-entity tags, and TF and IDF statis-
tics of the words. We therefore create additional
look-up based embedding matrices for the vocab-
ulary of each tag-type, similar to the embeddings
for words. For continuous features such as TF
and IDF, we convert them into categorical values
by discretizing them into a fixed number of bins,
and use one-hot representations to indicate the bin
number they fall into. This allows us to map them
into an embeddings matrix like any other tag-type.
Finally, for each word in the source document, we
simply look-up its embeddings from all of its as-
sociated tags and concatenate them into a single
long vector, as shown in Fig. 1. On the target side,
we continue to use only word-based embeddings
as the representation.
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Figure 1: Feature-rich-encoder: We use one embedding
vector each for POS, NER tags and discretized TF and IDF
values, which are concatenated together with word-based em-
beddings as input to the encoder.

2.3 Modeling Rare/Unseen Words using
Switching Generator-Pointer

Often-times in summarization, the keywords or
named-entities in a test document that are central
to the summary may actually be unseen or rare
with respect to training data. Since the vocabulary
of the decoder is fixed at training time, it cannot
emit these unseen words. Instead, a most common
way of handling these out-of-vocabulary (OOV)
words is to emit an ‘UNK’ token as a placeholder.
However this does not result in legible summaries.
In summarization, an intuitive way to handle such
OOV words is to simply point to their location in
the source document instead. We model this no-

[Nallapati et al., 2016]	



Generation+Copying 

[Nallapati et al., 2016]	

tion using our novel switching decoder/pointer ar-
chitecture which is graphically represented in Fig-
ure 2. In this model, the decoder is equipped with
a ‘switch’ that decides between using the genera-
tor or a pointer at every time-step. If the switch
is turned on, the decoder produces a word from its
target vocabulary in the normal fashion. However,
if the switch is turned off, the decoder instead gen-
erates a pointer to one of the word-positions in the
source. The word at the pointer-location is then
copied into the summary. The switch is modeled
as a sigmoid activation function over a linear layer
based on the entire available context at each time-
step as shown below.

P (si = 1) = �(vs · (Ws
hhi +Ws

eE[oi�1]

+ Ws
cci + bs)),

where P (si = 1) is the probability of the switch
turning on at the ith time-step of the decoder, hi

is the hidden state, E[oi�1] is the embedding vec-
tor of the emission from the previous time step,
ci is the attention-weighted context vector, and
Ws

h,W
s
e,W

s
c ,b

s and vs are the switch parame-
ters. We use attention distribution over word posi-
tions in the document as the distribution to sample
the pointer from.

P a
i (j) / exp(va · (Wa

hhi�1 +Wa
eE[oi�1]

+ Wa
ch

d
j + ba)),

pi = argmax
j

(P a
i (j)) for j 2 {1, . . . , Nd}.

In the above equation, pi is the pointer value at
ith word-position in the summary, sampled from
the attention distribution Pa

i over the document
word-positions j 2 {1, . . . , Nd}, where P a

i (j) is
the probability of the ith time-step in the decoder
pointing to the jth position in the document, and
hd
j is the encoder’s hidden state at position j.
At training time, we provide the model with ex-

plicit pointer information whenever the summary
word does not exist in the target vocabulary. When
the OOV word in summary occurs in multiple doc-
ument positions, we break the tie in favor of its
first occurrence. At training time, we optimize the
conditional log-likelihood shown below, with ad-
ditional regularization penalties.

logP (y|x) =
X

i

(gi log{P (yi|y�i,x)P (si)}

+(1� gi) log{P (p(i)|y�i,x)(1� P (si))})

where y and x are the summary and document
words respectively, gi is an indicator function that

is set to 0 whenever the word at position i in the
summary is OOV with respect to the decoder vo-
cabulary. At test time, the model decides automat-
ically at each time-step whether to generate or to
point, based on the estimated switch probability
P (si). We simply use the argmax of the poste-
rior probability of generation or pointing to gener-
ate the best output at each time step.

The pointer mechanism may be more robust in
handling rare words because it uses the encoder’s
hidden-state representation of rare words to decide
which word from the document to point to. Since
the hidden state depends on the entire context of
the word, the model is able to accurately point to
unseen words although they do not appear in the
target vocabulary.1
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Figure 2: Switching generator/pointer model: When the
switch shows ’G’, the traditional generator consisting of the
softmax layer is used to produce a word, and when it shows
’P’, the pointer network is activated to copy the word from
one of the source document positions. When the pointer is
activated, the embedding from the source is used as input for
the next time-step as shown by the arrow from the encoder to
the decoder at the bottom.

2.4 Capturing Hierarchical Document
Structure with Hierarchical Attention

In datasets where the source document is very
long, in addition to identifying the keywords in
the document, it is also important to identify the
key sentences from which the summary can be
drawn. This model aims to capture this notion of
two levels of importance using two bi-directional

1Even when the word does not exist in the source vocabu-
lary, the pointer model may still be able to identify the correct
position of the word in the source since it takes into account
the contextual representation of the corresponding ’UNK’ to-
ken encoded by the RNN. Once the position is known, the
corresponding token from the source document can be dis-
played in the summary even when it is not part of the training
vocabulary either on the source side or the target side.



Hierarchical Attention 

[Nallapati et al., 2016]	

RNNs on the source side, one at the word level
and the other at the sentence level. The attention
mechanism operates at both levels simultaneously.
The word-level attention is further re-weighted by
the corresponding sentence-level attention and re-
normalized as shown below:

P a(j) =
P a
w(j)P

a
s (s(j))PNd

k=1 P
a
w(k)P

a
s (s(k))

,

where P a
w(j) is the word-level attention weight at

jth position of the source document, and s(j) is
the ID of the sentence at jth word position, P a

s (l)
is the sentence-level attention weight for the lth

sentence in the source, Nd is the number of words
in the source document, and P a(j) is the re-scaled
attention at the jth word position. The re-scaled
attention is then used to compute the attention-
weighted context vector that goes as input to the
hidden state of the decoder. Further, we also con-
catenate additional positional embeddings to the
hidden state of the sentence-level RNN to model
positional importance of sentences in the docu-
ment. This architecture therefore models key sen-
tences as well as keywords within those sentences
jointly. A graphical representation of this model is
displayed in Figure 3.
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Figure 3: Hierarchical encoder with hierarchical attention:
the attention weights at the word level, represented by the
dashed arrows are re-scaled by the corresponding sentence-
level attention weights, represented by the dotted arrows.
The dashed boxes at the bottom of the top layer RNN rep-
resent sentence-level positional embeddings concatenated to
the corresponding hidden states.

3 Related Work

A vast majority of past work in summarization
has been extractive, which consists of identify-
ing key sentences or passages in the source doc-
ument and reproducing them as summary (Neto et

al., 2002; Erkan and Radev, 2004; Wong et al.,
2008a; Filippova and Altun, 2013; Colmenares et
al., 2015; Litvak and Last, 2008; K. Riedhammer
and Hakkani-Tur, 2010; Ricardo Ribeiro, 2013).

Humans on the other hand, tend to paraphrase
the original story in their own words. As such, hu-
man summaries are abstractive in nature and sel-
dom consist of reproduction of original sentences
from the document. The task of abstractive sum-
marization has been standardized using the DUC-
2003 and DUC-2004 competitions.2 The data for
these tasks consists of news stories from various
topics with multiple reference summaries per story
generated by humans. The best performing system
on the DUC-2004 task, called TOPIARY (Zajic
et al., 2004), used a combination of linguistically
motivated compression techniques, and an unsu-
pervised topic detection algorithm that appends
keywords extracted from the article onto the com-
pressed output. Some of the other notable work in
the task of abstractive summarization includes us-
ing traditional phrase-table based machine transla-
tion approaches (Banko et al., 2000), compression
using weighted tree-transformation rules (Cohn
and Lapata, 2008) and quasi-synchronous gram-
mar approaches (Woodsend et al., 2010).

With the emergence of deep learning as a viable
alternative for many NLP tasks (Collobert et al.,
2011), researchers have started considering this
framework as an attractive, fully data-driven alter-
native to abstractive summarization. In Rush et
al. (2015), the authors use convolutional models
to encode the source, and a context-sensitive at-
tentional feed-forward neural network to generate
the summary, producing state-of-the-art results on
Gigaword and DUC datasets. In an extension to
this work, Chopra et al. (2016) used a similar con-
volutional model for the encoder, but replaced the
decoder with an RNN, producing further improve-
ment in performance on both datasets.

In another paper that is closely related to our
work, Hu et al. (2015) introduce a large dataset
for Chinese short text summarization. They show
promising results on their Chinese dataset using
an encoder-decoder RNN, but do not report exper-
iments on English corpora.

In another very recent work, Cheng and Lapata
(2016) used RNN based encoder-decoder for ex-
tractive summarization of documents. This model
is not directly comparable to ours since their

2http://duc.nist.gov/



Pointer-Generator Networks 

[See et al., 2017]	
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Pointer-Generator Networks 

[See et al., 2017]	
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Pointer-Generator Networks 

[See et al., 2017]	
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Coverage for Redundancy Reduction 

[See et al., 2017]	
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Guest Talk by Ramakanth Pasunuru: 
 

“Soft, Layer-Specific Multi-Task Summarization with 
Entailment and Question Generation” (ACL 2018) 

 
“Multi-Reward Reinforced Summarization with Saliency 

and Entailment” (NAACL 2018) 
 

(20 mins) 



Topic:  
Abstractive Summarization with Multi-Task Learning and 

Reinforcement Learning

1

(presented by Ramakanth Pasunuru) 



2

Multi-Task Learning

(slides by Ramakanth Pasunuru)



3

• Multi-task Learning (MTL) is an 
inductive transfer mechanism 
which leverages information from 
related tasks to improve the 
primary model’s generalization 
performance.


• It achieves this goal by training 
multiple tasks in parallel while 
sharing representations, where 
the training signals from the 
auxiliary tasks can help improve the 
performance of the primary task.  

Multi-Task Learning

[Caruana, 1998; Argyriou et al., 2007; Kumar and Daume, 2012; Luong et al., 2016]

(slides by Ramakanth Pasunuru)
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Previous Work

[Luong et al., 2016]

Published as a conference paper at ICLR 2016

English (unsupervised)

German (translation)

Tags (parsing)English

Figure 2: One-to-many Setting – one encoder, multiple decoders. This scheme is useful for either
multi-target translation as in Dong et al. (2015) or between different tasks. Here, English and Ger-
man imply sequences of words in the respective languages. The α values give the proportions of
parameter updates that are allocated for the different tasks.

for constituency parsing as used in (Vinyals et al., 2015a), (b) a sequence of German words for ma-
chine translation (Luong et al., 2015a), and (c) the same sequence of English words for autoencoders
or a related sequence of English words for the skip-thought objective (Kiros et al., 2015).

3.2 MANY-TO-ONE SETTING

This scheme is the opposite of the one-to-many setting. As illustrated in Figure 3, it consists of mul-
tiple encoders and one decoder. This is useful for tasks in which only the decoder can be shared, for
example, when our tasks include machine translation and image caption generation (Vinyals et al.,
2015b). In addition, from a machine translation perspective, this setting can benefit from a large
amount of monolingual data on the target side, which is a standard practice in machine translation
system and has also been explored for neural MT by Gulcehre et al. (2015).

English (unsupervised)

Image (captioning) English

German (translation)

Figure 3: Many-to-one setting – multiple encoders, one decoder. This scheme is handy for tasks in
which only the decoders can be shared.

3.3 MANY-TO-MANY SETTING

Lastly, as the name describes, this category is the most general one, consisting of multiple encoders
and multiple decoders. We will explore this scheme in a translation setting that involves sharing
multiple encoders and multiple decoders. In addition to the machine translation task, we will include
two unsupervised objectives over the source and target languages as illustrated in Figure 4.

3.4 UNSUPERVISED LEARNING TASKS

Our very first unsupervised learning task involves learning autoencoders from monolingual corpora,
which has recently been applied to sequence to sequence learning (Dai & Le, 2015). However, in
Dai & Le (2015)’s work, the authors only experiment with pretraining and then finetuning, but not
joint training which can be viewed as a form of multi-task learning (MTL). As such, we are very
interested in knowing whether the same trend extends to our MTL settings.

Additionally, we investigate the use of the skip-thought vectors (Kiros et al., 2015) in the context of
our MTL framework. Skip-thought vectors are trained by training sequence to sequence models on
pairs of consecutive sentences, which makes the skip-thought objective a natural seq2seq learning
candidate. A minor technical difficulty with skip-thought objective is that the training data must
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Abstract

Transfer and multi-task learning have
traditionally focused on either a single
source-target pair or very few, similar
tasks. Ideally, the linguistic levels of mor-
phology, syntax and semantics would ben-
efit each other by being trained in a sin-
gle model. We introduce a joint many-task
model together with a strategy for succes-
sively growing its depth to solve increas-
ingly complex tasks. Higher layers in-
clude shortcut connections to lower-level
task predictions to reflect linguistic hierar-
chies. We use a simple regularization term
to allow for optimizing all model weights
to improve one task’s loss without exhibit-
ing catastrophic interference of the other
tasks. Our single end-to-end model ob-
tains state-of-the-art or competitive results
on five different tasks from tagging, pars-
ing, relatedness, and entailment tasks.

1 Introduction

The potential for leveraging multiple levels of
representation has been demonstrated in various
ways in the field of Natural Language Processing
(NLP). For example, Part-Of-Speech (POS) tags
are used for syntactic parsers. The parsers are used
to improve higher-level tasks, such as natural lan-
guage inference (Chen et al., 2016) and machine
translation (Eriguchi et al., 2016). These systems
are often pipelines and not trained end-to-end.

Deep NLP models have yet shown benefits from
predicting many increasingly complex tasks each
at a successively deeper layer. Existing models
often ignore linguistic hierarchies by predicting

⇤ Work was done while the first author was an intern at
Salesforce Research.

†Corresponding author.
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Figure 1: Overview of the joint many-task model
predicting different linguistic outputs at succes-
sively deeper layers.

different tasks either entirely separately or at the
same depth (Collobert et al., 2011).

We introduce a Joint Many-Task (JMT) model,
outlined in Figure 1, which predicts increasingly
complex NLP tasks at successively deeper lay-
ers. Unlike traditional pipeline systems, our sin-
gle JMT model can be trained end-to-end for POS
tagging, chunking, dependency parsing, semantic
relatedness, and textual entailment, by consider-
ing linguistic hierarchies. We propose an adaptive
training and regularization strategy to grow this
model in its depth. With the help of this strat-
egy we avoid catastrophic interference between
the tasks. Our model is motivated by Søgaard and
Goldberg (2016) who showed that predicting two
different tasks is more accurate when performed in
different layers than in the same layer (Collobert
et al., 2011). Experimental results show that our
single model achieves competitive results for all
of the five different tasks, demonstrating that us-
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Input Document: celtic have written to the scottish football association in order to gain an ‘ under-
standing óf the refereeing decisions during their scottish cup semi-final defeat by inverness on sunday
. the hoops were left outraged by referee steven mclean ś failure to award a penalty or red card for a
clear handball in the box by josh meekings to deny leigh griffith ś goal-bound shot during the first-half
. caley thistle went on to win the game 3-2 after extra-time and denied rory delia ś men the chance
to secure a domestic treble this season . celtic striker leigh griffiths has a goal-bound shot blocked
by the outstretched arm of josh meekings . celtic ś adam matthews -lrb- right -rrb- slides in with a
strong challenge on nick ross in the scottish cup semi-final . ‘ given the level of reaction from our sup-
porters and across football , we are duty bound to seek an understanding of what actually happened
, ćeltic said in a statement . they added , ‘ we have not been given any other specific explanation
so far and this is simply to understand the circumstances of what went on and why such an obvious
error was made . h́owever , the parkhead outfit made a point of congratulating their opponents , who
have reached the first-ever scottish cup final in their history , describing caley as a ‘ fantastic club
ánd saying ‘ reaching the final is a great achievement . ćeltic had taken the lead in the semi-final
through defender virgil van dijk ś curling free-kick on 18 minutes , but were unable to double that lead
thanks to the meekings controversy . it allowed inverness a route back into the game and celtic had
goalkeeper craig gordon sent off after the restart for scything down marley watkins in the area . greg
tansey duly converted the resulting penalty . edward ofere then put caley thistle ahead , only for john
guidetti to draw level for the bhoys . with the game seemingly heading for penalties , david raven
scored the winner on 117 minutes , breaking thousands of celtic hearts . celtic captain scott brown
-lrb- left -rrb- protests to referee steven mclean but the handball goes unpunished . griffiths shows off
his acrobatic skills during celtic ś eventual surprise defeat by inverness . celtic pair aleksandar tonev
-lrb- left -rrb- and john guidetti look dejected as their hopes of a domestic treble end .
Ground-truth: celtic were defeated 3-2 after extra-time in the scottish cup semi-final .
leigh griffiths had a goal-bound shot blocked by a clear handball. however, no action was taken

against offender josh meekings . the hoops have written the sfa for an ’understanding’ of the
decision .
See et al. (2017): john hartson was once on the end of a major hampden injustice while playing
for celtic . but he can not see any point in his old club writing to the scottish football association over
the latest controversy at the national stadium . hartson had a goal wrongly disallowed for offside
while celtic were leading 1-0 at the time but went on to lose 3-2 .
Our Baseline: john hartson scored the late winner in 3-2 win against celtic . celtic were leading
1-0 at the time but went on to lose 3-2 . some fans have questioned how referee steven mclean and
additional assistant alan muir could have missed the infringement .

Multi-task: celtic have written to the scottish football association in order to gain an ‘ understand-
ing ’ of the refereeing decisions . the hoops were left outraged by referee steven mclean ’s failure
to award a penalty or red card for a clear handball in the box by josh meekings . celtic striker
leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings .

Figure 3: Example of summaries generated by See et al. (2017), our baseline, and 3-way multi-task model
with summarization and both entailment generation and question generation. The boxed-red highlighted
words/phrases are not present in the input source document in any paraphrasing form. All the unboxed-
green highlighted words/phrases correspond to the salient information. See detailed discussion in Fig.
1 and Fig. 2 above. As shown, the outputs from See et al. (2017) and the baseline both include non-
entailed words/phrases (e.g. “john hartson”), as well as they missed salient information (“hoops”, “josh
meekings”, “leigh griffiths”) in their output summaries. Our multi-task model, however, manages to
accomplish both, i.e., cover more salient information and also avoid unrelated information.

• An accurate abstractive summary of a 
document should contain all its salient 
information and should be logically entailed by 
the input document.


[Pasunuru, Guo, & Bansal, ACL 2018](slides by Ramakanth Pasunuru)
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• An accurate abstractive summary of a 
document should contain all its salient 
information and should be logically entailed by 
the input document.


[Pasunuru, Guo, & Bansal, ACL 2018]

• We improve these via multi-task learning with 
auxiliary tasks of question generation and 
entailment generation.


• Question Generation teaches the 
summarization model how to look for salient 
questioning-worthy details.


• Entailment Generation teaches the model how 
to rewrite a summary which is a directed-
logical subset of the input document.

(slides by Ramakanth Pasunuru)
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Figure 2: Baseline sequence-to-sequence model with attention. The model may attend to relevant words
in the source text to generate novel words, e.g., to produce the novel word beat in the abstractive summary
Germany beat Argentina 2-0 the model may attend to the words victorious and win in the source text.

et al., 2014), in which recurrent neural networks
(RNNs) both read and freely generate text, has
made abstractive summarization viable (Chopra
et al., 2016; Nallapati et al., 2016; Rush et al.,
2015; Zeng et al., 2016). Though these systems
are promising, they exhibit undesirable behavior
such as inaccurately reproducing factual details,
an inability to deal with out-of-vocabulary (OOV)
words, and repeating themselves (see Figure 1).

In this paper we present an architecture that
addresses these three issues in the context of
multi-sentence summaries. While most recent ab-
stractive work has focused on headline genera-
tion tasks (reducing one or two sentences to a
single headline), we believe that longer-text sum-
marization is both more challenging (requiring
higher levels of abstraction while avoiding repe-
tition) and ultimately more useful. Therefore we
apply our model to the recently-introduced CNN/
Daily Mail dataset (Hermann et al., 2015; Nallap-
ati et al., 2016), which contains news articles (39
sentences on average) paired with multi-sentence
summaries, and show that we outperform the state-
of-the-art abstractive system by at least 2 ROUGE
points.

Our hybrid pointer-generator network facili-
tates copying words from the source text via point-
ing (Vinyals et al., 2015), which improves accu-
racy and handling of OOV words, while retaining
the ability to generate new words. The network,
which can be viewed as a balance between extrac-
tive and abstractive approaches, is similar to Gu
et al.’s (2016) CopyNet and Miao and Blunsom’s
(2016) Forced-Attention Sentence Compression,

that were applied to short-text summarization. We
propose a novel variant of the coverage vector (Tu
et al., 2016) from Neural Machine Translation,
which we use to track and control coverage of the
source document. We show that coverage is re-
markably effective for eliminating repetition.

2 Our Models

In this section we describe (1) our baseline
sequence-to-sequence model, (2) our pointer-
generator model, and (3) our coverage mechanism
that can be added to either of the first two models.
The code for our models is available online.1

2.1 Sequence-to-sequence attentional model
Our baseline model is similar to that of Nallapati
et al. (2016), and is depicted in Figure 2. The to-
kens of the article wi are fed one-by-one into the
encoder (a single-layer bidirectional LSTM), pro-
ducing a sequence of encoder hidden states hi. On
each step t, the decoder (a single-layer unidirec-
tional LSTM) receives the word embedding of the
previous word (while training, this is the previous
word of the reference summary; at test time it is
the previous word emitted by the decoder), and
has decoder state st . The attention distribution at

is calculated as in Bahdanau et al. (2015):

et
i = vT tanh(Whhi +Wsst +battn) (1)

at = softmax(et) (2)

where v, Wh, Ws and battn are learnable parame-
ters. The attention distribution can be viewed as

1
www.github.com/abisee/pointer-generator

Summarization Model

[See et al., 2017]

(slides by Ramakanth Pasunuru)



Auxiliary Task: Question Generation

8

• The task of question generation is to generate a 
question from a given input sentence, which in 
turn is related to the skill of being able to find the 
important salient information to ask questions 
about the sentence.


• A good summary should also be able to find and 
extract all the salient information in the given 
source document, and hence we incorporate 
such capabilities into our abstractive text 
summarization model by multi-task learning it 
with a question generation task, sharing some 
common parameters/representations.


Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1342–1352
Vancouver, Canada, July 30 - August 4, 2017. c�2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1123

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1342–1352
Vancouver, Canada, July 30 - August 4, 2017. c�2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1123

Learning to Ask: Neural Question Generation for
Reading Comprehension

Xinya Du1 Junru Shao2 Claire Cardie1

1Department of Computer Science, Cornell University
2Zhiyuan College, Shanghai Jiao Tong University

{xdu, cardie}@cs.cornell.edu yz_sjr@sjtu.edu.cn

Abstract

We study automatic question generation
for sentences from text passages in read-
ing comprehension. We introduce an
attention-based sequence learning model
for the task and investigate the effect of en-
coding sentence- vs. paragraph-level infor-
mation. In contrast to all previous work,
our model does not rely on hand-crafted
rules or a sophisticated NLP pipeline; it is
instead trainable end-to-end via sequence-
to-sequence learning. Automatic evalu-
ation results show that our system sig-
nificantly outperforms the state-of-the-art
rule-based system. In human evaluations,
questions generated by our system are also
rated as being more natural (i.e., grammat-
icality, fluency) and as more difficult to an-
swer (in terms of syntactic and lexical di-
vergence from the original text and reason-
ing needed to answer).

1 Introduction

Question generation (QG) aims to create natu-
ral questions from a given a sentence or para-
graph. One key application of question generation
is in the area of education — to generate ques-
tions for reading comprehension materials (Heil-
man and Smith, 2010). Figure 1, for example,
shows three manually generated questions that test
a user’s understanding of the associated text pas-
sage. Question generation systems can also be de-
ployed as chatbot components (e.g., asking ques-
tions to start a conversation or to request feed-
back (Mostafazadeh et al., 2016)) or, arguably, as
a clinical tool for evaluating or improving mental
health (Weizenbaum, 1966; Colby et al., 1971).

In addition to the above applications, question
generation systems can aid in the development of

Sentence:
Oxygen is used in cellular respiration and re-

leased by photosynthesis, which uses the en-

ergy of sunlight to produce oxygen from water.

Questions:
– What life process produces oxygen in the

presence of light?

photosynthesis

– Photosynthesis uses which energy to form

oxygen from water?

sunlight

– From what does photosynthesis get oxygen?

water

Figure 1: Sample sentence from the second para-
graph of the article Oxygen, along with the natural
questions and their answers.

annotated data sets for natural language process-
ing (NLP) research in reading comprehension and
question answering. Indeed the creation of such
datasets, e.g., SQuAD (Rajpurkar et al., 2016) and
MS MARCO (Nguyen et al., 2016), has spurred
research in these areas.

For the most part, question generation has been
tackled in the past via rule-based approaches
(e.g., Mitkov and Ha (2003); Rus et al. (2010).
The success of these approaches hinges criti-
cally on the existence of well-designed rules for
declarative-to-interrogative sentence transforma-
tion, typically based on deep linguistic knowledge.

To improve over a purely rule-based sys-
tem, Heilman and Smith (2010) introduced an
overgenerate-and-rank approach that generates
multiple questions from an input sentence using
a rule-based approach and then ranks them us-
ing a supervised learning-based ranker. Although
the ranking algorithm helps to produce more ac-

1342

[Rajpurkar et al., 2016; Du et al., 2017]
Image Credits: Du et al., 2017

[Pasunuru, Guo, & Bansal, ACL 2018](slides by Ramakanth Pasunuru)
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• Directional, logical-implication relation between two sentences:

• Premise:   A girl is jumping on skateboard in the middle of a red bridge. 

• Entailment:   The girl does a skateboarding trick.  
• Contradiction:  The girl skates down the sidewalk. 

• Neutral:   The girl is wearing safety equipment. 


• Premise:   A blond woman is drinking from a public fountain. 

• Entailment:  The woman is drinking water. 

• Contradiction:  The woman is drinking coffee. 

• Neutral:   The woman is very thirsty. 

[Pasunuru, Guo, & Bansal, ACL 2018](slides by Ramakanth Pasunuru)
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• Neutral:   The woman is very thirsty. 

[Pasunuru, Guo, & Bansal, ACL 2018]

• The task of entailment generation is to generate a hypothesis which is entailed by (or 
logically follows from) the given premise as input.


• In summarization, the generation decoder also needs to generate a summary that is 
entailed by the source document, i.e., does not contain any contradictory or 
unrelated/extraneous information as compared to the input document.


(slides by Ramakanth Pasunuru)
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• QG stands for Question Generation


• SG stands for Summary Generation


• EG stands for Entailment Generation

[Pasunuru, Guo, & Bansal, ACL 2018](slides by Ramakanth Pasunuru)
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• Belinkov et al. (2017) observed that 
lower layers of RNN cells in a seq2seq 
machine translation model learn to 
represent word structure, while higher 
layers are more focused on high-level 
semantic meanings. 


• We believe that these tasks have 
different training data distributions and 
low-level representations, they can still 
benefit from sharing their models’ high-
level components. 


• Thus, we keep the lower-level layer of 
the 2-layer encoder/decoder of all three 
tasks unshared, while we share the 
higher layer across the three tasks.

[Pasunuru, Guo, & Bansal, ACL 2018](slides by Ramakanth Pasunuru)
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• Hard-sharing: In the most common multi-task 
learning hard-sharing approach, the parameters 
to be shared are forced to be the same. As a 
result, gradient information from multiple tasks 
will directly pass through shared parameters, 
hence forcing a common space representation 
for all the related tasks.


• Soft-sharing: We encourage shared parameters 
to be close in representation space by 
penalizing their L2 distances. Unlike hard 
sharing, this approach gives more flexibility for 
the tasks by only loosely coupling the shared 
space representations.

Image Credits: [7]
[Duong et al., 2015; Yang & Hospedales, 2017]

TaskA TaskB TaskC

Shared  
Layers

Task-Specific  
Layers

TaskA TaskB TaskC

Constrained 
Layers

[Pasunuru, Guo, & Bansal, ACL 2018](slides by Ramakanth Pasunuru)
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Models ROUGE-1 ROUGE-2 ROUGE-L METEOR
PREVIOUS WORK

Seq2Seq(50k vocab) (See et al., 2017) 31.33 11.81 28.83 12.03
Pointer (See et al., 2017) 36.44 15.66 33.42 15.35
Pointer+Coverage (See et al., 2017) ? 39.53 17.28 36.38 18.72
Pointer+Coverage (See et al., 2017) † 38.82 16.81 35.71 18.14

OUR MODELS
Two-Layer Baseline (Pointer+Coverage) ⌦ 39.56 17.52 36.36 18.17
⌦ + Entailment Generation 39.84 17.63 36.54 18.61
⌦ + Question Generation 39.73 17.59 36.48 18.33
⌦ + Entailment Gen. + Question Gen. 39.81 17.64 36.54 18.54

Table 1: CNN/DailyMail summarization results. ROUGE scores are full length F-1 (as previous work).
All the multi-task improvements are statistically significant over the state-of-the-art baseline.

proval rate greater than 95%, and had at least
10,000 approved HITs. For the pairwise model
comparisons discussed in Sec. 6.2, we showed the
annotators the input article, the ground truth sum-
mary, and the two model summaries (randomly
shuffled to anonymize model identities) – we then
asked them to choose the better among the two
model summaries or choose ‘Not-Distinguishable’
if both summaries are equally good/bad. In-
structions for relevance were defined based on
the summary containing salient/important infor-
mation from the given article, being correct
(i.e., avoiding contradictory/unrelated informa-
tion), and avoiding redundancy. Instructions for
readability were based on the summary’s fluency,
grammaticality, and coherence.

Training Details All our soft/hard and layer-
specific sharing decisions were made on the val-
idation/development set. Details of RNN hidden
state sizes, Adam optimizer, mixing ratios, etc. are
provided in the supplementary for reproducibility.

6 Results

6.1 Summarization (Primary Task) Results

Pointer+Coverage Baseline We start from the
strong model of See et al. (2017).3 Table 1 shows
that our baseline model performs better than or
comparable to See et al. (2017).4 On Gigaword
dataset, our baseline model (with pointer only,
since coverage not needed for this single-sentence
summarization task) performs better than all pre-
vious works, as shown in Table 2.

3We use two layers so as to allow our high- versus low-
level layer sharing intuition. Note that this does not increase
the parameter size much (23M versus 22M for See et al.
(2017)).

4As mentioned in the github for See et al. (2017), their
publicly released pretrained model produces the lower scores
that we represent by † in Table 1.

Models R-1 R-2 R-L
PREVIOUS WORK

ABS+ (Rush et al., 2015) 29.76 11.88 26.96
RAS-El (Chopra et al., 2016) 33.78 15.97 31.15
lvt2k (Nallapati et al., 2016) 32.67 15.59 30.64
Pasunuru et al. (2017) 32.75 15.35 30.82

OUR MODELS
2-Layer Pointer Baseline ⌦ 34.26 16.40 32.03
⌦ + Entailment Generation 35.45 17.16 33.19
⌦ + Question Generation 35.48 17.31 32.97
⌦ + Entailment + Question 35.98 17.76 33.63

Table 2: Summarization results on Gigaword.
ROUGE scores are full length F-1. All the multi-
task improvements are statistically significant over
the state-of-the-art baseline.

Multi-Task with Entailment Generation We
first perform multi-task learning between ab-
stractive summarization and entailment genera-
tion with soft-sharing of parameters as discussed
in Sec. 4. Table 1 and Table 2 shows that this
multi-task setting is better than our strong base-
line models and the improvements are statistically
significant on all metrics5 on both CNN/DailyMail
(p < 0.01 in ROUGE-1/ROUGE-L/METEOR and
p < 0.05 in ROUGE-2) and Gigaword (p < 0.01
on all metrics) datasets, showing that entailment
generation task is inducing useful inference skills
to the summarization task (also see analysis exam-
ples in Sec. 7).

Multi-Task with Question Generation For
multi-task learning with question generation,
the improvements are statistically significant in
ROUGE-1 (p < 0.01), ROUGE-L (p < 0.05), and
METEOR (p < 0.01) for CNN/DailyMail and in
all metrics (p < 0.01) for Gigaword, compared
to the respective baseline models. Also, Sec. 7
presents quantitative and qualitative analysis of
this model’s improved saliency.6

5Stat. significance is computed via bootstrap test (Noreen,
1989; Efron and Tibshirani, 1994) with 100K samples.

6In order to verify that our improvements were from the
auxiliary tasks’ specific character/capabilities and not just

* Our multi-task model is stat. signif. better than baseline (based on bootstrap test with 
100K samples: Efron and Tibshirani, 1994).

Table: Performance of our multi-task models on CNN/DailyMail dataset (~300K examples).
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Models ROUGE-1 ROUGE-2 ROUGE-L METEOR
PREVIOUS WORK

Seq2Seq(50k vocab) (See et al., 2017) 31.33 11.81 28.83 12.03
Pointer (See et al., 2017) 36.44 15.66 33.42 15.35
Pointer+Coverage (See et al., 2017) ? 39.53 17.28 36.38 18.72
Pointer+Coverage (See et al., 2017) † 38.82 16.81 35.71 18.14

OUR MODELS
Two-Layer Baseline (Pointer+Coverage) ⌦ 39.56 17.52 36.36 18.17
⌦ + Entailment Generation 39.84 17.63 36.54 18.61
⌦ + Question Generation 39.73 17.59 36.48 18.33
⌦ + Entailment Gen. + Question Gen. 39.81 17.64 36.54 18.54

Table 1: CNN/DailyMail summarization results. ROUGE scores are full length F-1 (as previous work).
All the multi-task improvements are statistically significant over the state-of-the-art baseline.

proval rate greater than 95%, and had at least
10,000 approved HITs. For the pairwise model
comparisons discussed in Sec. 6.2, we showed the
annotators the input article, the ground truth sum-
mary, and the two model summaries (randomly
shuffled to anonymize model identities) – we then
asked them to choose the better among the two
model summaries or choose ‘Not-Distinguishable’
if both summaries are equally good/bad. In-
structions for relevance were defined based on
the summary containing salient/important infor-
mation from the given article, being correct
(i.e., avoiding contradictory/unrelated informa-
tion), and avoiding redundancy. Instructions for
readability were based on the summary’s fluency,
grammaticality, and coherence.

Training Details All our soft/hard and layer-
specific sharing decisions were made on the val-
idation/development set. Details of RNN hidden
state sizes, Adam optimizer, mixing ratios, etc. are
provided in the supplementary for reproducibility.
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summarization task) performs better than all pre-
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3We use two layers so as to allow our high- versus low-
level layer sharing intuition. Note that this does not increase
the parameter size much (23M versus 22M for See et al.
(2017)).

4As mentioned in the github for See et al. (2017), their
publicly released pretrained model produces the lower scores
that we represent by † in Table 1.
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in Sec. 4. Table 1 and Table 2 shows that this
multi-task setting is better than our strong base-
line models and the improvements are statistically
significant on all metrics5 on both CNN/DailyMail
(p < 0.01 in ROUGE-1/ROUGE-L/METEOR and
p < 0.05 in ROUGE-2) and Gigaword (p < 0.01
on all metrics) datasets, showing that entailment
generation task is inducing useful inference skills
to the summarization task (also see analysis exam-
ples in Sec. 7).

Multi-Task with Question Generation For
multi-task learning with question generation,
the improvements are statistically significant in
ROUGE-1 (p < 0.01), ROUGE-L (p < 0.05), and
METEOR (p < 0.01) for CNN/DailyMail and in
all metrics (p < 0.01) for Gigaword, compared
to the respective baseline models. Also, Sec. 7
presents quantitative and qualitative analysis of
this model’s improved saliency.6

5Stat. significance is computed via bootstrap test (Noreen,
1989; Efron and Tibshirani, 1994) with 100K samples.

6In order to verify that our improvements were from the
auxiliary tasks’ specific character/capabilities and not just

* Our multi-task model is stat. signif. better than baseline (based on bootstrap test with 
100K samples: Efron and Tibshirani, 1994).

Table: Performance of our multi-task models on CNN/DailyMail dataset (~300K examples).

Human evaluation: Multi-task model is better than baseline 
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in Sec. 4. Table 1 and Table 2 shows that this
multi-task setting is better than our strong base-
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(p < 0.01 in ROUGE-1/ROUGE-L/METEOR and
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generation task is inducing useful inference skills
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* Our multi-task model is stat. signif. better than baseline (based on bootstrap test with 
100K samples: Efron and Tibshirani, 1994).

Table: Performance of our multi-task models on CNN/DailyMail dataset (~300K examples).

Models Relevance Readability Total
MTL VS. BASELINE

MTL wins 43 40 83
Baseline wins 22 24 46
Non-distinguish. 35 36 71

MTL VS. SEE ET AL. (2017)
MTL wins 39 33 72
See (2017) wins 29 38 67
Non-distinguish. 32 29 61

Table 3: CNN/DM Human Evaluation: pairwise
comparison between our 3-way multi-task (MTL)
model w.r.t. our baseline and See et al. (2017).

Models Relevance Readability Total
MTL wins 33 32 65
Baseline wins 22 22 44
Non-distinguish. 45 46 91

Table 4: Gigaword Human Evaluation: pairwise
comparison between our 3-way multi-task (MTL)
model w.r.t. our baseline.

Multi-Task with Entailment and Question Gen-
eration Finally, we perform multi-task learning
with all three tasks together, achieving the best of
both worlds (inference skills and saliency). Ta-
ble 1 and Table 2 show that our full multi-task
model achieves the best scores on CNN/DailyMail
and Gigaword datasets, and the improvements
are statistically significant on all metrics on
both CNN/DailyMail (p < 0.01 in ROUGE-
1/ROUGE-L/METEOR and p < 0.02 in ROUGE-
2) and Gigaword (p < 0.01 on all metrics). Fi-
nally, our 3-way multi-task model (with both en-
tailment and question generation) outperforms the
publicly-available pretrained result (†) of the pre-
vious SotA (See et al., 2017) with stat. signifi-
cance (p < 0.01), as well the higher-reported re-
sults (?) on ROUGE-1/ROUGE-2 (p < 0.01).

6.2 Human Evaluation
We also conducted a blind human evaluation on
Amazon MTurk for relevance and readability,
based on 100 samples, for both CNN/DailyMail
and Gigaword (see instructions in Sec. 5). Table. 3
shows the CNN/DM results where we do pairwise
comparison between our 3-way multi-task model’s
output summaries w.r.t. our baseline summaries
and w.r.t. See et al. (2017) summaries. As shown,
our 3-way multi-task model achieves both higher

due to adding more data, we separately trained word em-
beddings on each auxiliary dataset (i.e., SNLI and SQuAD)
and incorporated them into the summarization model. We
found that both our 2-way multi-task models perform sig-
nificantly better than these models using the auxiliary word-
embeddings, suggesting that merely adding more data is not
enough.

Models R-1 R-2 R-L
See et al. (2017) 34.30 14.25 30.82
Baseline 35.96 15.91 32.92
Multi-Task (EG + QG) 36.73 16.15 33.58

Table 5: ROUGE F1 scores on DUC-2002.

relevance and higher readability scores w.r.t. the
baseline. W.r.t. See et al. (2017), our MTL model
is higher in relevance scores but a bit lower in
readability scores (and is higher in terms of total
aggregate scores). One potential reason for this
lower readability score is that our entailment gen-
eration auxiliary task encourages our summariza-
tion model to rewrite more and to be more abstrac-
tive than See et al. (2017) – see abstractiveness re-
sults in Table 11.

We also show human evaluation results on the
Gigaword dataset in Table 4 (again based on pair-
wise comparisons for 100 samples), where we see
that our MTL model is better than our state-of-the-
art baseline on both relevance and readability.7

6.3 Generalizability Results (DUC-2002)
Next, we also tested our model’s generalizabil-
ity/transfer skills, where we take the models
trained on CNN/DailyMail and directly test them
on DUC-2002. We take our baseline and 3-
way multi-task models, plus the pointer-coverage
model from See et al. (2017).8 We only re-
tune the beam-size for each of these three mod-
els separately (based on DUC-2003 as the vali-
dation set).9 As shown in Table 5, our multi-
task model achieves statistically significant im-
provements over the strong baseline (p < 0.01
in ROUGE-1 and ROUGE-L) and the pointer-
coverage model from See et al. (2017) (p < 0.01
in all metrics). This demonstrates that our model
is able to generalize well and that the auxiliary
knowledge helps more in low-resource scenarios.

6.4 Auxiliary Task Results
In this section, we discuss the individual/separated
performance of our auxiliary tasks.

7Note that we did not have output files of any previous
work’s model on Gigaword; however, our baseline is already
a strong state-of-the-art model as shown in Table 2.

8We use the publicly-available pretrained model from See
et al. (2017)’s github for these DUC transfer results, which
produces the † results in Table 1. All other comparisons and
analysis in our paper are based on their higher ? results.

9We follow previous work which has shown that larger
beam values are better and feasible for DUC corpora. How-
ever, our MTL model still achieves stat. significant improve-
ments (p < 0.01 in all metrics) over See et al. (2017) without
beam retuning (i.e., with beam = 4).

Table: Performance of various models on DUC 2002 test only setup (567 examples).

Human evaluation: Multi-task model is better than baseline 
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Input Document: celtic have written to the scottish football association in order to gain an ‘ under-
standing óf the refereeing decisions during their scottish cup semi-final defeat by inverness on sunday
. the hoops were left outraged by referee steven mclean ś failure to award a penalty or red card for a
clear handball in the box by josh meekings to deny leigh griffith ś goal-bound shot during the first-half
. caley thistle went on to win the game 3-2 after extra-time and denied rory delia ś men the chance
to secure a domestic treble this season . celtic striker leigh griffiths has a goal-bound shot blocked
by the outstretched arm of josh meekings . celtic ś adam matthews -lrb- right -rrb- slides in with a
strong challenge on nick ross in the scottish cup semi-final . ‘ given the level of reaction from our sup-
porters and across football , we are duty bound to seek an understanding of what actually happened
, ćeltic said in a statement . they added , ‘ we have not been given any other specific explanation
so far and this is simply to understand the circumstances of what went on and why such an obvious
error was made . h́owever , the parkhead outfit made a point of congratulating their opponents , who
have reached the first-ever scottish cup final in their history , describing caley as a ‘ fantastic club
ánd saying ‘ reaching the final is a great achievement . ćeltic had taken the lead in the semi-final
through defender virgil van dijk ś curling free-kick on 18 minutes , but were unable to double that lead
thanks to the meekings controversy . it allowed inverness a route back into the game and celtic had
goalkeeper craig gordon sent off after the restart for scything down marley watkins in the area . greg
tansey duly converted the resulting penalty . edward ofere then put caley thistle ahead , only for john
guidetti to draw level for the bhoys . with the game seemingly heading for penalties , david raven
scored the winner on 117 minutes , breaking thousands of celtic hearts . celtic captain scott brown
-lrb- left -rrb- protests to referee steven mclean but the handball goes unpunished . griffiths shows off
his acrobatic skills during celtic ś eventual surprise defeat by inverness . celtic pair aleksandar tonev
-lrb- left -rrb- and john guidetti look dejected as their hopes of a domestic treble end .
Ground-truth: celtic were defeated 3-2 after extra-time in the scottish cup semi-final .
leigh griffiths had a goal-bound shot blocked by a clear handball. however, no action was taken

against offender josh meekings . the hoops have written the sfa for an ’understanding’ of the
decision .
See et al. (2017): john hartson was once on the end of a major hampden injustice while playing
for celtic . but he can not see any point in his old club writing to the scottish football association over
the latest controversy at the national stadium . hartson had a goal wrongly disallowed for offside
while celtic were leading 1-0 at the time but went on to lose 3-2 .
Our Baseline: john hartson scored the late winner in 3-2 win against celtic . celtic were leading
1-0 at the time but went on to lose 3-2 . some fans have questioned how referee steven mclean and
additional assistant alan muir could have missed the infringement .

Multi-task: celtic have written to the scottish football association in order to gain an ‘ understand-
ing ’ of the refereeing decisions . the hoops were left outraged by referee steven mclean ’s failure
to award a penalty or red card for a clear handball in the box by josh meekings . celtic striker
leigh griffiths has a goal-bound shot blocked by the outstretched arm of josh meekings .

Figure 3: Example of summaries generated by See et al. (2017), our baseline, and 3-way multi-task model
with summarization and both entailment generation and question generation. The boxed-red highlighted
words/phrases are not present in the input source document in any paraphrasing form. All the unboxed-
green highlighted words/phrases correspond to the salient information. See detailed discussion in Fig.
1 and Fig. 2 above. As shown, the outputs from See et al. (2017) and the baseline both include non-
entailed words/phrases (e.g. “john hartson”), as well as they missed salient information (“hoops”, “josh
meekings”, “leigh griffiths”) in their output summaries. Our multi-task model, however, manages to
accomplish both, i.e., cover more salient information and also avoid unrelated information.
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Reinforcement Learning

• Reinforcement Learning (RL) is a training mechanism in which an agent or a policy is 
allowed to interact with a given environment in order to maximize a reward.


• RL has successful application to many research areas such as continuous control, 
dialogue systems, and games.


• Recently, a special case of RL called policy gradients based reinforcement learning, 
has been widely applied to text generation problems in NLP through REINFORCE 
algorithm.

[ Williams, 1992; Tesauro, 1995; White & Sofge, 1992; Singh et al., 2002; Ren et al., 2017; 

Rennie et al., 2017; Paulus et al., 2018; Chen & Bansal, 2018; Celikyilmaz et al., 2018]

(slides by Ramakanth Pasunuru)
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REINFORCE

[ Williams, 1992]

Figure: Overview of an LSTM decoder with sampling of words in a 
sequential fashion to generate a sentence. We measure a reward for 
the generated sentence w.r.t. the ground-truth and use this reward to 
update RL policy (model). 

LSTM SAMPLER

Reward

Figure 1: Our sequence generator with RL training.

while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.

LRL1 = �(r1(w
s)� r1(w

a))r✓ log p✓(w
s)

LRL2 = �(r2(w
s)� r2(w

a))r✓ log p✓(w
s)

(2)

4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.

Figure 2: Overview of our saliency predictor model.

Saliency Rewards ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Rewards A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our
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the generated sentence w.r.t. the ground-truth and use this reward to 
update RL policy (model). 

LSTM SAMPLER

Reward

Figure 1: Our sequence generator with RL training.

while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.
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4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.

Figure 2: Overview of our saliency predictor model.

Saliency Rewards ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Rewards A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our
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Figure 2: Reinforced (mixed-loss) video captioning using entailment-corrected CIDEr score as reward.

ward only when it is a directed match with (i.e., it

is logically implied by) the ground truth caption,

hence avoiding contradictory or unrelated infor-

mation (e.g., see Fig. 1). Empirically, we show

that first the CIDEr-reward model achieves signif-

icant improvements over the cross-entropy base-

line (on multiple datasets, and automatic and hu-

man evaluation); next, the CIDEnt-reward model

further achieves significant improvements over the

CIDEr-based reward. Overall, we achieve the new

state-of-the-art on the MSR-VTT dataset.

2 Related Work

Past work has presented several sequence-to-

sequence models for video captioning, using at-

tention, hierarchical RNNs, 3D-CNN video fea-

tures, joint embedding spaces, language fusion,

etc., but using word-level cross entropy loss train-

ing (Venugopalan et al., 2015a; Yao et al., 2015;

Pan et al., 2016a,b; Venugopalan et al., 2016).

Policy gradient for image captioning was re-

cently presented by Ranzato et al. (2016), using

a mixed sequence level training paradigm to use

non-differentiable evaluation metrics as rewards.1

Liu et al. (2016b) and Rennie et al. (2016) improve

upon this using Monte Carlo roll-outs and a test in-

ference baseline, respectively. Paulus et al. (2017)

presented summarization results with ROUGE re-

wards, in a mixed-loss setup.

Recognizing Textual Entailment (RTE) is a tra-

ditional NLP task (Dagan et al., 2006; Lai and

Hockenmaier, 2014; Jimenez et al., 2014), boosted

by a large dataset (SNLI) recently introduced

by Bowman et al. (2015). There have been several

leaderboard models on SNLI (Cheng et al., 2016;

Rocktäschel et al., 2016); we focus on the decom-

posable, intra-sentence attention model of Parikh

et al. (2016). Recently, Pasunuru and Bansal

(2017) used multi-task learning to combine video

captioning with entailment and video generation.

1Several papers have presented the relative comparison of
image captioning metrics, and their pros and cons (Vedantam
et al., 2015; Anderson et al., 2016; Liu et al., 2016b; Hodosh
et al., 2013; Elliott and Keller, 2014).

3 Models

Attention Baseline (Cross-Entropy) Our

attention-based seq-to-seq baseline model is

similar to the Bahdanau et al. (2015) architecture,

where we encode input frame level video features

{f1:n} via a bi-directional LSTM-RNN and then

generate the caption w1:m using an LSTM-RNN

with an attention mechanism. Let θ be the model

parameters and w∗

1:m be the ground-truth caption,

then the cross entropy loss function is:

L(θ) = −
m
∑

t=1

log p(w∗

t |w
∗

1:t−1, f1:n) (1)

where p(wt|w1:t−1, f1:n) = softmax(W Thdt ),
W T is the projection matrix, and wt and hdt are

the generated word and the RNN decoder hidden

state at time step t, computed using the standard

RNN recursion and attention-based context vector

ct. Details of the attention model are in the sup-

plementary (due to space constraints).

Reinforcement Learning (Policy Gradient) In

order to directly optimize the sentence-level test

metrics (as opposed to the cross-entropy loss

above), we use a policy gradient pθ, where θ rep-

resent the model parameters. Here, our baseline

model acts as an agent and interacts with its envi-

ronment (video and caption). At each time step,

the agent generates a word (action), and the gen-

eration of the end-of-sequence token results in a

reward r to the agent. Our training objective is to

minimize the negative expected reward function:

L(θ) = −Ews
∼pθ [r(w

s)] (2)

where ws is the word sequence sampled from

the model. Based on the REINFORCE algo-

rithm (Williams, 1992), the gradients of this non-

differentiable, reward-based loss function are:

∇θL(θ) = −Ews
∼pθ [r(w

s) ·∇θ log pθ(w
s)] (3)

We follow Ranzato et al. (2016) approximating

the above gradients via a single sampled word

Ground-truth caption Generated (sampled) caption CIDEr Ent
a man is spreading some butter in a pan puppies is melting butter on the pan 140.5 0.07
a panda is eating some bamboo a panda is eating some fried 256.8 0.14
a monkey pulls a dogs tail a monkey pulls a woman 116.4 0.04
a man is cutting the meat a man is cutting meat into potato 114.3 0.08
the dog is jumping in the snow a dog is jumping in cucumbers 126.2 0.03
a man and a woman is swimming in the pool a man and a whale are swimming in a pool 192.5 0.02

Table 1: Examples of captions sampled during policy gradient and their CIDEr vs Entailment scores.

sequence. We also use a variance-reducing bias

(baseline) estimator in the reward function. Their

details and the partial derivatives using the chain

rule are described in the supplementary.

Mixed Loss During reinforcement learning, op-

timizing for only the reinforcement loss (with au-

tomatic metrics as rewards) doesn’t ensure the

readability and fluency of the generated caption,

and there is also a chance of gaming the metrics

without actually improving the quality of the out-

put (Liu et al., 2016a). Hence, for training our

reinforcement based policy gradients, we use a

mixed loss function, which is a weighted combi-

nation of the cross-entropy loss (XE) and the rein-

forcement learning loss (RL), similar to the previ-

ous work (Paulus et al., 2017; Wu et al., 2016).

This mixed loss improves results on the metric

used as reward through the reinforcement loss

(and improves relevance based on our entailment-

enhanced rewards) but also ensures better read-

ability and fluency due to the cross-entropy loss (in

which the training objective is a conditioned lan-

guage model, learning to produce fluent captions).

Our mixed loss is defined as:

LMIXED = (1− γ)LXE + γLRL (4)

where γ is a tuning parameter used to balance

the two losses. For annealing and faster conver-

gence, we start with the optimized cross-entropy

loss baseline model, and then move to optimizing

the above mixed loss function.2

4 Reward Functions

Caption Metric Reward Previous image cap-

tioning papers have used traditional captioning

metrics such as CIDEr, BLEU, or METEOR as

reward functions, based on the match between the

generated caption sample and the ground-truth ref-

erence(s). First, it has been shown by Vedantam

2We also experimented with the curriculum learning
‘MIXER’ strategy of Ranzato et al. (2016), where the XE+RL
annealing is based on the decoder time-steps; however, the
mixed loss function strategy (described above) performed
better in terms of maintaining output caption fluency.

et al. (2015) that CIDEr, based on a consensus

measure across several human reference captions,

has a higher correlation with human evaluation

than other metrics such as METEOR, ROUGE,

and BLEU. They further showed that CIDEr gets

better with more number of human references (and

this is a good fit for our video captioning datasets,

which have 20-40 human references per video).

More recently, Rennie et al. (2016) further

showed that CIDEr as a reward in image caption-

ing outperforms all other metrics as a reward, not

just in terms of improvements on CIDEr metric,

but also on all other metrics. In line with these

above previous works, we also found that CIDEr

as a reward (‘CIDEr-RL’ model) achieves the best

metric improvements in our video captioning task,

and also has the best human evaluation improve-

ments (see Sec. 6.3 for result details, incl. those

about other rewards based on BLEU, SPICE).

Entailment Corrected Reward Although CIDEr

performs better than other metrics as a reward, all

these metrics (including CIDEr) are still based on

an undirected n-gram matching score between the

generated and ground truth captions. For exam-

ple, the wrong caption “a man is playing football”

w.r.t. the correct caption “a man is playing bas-

ketball” still gets a high score, even though these

two captions belong to two completely different

events. Similar issues hold in case of a negation

or a wrong action/object in the generated caption

(see examples in Table 1).

We address the above issue by using an entail-

ment score to correct the phrase-matching metric

(CIDEr or others) when used as a reward, ensur-

ing that the generated caption is logically implied

by (i.e., is a paraphrase or directed partial match

with) the ground-truth caption. To achieve an ac-

curate entailment score, we adapt the state-of-the-

art decomposable-attention model of Parikh et al.

(2016) trained on the SNLI corpus (image caption

domain). This model gives us a probability for

whether the sampled video caption (generated by

our model) is entailed by the ground truth caption

as premise (as opposed to a contradiction or neu-

xt = E1wt−1
for t ≥ 1 w0 = BOS

it = σ (Wixxt +Wihht−1 + bi) (Input Gate)

ft = σ (Wfxxt +Wfhht−1 + bf ) (Forget Gate)

ot = σ (Woxxt +Wohht−1 + bo) (Output Gate)

ct = it " φ(W⊗
zxxt +W⊗

zIIt +W⊗

zhht−1 + b⊗z ) + ft " ct−1

ht = ot " tanh(ct)

st = Wsht,

where It is the attention-derived image feature. This fea-
ture is derived as in [6] as follows: given CNN features at
N locations {I1, . . . IN}, It =

∑N
i=1 α

i
tIi, where αt =

softmax(at+ bα), and ait = W tanh(WaIIi+Wahht−1+
ba). In this work we set the dimension of W to 1×512, and
set c0 and h0 to zero. Let θ denote the parameters of the
model. Then pθ(wt|w1, . . . wt−1) is again defined by (1).
The parameters θ of attention models are also traditionally
learned by optimizing the XE loss (2).
Attention Model (Att2all). The standard attention model
presented in [6] also feeds then attention signal It as an in-
put into all gates of the LSTM, and the output posterior.
In our experiments feeding It to all gates in addition to
the input did not boost performance, but feeding It to both
the gates and the outputs resulted in significant gains when
ADAM [20] was used.

3. Reinforcement Learning

Sequence Generation as an RL problem. As described
in the previous section, captioning systems are traditionally
trained using the cross entropy loss. To directly optimize
NLP metrics and address the exposure bias issue, we can
cast our generative models in the Reinforcement Learning
terminology as in [7]. Our recurrent models (LSTMs) intro-
duced above can be viewed as an “agent” that interacts with
an external “environment” (words and image features). The
parameters of the network, θ, define a policy pθ, that re-
sults in an “action” that is the prediction of the next word.
After each action, the agent (the LSTM) updates its inter-
nal “state” (cells and hidden states of the LSTM, attention
weights etc). Upon generating the end-of-sequence (EOS)
token, the agent observes a “reward” that is, for instance,
the CIDEr score of the generated sentence—we denote this
reward by r. The reward is computed by an evaluation met-
ric by comparing the generated sequence to corresponding
ground-truth sequences. The goal of training is to minimize
the negative expected reward:

L(θ) = −Ews∼pθ
[r(ws)] , (3)

where ws = (ws
1, . . . w

s
T ) and ws

t is the word sampled from
the model at the time step t. In practice L(θ) is typically

estimated with a single sample from pθ:

L(θ) ≈ −r(ws), ws ∼ pθ.

Policy Gradient with REINFORCE. In order to compute
the gradient ∇θL(θ), we use the REINFORCE algorithm
[15](See also Chapter 13 in [14]). REINFORCE is based
on the observation that the expected gradient of a non-
differentiable reward function can be computed as follows:

∇θL(θ) = −Ews∼pθ
[r(ws)∇θ log pθ(w

s)] . (4)

In practice the expected gradient can be approximated using
a single Monte-Carlo sample ws = (ws

1 . . . w
s
T ) from pθ,

for each training example in the minibatch:

∇θL(θ) ≈ −r(ws)∇θ log pθ(w
s).

REINFORCE with a Baseline. The policy gradient given
by REINFORCE can be generalized to compute the reward
associated with an action value relative to a reference re-
ward or baseline b:

∇θL(θ) = −Ews∼pθ
[(r(ws)− b)∇θ log pθ(w

s)] . (5)

The baseline can be an arbitrary function, as long as it does
not depend on the “action” ws [14], since in this case:

Ews∼pθ
[b∇θ log pθ(w

s)] = b
∑

ws

∇θpθ(w
s)

= b∇θ

∑

ws

pθ(w
s)

= b∇θ1 = 0. (6)

This shows that the baseline does not change the expected
gradient, but importantly, it can reduce the variance of the
gradient estimate. For each training case, we again approx-
imate the expected gradient with a single sample ws ∼ pθ:

∇θL(θ) ≈ −(r(ws)− b)∇θ log pθ(w
s). (7)

Note that if b is function of θ or t as in [7], equation (6) still
holds and b(θ) is a valid baseline.

Final Gradient Expression. Using the chain rule, and the
parametric model of pθ given in Section 2 we have:

∇θL(θ) =
T∑

t=1

∂L(θ)

∂st

∂st
∂θ

,

where st is the input to the softmax function. Using RE-
INFORCE with a baseline b the estimate of the gradient of
∂L(θ)
∂st

is given by [17]:

∂L(θ)

∂st
≈ (r(ws)− b)(pθ(wt|ht)− 1ws

t
). (8)
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summarization metric of 
ROUGE package (Lin, 
2004).
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Rouge Reward

Based on the primary 
summarization metric of 
ROUGE package (Lin, 
2004).


Saliency Reward Entailment Reward

Gives higher weight to 
the important, salient 
words/phrases when 
calculating the ROUGE 
score.

Based on whether each 
sentence of the 
generated summary is 
entailed by the ground-
truth summary. 
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ROUGESal reward gives higher weight to the important, salient words/phrases when 
calculating the ROUGE score (which by default assumes all words are equally 
weighted): 


• To learn these saliency weights, we train our saliency 
predictor on {sentence, answer spans} pairs from the 
popular SQuAD reading comprehension dataset 
(Rajpurkar et al., 2016) (Wiki domain).


• We treat the human-annotated answer spans for 
important questions as representative salient information 
in the document.


• This saliency predictor is run on the ground-truth 
summary to get an importance weight for each word 
(used in ROUGE matching).

John is playing with a dog

1

0

0

1

1

0

0

1

0

1

1

0

Figure: Overview of our saliency prediction model. 
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• A good summary should be logically entailed by source document, i.e., have no 
contradictory/unrelated information. We use an entailment scorer and its multi-
sentence, length-normalized extension (to avoid very short sentences achieving 
misleadingly high entailment scores) as our “Entail” reward.


• We train the entailment classifier (Parikh et al., 2016) on the SNLI and Multi-NLI 
datasets and calculate the entailment probability score between the ground-truth 
(GT) summary (as premise) and each sentence of the generated summary (as 
hypothesis), and use average score as our Entail reward.


Entail reward.2 Finally, we add a length normal-
ization constraint to avoid very short sentences
achieving misleadingly high entailment scores:

Entail = Entail ⇥ #tokens in generated summary

#tokens in reference summary
(3)

5 Experimental Setup

5.1 Datasets and Training Details
CNN/Daily Mail dataset (Hermann et al., 2015;
Nallapati et al., 2016) is a collection of online
news articles and their summaries. We use the
non-anonymous version of the dataset as described
in See et al. (2017). For test-only generaliza-
tion experiments, we use the DUC-2002 single
document summarization dataset3. For entailment
reward classifier, we use a combination of the
full Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) and the recent
Multi-NLI corpus (Williams et al., 2017) training
datasets. For our saliency prediction model, we
use the Stanford Question Answering (SQuAD)
dataset (Rajpurkar et al., 2016). All dataset splits
and other training details (dimension sizes, learn-
ing rates, etc.) for reproducibility are in appendix.

5.2 Evaluation Metrics
We use the standard ROUGE package (Lin, 2004)
and Meteor package (Denkowski and Lavie, 2014)
for reporting the results on all of our summariza-
tion models. Following previous work (Chopra
et al., 2016; Nallapati et al., 2016; See et al., 2017),
we use the ROUGE full-length F1 variant.
Human Evaluation Criteria: We also performed
human evaluation of summary relevance and read-
ability, via Amazon Mechanical Turk (AMT). We
selected human annotators that were located in the
US, had an approval rate greater than 98%, and
had at least 10, 000 approved HITs. For the pair-
wise model comparisons discussed in Sec. 6, we

2Since the GT summary is correctly entailed by the source
document, we directly (by transitivity) use this GT as premise
for easier (shorter) encoding. We also tried using the full
input document as premise but this didn’t perform as well
(most likely because the entailment classifiers are not trained
on such long premises; and the problem with the sentence-to-
sentence avg. scoring approach is discussed below).
We also tried summary-to-summary entailment scoring (sim-
ilar to ROUGE-L) as well as pairwise sentence-to-sentence
avg. scoring, but we found that avg. scoring of ground-
truth summary (as premise) w.r.t. each generated summary’s
sentence (as hypothesis) works better (intuitive because each
sentence in generated summary might be a compression of
multiple sentences of GT summary or source document).

3http://www-nlpir.nist.gov/projects/duc/
guidelines/2002.html

Models R-1 R-2 R-L M
PREVIOUS WORK

Nallapati (2016)? 35.46 13.30 32.65 -
See et al. (2017) 39.53 17.28 36.38 18.72
Paulus (2017) (XE)

? 38.30 14.81 35.49 -
Paulus (2017) (RL)

? 39.87 15.82 36.90 -
OUR MODELS

Baseline (XE) 39.41 17.33 36.07 18.27
ROUGE (RL) 39.99 17.72 36.66 18.93
Entail (RL) 39.53 17.51 36.44 20.15
ROUGESal (RL) 40.36 17.97 37.00 19.84
ROUGE+Ent (RL) 40.37 17.89 37.13 19.94
ROUGESal+Ent (RL) 40.43 18.00 37.10 20.02

Table 1: Results on CNN/Daily Mail (non-
anonymous). ? represents previous work on anony-
mous version. ‘XE’: cross-entropy loss, ‘RL’: reinforce
mixed loss (XE+RL). Columns ‘R’: ROUGE, ‘M’:
METEOR.

showed the annotators the input article, the ground
truth summary, and the two model summaries
(randomly shuffled to anonymize model identi-
ties) – we then asked them to choose the better
among the two model summaries or choose ‘Not-
Distinguishable’ if both summaries are equally
good/bad. Instructions for relevance were based
on the summary containing salient/important in-
formation from the given article, being correct
(i.e., avoiding contradictory/unrelated informa-
tion), and avoiding redundancy. Instructions for
readability were based on the summary’s fluency,
grammaticality, and coherence.

6 Results

Baseline Cross-Entropy Model Results Our
abstractive summarization model has attention,
pointer-copy, and coverage mechanism. First,
we apply cross-entropy optimization and achieve
comparable results on CNN/Daily Mail w.r.t. pre-
vious work (See et al., 2017).4

ROUGE Reward Results First, using ROUGE-
L as RL reward (shown as ROUGE in Table 1) im-
proves the performance on CNN/Daily Mail in all
metrics with stat. significant scores (p < 0.001) as
compared to the cross-entropy baseline (and also
stat. signif. w.r.t. See et al. (2017)). Similar
to Paulus et al. (2017), we use mixed loss function
(XE+RL) for all our reinforcement experiments, to
ensure good readability of generated summaries.

4Our baseline is statistically equal to the paper-reported
scores of See et al. (2017) (see Table 1) on ROUGE-1,
ROUGE-2, based on the bootstrap test (Efron and Tibshirani,
1994). Our baseline is stat. significantly better (p < 0.001)
in all ROUGE metrics w.r.t. the github scores (R-1: 38.82,
R-2: 16.81, R-3: 35.71, M: 18.14) of See et al. (2017).
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• One approach for multi-reward optimization is to use a weighted combination of 
the rewards, but this has the issue of finding the complex scaling and weight 
balance among these diverse reward combinations.

Multi-Reward Optimization

[Pasunuru & Bansal, NAACL 2018](slides by Ramakanth Pasunuru)



23

• One approach for multi-reward optimization is to use a weighted combination of 
the rewards, but this has the issue of finding the complex scaling and weight 
balance among these diverse reward combinations.

Multi-Reward Optimization

Figure 1: Our sequence generator with RL training.

while also maintaining the readability of the gen-
erated sentence (Wu et al., 2016; Paulus et al.,
2017; Pasunuru and Bansal, 2017), which is de-
fined as LMixed = �LRL + (1� �)LXE, where � is
a tunable hyperparameter.

3.3 Multi-reward Optimization

Optimizing multiple rewards at the same time is
important and desired for many language gener-
ation tasks. One approach would be to use a
weighted combination of these rewards, but this
has the issue of finding the complex scaling and
weight balance among these reward combinations.
To address this issue, we instead introduce a sim-
ple multi-reward optimization approach inspired
from multi-task learning, where we have different
tasks, and all of them share all the model parame-
ters while having their own optimization function
(different reward functions in this case). If r1 and
r2 are two reward functions that we want to op-
timize simultaneously, then we train the two loss
functions of Eqn. 2 in alternate mini-batches.

LRL1 = �(r1(w
s)� r1(w

a))r✓ log p✓(w
s)

LRL2 = �(r2(w
s)� r2(w

a))r✓ log p✓(w
s)

(2)

4 Rewards

ROUGE Reward The first basic reward is
based on the primary summarization metric of
ROUGE package (Lin, 2004). Similar to Paulus
et al. (2017), we found that ROUGE-L metric as a
reward works better compared to ROUGE-1 and
ROUGE-2 in terms of improving all the metric
scores.1 Since these metrics are based on sim-
ple phrase matching/n-gram overlap, they do not
focus on important summarization factors such as
salient phrase inclusion and directed logical entail-
ment. Addressing these issues, we next introduce
two new reward functions.

1For the rest of the paper, we mean ROUGE-L whenever
we mention ROUGE-reward models.

Figure 2: Overview of our saliency predictor model.

Saliency Rewards ROUGE-based rewards have
no knowledge about what information is salient
in the summary, and hence we introduce a
novel reward function called ‘ROUGESal’ which
gives higher weight to the important, salient
words/phrases when calculating the ROUGE score
(which by default assumes all words are equally
weighted). To learn these saliency weights, we
train our saliency predictor on sentence and an-
swer spans pairs from the popular SQuAD reading
comprehension dataset (Rajpurkar et al., 2016))
(Wikipedia domain), where we treat the human-
annotated answer spans (avg. span length 3.2) for
important questions as representative salient infor-
mation in the document. As shown in Fig. 2, given
a sentence as input, the predictor assigns a saliency
probability to every token, using a simple bidirec-
tional encoder with a softmax layer at every time
step of the encoder hidden states to classify the
token as salient or not. Finally, we use the proba-
bilities given by this saliency prediction model as
weights in the ROUGE matching formulation to
achieve the final ROUGESal score (see appendix
for details about our ROUGESal weighted preci-
sion, recall, and F-1 formulations).

Entailment Rewards A good summary should
also be logically entailed by the given source
document, i.e., contain no contradictory or un-
related information. Pasunuru and Bansal (2017)
used entailment-corrected phrase-matching met-
rics (CIDEnt) to improve the task of video caption-
ing; we instead directly use the entailment knowl-
edge from an entailment scorer and its multi-
sentence, length-normalized extension as our ‘En-
tail’ reward, to improve the task of abstractive text
summarization. We train the entailment classi-
fier (Parikh et al., 2016) on the SNLI (Bowman
et al., 2015) and Multi-NLI (Williams et al., 2017)
datasets and calculate the entailment probability
score between the ground-truth (GT) summary (as
premise) and each sentence of the generated sum-
mary (as hypothesis), and use avg. score as our

• To address this issue, we instead introduce a simple multi-reward optimization 
approach inspired from multi-task learning, where we have different tasks, and 
they share all model parameters while having their own optimization function 
(different reward functions in this case), with alternate mini-batches:
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Entail reward.2 Finally, we add a length normal-
ization constraint to avoid very short sentences
achieving misleadingly high entailment scores:

Entail = Entail ⇥ #tokens in generated summary

#tokens in reference summary
(3)

5 Experimental Setup

5.1 Datasets and Training Details

CNN/Daily Mail dataset (Hermann et al., 2015;
Nallapati et al., 2016) is a collection of online
news articles and their summaries. We use the
non-anonymous version of the dataset as described
in See et al. (2017). For test-only generaliza-
tion experiments, we use the DUC-2002 single
document summarization dataset3. For entailment
reward classifier, we use a combination of the
full Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) and the recent
Multi-NLI corpus (Williams et al., 2017) training
datasets. For our saliency prediction model, we
use the Stanford Question Answering (SQuAD)
dataset (Rajpurkar et al., 2016). All dataset splits
and other training details (dimension sizes, learn-
ing rates, etc.) for reproducibility are in appendix.

5.2 Evaluation Metrics

We use the standard ROUGE package (Lin, 2004)
and Meteor package (Denkowski and Lavie, 2014)
for reporting the results on all of our summariza-
tion models. Following previous work (Chopra
et al., 2016; Nallapati et al., 2016; See et al., 2017),
we use the ROUGE full-length F1 variant.

6 Results

Baseline Cross-entropy Model Our abstractive
summarization model has attention, pointer-copy,
and coverage mechanism. First, we apply cross-
entropy optimization and achieve comparable re-

2Since the GT summary is correctly entailed by the source
document, we directly (by transitivity) use this GT as premise
for easier (shorter) encoding. We also tried using the full
input document as premise but this didn’t perform as well
(most likely because the entailment classifiers are not trained
on such long premises; and the problem with the sentence-to-
sentence avg. scoring approach is discussed below).
We also tried summary-to-summary entailment scoring (sim-
ilar to ROUGE-L) as well as pairwise sentence-to-sentence
avg. scoring, but we found that avg. scoring of ground-
truth summary (as premise) w.r.t. each generated summary’s
sentence (as hypothesis) works better (intuitive because each
sentence in generated summary might be a compression of
multiple sentences of GT summary or source document).

3http://www-nlpir.nist.gov/projects/duc/
guidelines/2002.html

Models R-1 R-2 R-L M
PREVIOUS WORK

Nallapati (2016)? 35.46 13.30 32.65 -
See et al. (2017) 39.53 17.28 36.38 18.72
Paulus (2017) (XE)

? 38.30 14.81 35.49 -
Paulus (2017) (RL)

? 39.87 15.82 36.90 -
OUR MODELS

Baseline (XE) 39.41 17.33 36.07 18.27
ROUGE (RL) 39.99 17.72 36.66 18.93
Entail (RL) 39.53 17.51 36.44 20.15
ROUGESal (RL) 40.36 17.97 37.00 19.84
ROUGE+Ent (RL) 40.37 17.89 37.13 19.94
ROUGESal+Ent (RL) 40.43 18.00 37.10 20.02

Table 1: Results on CNN/Daily Mail (non-
anonymous). ? represents previous work on anony-
mous version. ‘XE’: cross-entropy loss, ‘RL’: reinforce
mixed loss (XE+RL). Columns ‘R’: ROUGE, ‘M’:
METEOR.

sults on CNN/Daily Mail w.r.t. previous work (See
et al., 2017).4

ROUGE Rewards First, using ROUGE-L as
RL reward (shown as ROUGE in Table 1) im-
proves the performance on CNN/Daily Mail in all
metrics with stat. significant scores (p < 0.001) as
compared to the cross-entropy baseline (and also
stat. signif. w.r.t. See et al. (2017)). Similar
to Paulus et al. (2017), we use mixed loss function
(XE+RL) for all our reinforcement experiments, to
ensure good readability of generated summaries.

ROUGESal and Entail Rewards With our
novel ROUGESal reward, we achieve stat. signif.
improvements in all metrics w.r.t. the baseline as
well as w.r.t. ROUGE-reward results (p < 0.001),
showing that saliency knowledge is strongly im-
proving the summarization model. For our Entail
reward, we achieve stat. signif. improvements in
ROUGE-L (p < 0.001) w.r.t. baseline and achieve
the best METEOR score by a large margin. See
Sec. 7 for analysis of the saliency/entailment skills
learned by our models.

Multi-Reward Results Similar to ROUGESal,
Entail is a better reward when combined with
the complementary phrase-matching metric in-
formation in ROUGE; Table 1 shows that the
ROUGE+Entail multi-reward combination per-
forms stat. signif. better than ROUGE-reward
in ROUGE-1, ROUGE-L, and METEOR (p <
0.001), and better than Entail-reward in all

4Our baseline is statistically equal to the paper-reported
scores of See et al. (2017) (see Table 1) on ROUGE-1,
ROUGE-2, based on the bootstrap test (Efron and Tibshirani,
1994). Our baseline is stat. significantly better (p < 0.001)
in all ROUGE metrics w.r.t. the github scores (R-1: 38.82,
R-2: 16.81, R-3: 35.71, M: 18.14) of See et al. (2017).

Results (CNN/Daily Mail)

Table: Results on CNN/Daily Mail (nonanonymous). * represents previous work on anonymous version. ‘XE’: cross-
entropy loss, ‘RL’: reinforce mixed loss (XE+RL). Columns ‘R’: ROUGE, ‘M’: METEOR. Final multi-reward RL 
model improvements are statistically significant over baseline, ROUGE-RL, Entail-RL.
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Entail reward.2 Finally, we add a length normal-
ization constraint to avoid very short sentences
achieving misleadingly high entailment scores:

Entail = Entail ⇥ #tokens in generated summary

#tokens in reference summary
(3)

5 Experimental Setup

5.1 Datasets and Training Details

CNN/Daily Mail dataset (Hermann et al., 2015;
Nallapati et al., 2016) is a collection of online
news articles and their summaries. We use the
non-anonymous version of the dataset as described
in See et al. (2017). For test-only generaliza-
tion experiments, we use the DUC-2002 single
document summarization dataset3. For entailment
reward classifier, we use a combination of the
full Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) and the recent
Multi-NLI corpus (Williams et al., 2017) training
datasets. For our saliency prediction model, we
use the Stanford Question Answering (SQuAD)
dataset (Rajpurkar et al., 2016). All dataset splits
and other training details (dimension sizes, learn-
ing rates, etc.) for reproducibility are in appendix.

5.2 Evaluation Metrics

We use the standard ROUGE package (Lin, 2004)
and Meteor package (Denkowski and Lavie, 2014)
for reporting the results on all of our summariza-
tion models. Following previous work (Chopra
et al., 2016; Nallapati et al., 2016; See et al., 2017),
we use the ROUGE full-length F1 variant.

6 Results

Baseline Cross-entropy Model Our abstractive
summarization model has attention, pointer-copy,
and coverage mechanism. First, we apply cross-
entropy optimization and achieve comparable re-

2Since the GT summary is correctly entailed by the source
document, we directly (by transitivity) use this GT as premise
for easier (shorter) encoding. We also tried using the full
input document as premise but this didn’t perform as well
(most likely because the entailment classifiers are not trained
on such long premises; and the problem with the sentence-to-
sentence avg. scoring approach is discussed below).
We also tried summary-to-summary entailment scoring (sim-
ilar to ROUGE-L) as well as pairwise sentence-to-sentence
avg. scoring, but we found that avg. scoring of ground-
truth summary (as premise) w.r.t. each generated summary’s
sentence (as hypothesis) works better (intuitive because each
sentence in generated summary might be a compression of
multiple sentences of GT summary or source document).

3http://www-nlpir.nist.gov/projects/duc/
guidelines/2002.html

Models R-1 R-2 R-L M
PREVIOUS WORK

Nallapati (2016)? 35.46 13.30 32.65 -
See et al. (2017) 39.53 17.28 36.38 18.72
Paulus (2017) (XE)

? 38.30 14.81 35.49 -
Paulus (2017) (RL)

? 39.87 15.82 36.90 -
OUR MODELS

Baseline (XE) 39.41 17.33 36.07 18.27
ROUGE (RL) 39.99 17.72 36.66 18.93
Entail (RL) 39.53 17.51 36.44 20.15
ROUGESal (RL) 40.36 17.97 37.00 19.84
ROUGE+Ent (RL) 40.37 17.89 37.13 19.94
ROUGESal+Ent (RL) 40.43 18.00 37.10 20.02

Table 1: Results on CNN/Daily Mail (non-
anonymous). ? represents previous work on anony-
mous version. ‘XE’: cross-entropy loss, ‘RL’: reinforce
mixed loss (XE+RL). Columns ‘R’: ROUGE, ‘M’:
METEOR.

sults on CNN/Daily Mail w.r.t. previous work (See
et al., 2017).4

ROUGE Rewards First, using ROUGE-L as
RL reward (shown as ROUGE in Table 1) im-
proves the performance on CNN/Daily Mail in all
metrics with stat. significant scores (p < 0.001) as
compared to the cross-entropy baseline (and also
stat. signif. w.r.t. See et al. (2017)). Similar
to Paulus et al. (2017), we use mixed loss function
(XE+RL) for all our reinforcement experiments, to
ensure good readability of generated summaries.

ROUGESal and Entail Rewards With our
novel ROUGESal reward, we achieve stat. signif.
improvements in all metrics w.r.t. the baseline as
well as w.r.t. ROUGE-reward results (p < 0.001),
showing that saliency knowledge is strongly im-
proving the summarization model. For our Entail
reward, we achieve stat. signif. improvements in
ROUGE-L (p < 0.001) w.r.t. baseline and achieve
the best METEOR score by a large margin. See
Sec. 7 for analysis of the saliency/entailment skills
learned by our models.

Multi-Reward Results Similar to ROUGESal,
Entail is a better reward when combined with
the complementary phrase-matching metric in-
formation in ROUGE; Table 1 shows that the
ROUGE+Entail multi-reward combination per-
forms stat. signif. better than ROUGE-reward
in ROUGE-1, ROUGE-L, and METEOR (p <
0.001), and better than Entail-reward in all

4Our baseline is statistically equal to the paper-reported
scores of See et al. (2017) (see Table 1) on ROUGE-1,
ROUGE-2, based on the bootstrap test (Efron and Tibshirani,
1994). Our baseline is stat. significantly better (p < 0.001)
in all ROUGE metrics w.r.t. the github scores (R-1: 38.82,
R-2: 16.81, R-3: 35.71, M: 18.14) of See et al. (2017).

Results (CNN/Daily Mail)

Table: Results on CNN/Daily Mail (nonanonymous). * represents previous work on anonymous version. ‘XE’: cross-
entropy loss, ‘RL’: reinforce mixed loss (XE+RL). Columns ‘R’: ROUGE, ‘M’: METEOR. Final multi-reward RL 
model improvements are statistically significant over baseline, ROUGE-RL, Entail-RL.
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Entail reward.2 Finally, we add a length normal-
ization constraint to avoid very short sentences
achieving misleadingly high entailment scores:

Entail = Entail ⇥ #tokens in generated summary

#tokens in reference summary
(3)

5 Experimental Setup

5.1 Datasets and Training Details

CNN/Daily Mail dataset (Hermann et al., 2015;
Nallapati et al., 2016) is a collection of online
news articles and their summaries. We use the
non-anonymous version of the dataset as described
in See et al. (2017). For test-only generaliza-
tion experiments, we use the DUC-2002 single
document summarization dataset3. For entailment
reward classifier, we use a combination of the
full Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) and the recent
Multi-NLI corpus (Williams et al., 2017) training
datasets. For our saliency prediction model, we
use the Stanford Question Answering (SQuAD)
dataset (Rajpurkar et al., 2016). All dataset splits
and other training details (dimension sizes, learn-
ing rates, etc.) for reproducibility are in appendix.

5.2 Evaluation Metrics

We use the standard ROUGE package (Lin, 2004)
and Meteor package (Denkowski and Lavie, 2014)
for reporting the results on all of our summariza-
tion models. Following previous work (Chopra
et al., 2016; Nallapati et al., 2016; See et al., 2017),
we use the ROUGE full-length F1 variant.

6 Results

Baseline Cross-entropy Model Our abstractive
summarization model has attention, pointer-copy,
and coverage mechanism. First, we apply cross-
entropy optimization and achieve comparable re-

2Since the GT summary is correctly entailed by the source
document, we directly (by transitivity) use this GT as premise
for easier (shorter) encoding. We also tried using the full
input document as premise but this didn’t perform as well
(most likely because the entailment classifiers are not trained
on such long premises; and the problem with the sentence-to-
sentence avg. scoring approach is discussed below).
We also tried summary-to-summary entailment scoring (sim-
ilar to ROUGE-L) as well as pairwise sentence-to-sentence
avg. scoring, but we found that avg. scoring of ground-
truth summary (as premise) w.r.t. each generated summary’s
sentence (as hypothesis) works better (intuitive because each
sentence in generated summary might be a compression of
multiple sentences of GT summary or source document).

3http://www-nlpir.nist.gov/projects/duc/
guidelines/2002.html

Models R-1 R-2 R-L M
PREVIOUS WORK

Nallapati (2016)? 35.46 13.30 32.65 -
See et al. (2017) 39.53 17.28 36.38 18.72
Paulus (2017) (XE)

? 38.30 14.81 35.49 -
Paulus (2017) (RL)

? 39.87 15.82 36.90 -
OUR MODELS

Baseline (XE) 39.41 17.33 36.07 18.27
ROUGE (RL) 39.99 17.72 36.66 18.93
Entail (RL) 39.53 17.51 36.44 20.15
ROUGESal (RL) 40.36 17.97 37.00 19.84
ROUGE+Ent (RL) 40.37 17.89 37.13 19.94
ROUGESal+Ent (RL) 40.43 18.00 37.10 20.02

Table 1: Results on CNN/Daily Mail (non-
anonymous). ? represents previous work on anony-
mous version. ‘XE’: cross-entropy loss, ‘RL’: reinforce
mixed loss (XE+RL). Columns ‘R’: ROUGE, ‘M’:
METEOR.

sults on CNN/Daily Mail w.r.t. previous work (See
et al., 2017).4

ROUGE Rewards First, using ROUGE-L as
RL reward (shown as ROUGE in Table 1) im-
proves the performance on CNN/Daily Mail in all
metrics with stat. significant scores (p < 0.001) as
compared to the cross-entropy baseline (and also
stat. signif. w.r.t. See et al. (2017)). Similar
to Paulus et al. (2017), we use mixed loss function
(XE+RL) for all our reinforcement experiments, to
ensure good readability of generated summaries.

ROUGESal and Entail Rewards With our
novel ROUGESal reward, we achieve stat. signif.
improvements in all metrics w.r.t. the baseline as
well as w.r.t. ROUGE-reward results (p < 0.001),
showing that saliency knowledge is strongly im-
proving the summarization model. For our Entail
reward, we achieve stat. signif. improvements in
ROUGE-L (p < 0.001) w.r.t. baseline and achieve
the best METEOR score by a large margin. See
Sec. 7 for analysis of the saliency/entailment skills
learned by our models.

Multi-Reward Results Similar to ROUGESal,
Entail is a better reward when combined with
the complementary phrase-matching metric in-
formation in ROUGE; Table 1 shows that the
ROUGE+Entail multi-reward combination per-
forms stat. signif. better than ROUGE-reward
in ROUGE-1, ROUGE-L, and METEOR (p <
0.001), and better than Entail-reward in all

4Our baseline is statistically equal to the paper-reported
scores of See et al. (2017) (see Table 1) on ROUGE-1,
ROUGE-2, based on the bootstrap test (Efron and Tibshirani,
1994). Our baseline is stat. significantly better (p < 0.001)
in all ROUGE metrics w.r.t. the github scores (R-1: 38.82,
R-2: 16.81, R-3: 35.71, M: 18.14) of See et al. (2017).

Results (CNN/Daily Mail)

Table: Results on CNN/Daily Mail (nonanonymous). * represents previous work on anonymous version. ‘XE’: cross-
entropy loss, ‘RL’: reinforce mixed loss (XE+RL). Columns ‘R’: ROUGE, ‘M’: METEOR. Final multi-reward RL 
model improvements are statistically significant over baseline, ROUGE-RL, Entail-RL.

Human evaluation:  
Our Multi-reward model 
is better than baseline 

[Pasunuru & Bansal, NAACL 2018](slides by Ramakanth Pasunuru)
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Thank You

(slides by Ramakanth Pasunuru)



Machine Translation 



Machine Translation 

  Useful for tons of companies, online traffic, and our international 
communication! 



Statistical Machine Translation 

Current	statistical	machine	translation	systems

• Source	language	f,	e.g.	French
• Target	language	e,	e.g.	English
• Probabilistic	formulation	(using	Bayes	rule)

• Translation	model	p(f|e)	trained	on	parallel	corpus
• Language	model	p(e)	trained	on	English	only	corpus	(lots,	free!)

4/26/16Richard	Socher10

TranslationModel
p(f|e)French	à à Pieces	of	English	à Language	Model

p(e)

Decoder
argmax p(f|e)p(e) à Proper	English

[Richard Socher CS224d]	

  Source language f (e.g., French) 

  Target language e (e.g., English)  

  We want the best target (English) translation given the source 
(French) input sentence, hence the probabilistic formulation is: 

  Using Bayes rule, we get the following (since p(f) in the denominator 
is independent of the argmax over e): 

Current	statistical	machine	translation	systems

• Source	language	f,	e.g.	French
• Target	language	e,	e.g.	English
• Probabilistic	formulation	(using	Bayes	rule)

• Translation	model	p(f|e)	trained	on	parallel	corpus
• Language	model	p(e)	trained	on	English	only	corpus	(lots,	free!)

4/26/16Richard	Socher10

TranslationModel
p(f|e)French	à à Pieces	of	English	à Language	Model

p(e)

Decoder
argmax p(f|e)p(e) à Proper	English



Statistical Machine Translation 

[Richard Socher CS224d]	

  The first part is known as the ‘Translation Model’ p(f|e) and is trained 
on parallel corpora of {f,e} sentence pairs, e.g., from EuroParl or 
Canadian parliament proceedings in multiple languages 

  The second part p(e) is the ‘Language Model’ and can be trained on 
tons more monolingual data, which is much easier to find! 

Current	statistical	machine	translation	systems

• Source	language	f,	e.g.	French
• Target	language	e,	e.g.	English
• Probabilistic	formulation	(using	Bayes	rule)

• Translation	model	p(f|e)	trained	on	parallel	corpus
• Language	model	p(e)	trained	on	English	only	corpus	(lots,	free!)

4/26/16Richard	Socher10

TranslationModel
p(f|e)French	à à Pieces	of	English	à Language	Model

p(e)

Decoder
argmax p(f|e)p(e) à Proper	English



Statistical Machine Translation 

Step	1:	Alignment	

4/26/16Richard	Socher11

Goal:	know	which	word	or	phrases	in	source	language	
would	translate	to	what	words	or	phrases	in	target	
language?	à Hard	already!

Alignment	examples	from	Chris	Manning/CS224n

9/24/14 

4 

Statistical MT 

Pioneered at IBM in the early 1990s 
 
Let’s make a probabilistic model of translation 
P(e | f) 
 
Suppose f is de rien 
P(you’re welcome | de rien)  = 0.45 
P(nothing | de rien)    = 0.13 
P(piddling | de rien)   = 0.01 
P(underpants | de rien)   = 0.000000001 

Hieroglyphs 

Statistical Solution 

•  Parallel Texts 
– Rosetta Stone 

Demotic 

Greek 

Statistical Solution 

–  Instruction Manuals 
–  Hong Kong/Macao 

Legislation 
–  Canadian Parliament 

Hansards 
–  United Nations Reports 
–  Official Journal 

of the European 
Communities 

–  Translated news 

•  Parallel Texts Hmm, every time one sees  
“banco”, translation is  
�bank” or “bench” …   
If it’s “banco de…”, it 
always becomes “bank”,  
never “bench”… 

A Division of Labor 

Spanish Broken 
English 

English 

Spanish/English 
Bilingual Text 

English 
Text 

Statistical Analysis Statistical Analysis 

Que hambre tengo yo I am so hungry 

Translation 
Model P(f|e) 

Language 
Model P(e) 

Decoding algorithm 
argmax P(f|e) * P(e) 
     e 

What hunger have I, 
Hungry I am so, 
I am so hungry, 
Have I that hunger … 

Fidelity Fluency 

Alignments 
We can factor the translation model P(f | e ) 
by identifying alignments (correspondences) 
between words in f and words in e 

Japan 
shaken 

by 
two 

new 
quakes 

Le 
Japon 
secoué 
par 
deux 
nouveaux 
séismes 

Japan 
shaken 

by 
two 

new 
quakes 

Le
 

Ja
po

n 
se

co
ué

 
pa

r 
de

ux
 

no
uv

ea
ux

 
sé

is
m

es
 

�spurious� 
word 

Alignments: harder 

And 
the 

program 
has 

been 
implemented 

Le 
programme 
a 
été 
mis 
en 
application 

�zero fertility� word 
not translated 

And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

one-to-many 
alignment 

  First step in traditional machine translation is to find alignments or 
translational matchings between the two sentences, i.e., predict which 
words/phrases in French align to which words/phrases in English. 

  Challenging problem: e.g., some words may not have any alignments: 



Statistical Machine Translation 

Step	1:	Alignment	

4/26/16Richard	Socher12

9/24/14 
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Statistical MT 

Pioneered at IBM in the early 1990s 
 
Let’s make a probabilistic model of translation 
P(e | f) 
 
Suppose f is de rien 
P(you’re welcome | de rien)  = 0.45 
P(nothing | de rien)    = 0.13 
P(piddling | de rien)   = 0.01 
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Legislation 
–  Canadian Parliament 

Hansards 
–  United Nations Reports 
–  Official Journal 
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•  Parallel Texts Hmm, every time one sees  
“banco”, translation is  
�bank” or “bench” …   
If it’s “banco de…”, it 
always becomes “bank”,  
never “bench”… 

A Division of Labor 
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English 
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Bilingual Text 

English 
Text 

Statistical Analysis Statistical Analysis 

Que hambre tengo yo I am so hungry 
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Language 
Model P(e) 

Decoding algorithm 
argmax P(f|e) * P(e) 
     e 

What hunger have I, 
Hungry I am so, 
I am so hungry, 
Have I that hunger … 

Fidelity Fluency 

Alignments 
We can factor the translation model P(f | e ) 
by identifying alignments (correspondences) 
between words in f and words in e 
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word 
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And 
the 

program 
has 

been 
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en 
application 

�zero fertility� word 
not translated 
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one-to-many 
alignment 

  One word in the source sentence might align to several words in the 
target sentence: 



Statistical Machine Translation 

Step	1:	Alignment	

4/26/16Richard	Socher13
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5 

Alignments: harder 

The 
balance 

was 
the 

territory 
of 

the 
aboriginal 

people 

Le 
reste 
 
appartenait 
 
aux 
 
autochtones 

many-to-one 
alignments 

The 
balance 

was 
the 

territory 

of 
the 

aboriginal 
people 

 L
e 

re
st

e 

ap
pa

rte
na

it 
au

x 

au
to

ch
to

ne
s 

Alignments: hardest 

The 
poor 
don’t 
have 

any 
money 

Les 
pauvres 
sont 
démunis 

many-to-many 
alignment 

The 
poor 

don�t 
have 

any 

money 

Le
s 

pa
uv

re
s 

so
nt

 
dé

m
un

is
 

phrase 
alignment 

Alignment as a vector 

Mary 
did 
not 

slap 
 
 

the 
green 
witch 

1 
2 
3 
4 
 
 

5 
6 
7 

Maria 
no 
daba 
una 
botefada 
a 
la 
bruja 
verde 

1 
2 
3 
4 
5 
6 
7 
8 
9 

i j 

1 
3 
4 
4 
4 
0 
5 
7 
6 

aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 

And 
the 

program 
has 

been 
implemented 

aj 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2  3  4  5  6  6  6  

Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 

And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2 3 4 5 6 6 6  aj 

Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 

Really	hard	:/	

  Many words in the source sentence might align to a single word in the 
target sentence: 



Statistical Machine Translation 
Step	1:	Alignment	
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Alignment as a vector 
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•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 

And 
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program 
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Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 
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And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
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Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 

  And finally, many words in the source sentence might align to many 
words in the target sentence: 



Statistical Machine Translation 
Step	1:	Alignment	

4/26/16Richard	Socher15

• We	could	spend	an	entire	lecture	on	alignment	models

• Not	only	single	words	but	could	use	phrases,	syntax

• Then	consider	reordering	of	translated	phrases

Example	from	Philipp	Koehn

Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

er geht ja nicht nach hause

he does not go home

• Pick phrase in input, translate

Chapter 6: Decoding 6

  After learning the word and phrase alignments, the model also needs 
to figure out the reordering, esp. important in language pairs with very 
different orders! 



Statistical Machine Translation After	many	steps

4/26/16Richard	Socher16

Each	phrase	in	source	language	has	many	possible	
translations	resulting	in	large	search	space:

Translation Options

he

er geht ja nicht nach hause

it
, it

, he

is
are

goes
go

yes
is

, of course

not
do not

does not
is not

after
to

according to
in

house
home

chamber
at home

not
is not

does not
do not

home
under house
return home

do not

it is
he will be

it goes
he goes

is
are

is after all
does

to
following
not after

not to

,

not
is not

are not
is not a

• Many translation options to choose from

– in Europarl phrase table: 2727 matching phrase pairs for this sentence
– by pruning to the top 20 per phrase, 202 translation options remain

Chapter 6: Decoding 8

  After many steps, you get the large ‘phrase table’. Each phrase in the 
source language can have many possible translations in the target 
language, and hence the search space can be combinatorially large! 



Statistical Machine Translation 
Decode:	Search	for	best	of	many	hypotheses

4/26/16Richard	Socher17

Hard	search	problem	that	also	includes	language	model
Decoding: Find Best Path

er geht ja nicht nach hause

are

it

he
goes

does not

yes

go

to

home

home

backtrack from highest scoring complete hypothesis

Chapter 6: Decoding 15

  Finally, you decode this hard search problem to find the best 
translation, e.g., using beam search on the several combinatorial 
paths through this phrase table (and also include the language model 
p(e) to rerank) 



Alignment Model Details 

��

Word�Alignment



IBM Model 1 
  Alignments: a hidden vector called an alignment specifies which 

English source is responsible for each French target word. 
  The first, simplest IBM model treated alignment probabilities as 

roughly uniform: 

��

IBM�Model�1�(Brown�93)
� Alignments:�a�hidden�vector�called�an�alignment specifies�which�English�

source�is�responsible�for�each�French�target�word.

[Brown et al., 1993]	



IBM Model 2 (Distortion) 

[Brown et al., 1993]	

��

IBM�Model�2
� Alignments�tend�to�the�diagonal�(broadly�at�least)

� Other�schemes�for�biasing�alignments�towards�the�diagonal:
� Relative�vs�absolute�alignment
� Asymmetric�distances
� Learning�a�full�multinomial�over�distances

  The next more advanced model captures the notion of ‘distortion’, 
i.e., how far from the diagonal is the alignment 

  Other approaches for biasing alignment towards diagonal include 
relative vs absolute alignment, asymmetric distances, and learning 
a full multinomial over distances 



��

EM�for�Models�1/2

� Model�1�Parameters:
Translation�probabilities�(1+2)
Distortion�parameters�(2�only)

� Start�with� uniform,�including
� For�each�sentence:

� For�each�French�position�j
� Calculate�posterior�over�English�positions

� (or�just�use�best�single�alignment)
� Increment�count�of�word�fj with�word�ei by�these�amounts
� Also�reͲestimate�distortion�probabilities�for�model�2

� Iterate�until�convergence

IBM Models 1/2 EM Training 

[Brown et al., 1993]	

��

EM�for�Models�1/2

� Model�1�Parameters:
Translation�probabilities�(1+2)
Distortion�parameters�(2�only)

� Start�with� uniform,�including
� For�each�sentence:

� For�each�French�position�j
� Calculate�posterior�over�English�positions

� (or�just�use�best�single�alignment)
� Increment�count�of�word�fj with�word�ei by�these�amounts
� Also�reͲestimate�distortion�probabilities�for�model�2

� Iterate�until�convergence

  Model Parameters: 
  Translational Probabilities:  
  Distortion Probabilities: 

  Start with uniform P(fj | ei) parameters, including P(fj | null) 
  For each sentence in training corpus: 

  For each French position j: 
  Calculate posterior over English positions using: 

 

  Increment count of word fj  with word ei by these amounts 
  Similarly re-estimate distortion probabilities for Model2 

  Iterate until convergence 



HMM Model 

[Vogel et al., 1996]	

��

$�

The�HMM�Model

7KDQN \RX � , VKDOO GR VR JODGO\ �

� � � � �

� � � � � �� � �

0RGHO�3DUDPHWHUV
Transitions���3��$�  ���_�$�  ���Emissions:  3��)�  �*UDFLDV�_�($�  �7KDQN��

*UDFLDV � OR KDUp GH PX\ EXHQ JUDGR �

� � ��

(�
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IBM Models 3/4/5 (Fertility) 

[Vogel et al., 1996]	

��

IBM�Models�3/4/5

Mary did not slap the green witch

Mary not slap slap slap the green witch 

Mary not slap slap slap NULL the green witch

n(3|slap)

Mary no daba una botefada a la verde bruja

Mary no daba una botefada a la bruja verde

P(NULL)

t(la|the)

d(j|i)

[from Al-Onaizan and Knight, 1998]



IBM Models 3/4/5 (Fertility) 

[Vogel et al., 1996]	

��

Examples:�Translation�and�Fertility



Syntactic Machine Translation 

��



Hiero 

��

Hiero�Rules

)URP�>&KLDQJ�HW�DO������@



Synchronous Tree-Substitution Grammars 

��

[Shieber, 2004; Graehl et al., 2008]	



Joint Parsing and Alignment 

NP

NP

IN

PP

NPIN

PPVBN

VPVBD

VPNP

S

JJ NNS

... were established in such places as Quanzhou Zhangzhou etc.

在
泉州
漳州
等
地
!立
了
...

NP

P

NN

NP

PP

VP

VV

AS

NP

VP

b8

b7

b4

Sample Synchronization Features

NP, b8,NP

NN, b7

���( ) = CoarseSourceTarget�phrasal, phrasal� : 1
FineSourceTarget�NP,NP� : 1

��( ) = CoarseSourceAlign�pos� : 1
FineSourceAlign�NN� : 1

Figure 2: An example of a Chinese-English sentence pair with parses, word alignments, and a subset of the full optimal
ITG derivation, including one totally unsynchronized bispan (b4), one partially synchronized bispan (b7), and and fully
synchronized bispan (b8). The inset provides some examples of active synchronization features (see Section 4.3) on
these bispans. On this example, the monolingual English parser erroneously attached the lower PP to the VP headed by
established, and the non-syntactic ITG word aligner misalignedI to such instead of to etc. Our joint model corrected
both of these mistakes because it was rewarded for the synchronization of the two NPs joined by b8.

We cannot efficiently compute the model expecta-
tions in this equation exactly. Therefore we turn next
to an approximate inference method.

6 Mean Field Inference

Instead of computing the model expectations from
(4), we compute the expectations for each sentence
pair with respect to a simpler, fully factored distri-
bution Q(t, a, t

0) = q(t)q(a)q(t0). Rewriting Q in
log-linear form, we have:

Q(t, a, t
0) / exp

2

4
X

n2t

 n +
X

b2a

 b +
X

n02t0

 n0

3

5

Here, the  n,  b and  n0 are variational parameters
which we set to best approximate our weakly syn-
chronized model from (3):

 
⇤ = argmin

 
KL

⇣
Q ||P✓(t, a, t

0|s, s0)
⌘

Once we have found Q, we compute an approximate
gradient by replacing the model expectations with

expectations under Q:

EQ(a|wi)

⇥
�(ti, a, t

0
i, si, s

0
i)

⇤

� EQ(t,a,t0|si,s0
i)

⇥
�(t, a, t

0
, si, s

0
i)

⇤

Now, we will briefly describe how we compute Q.
First, note that the parameters  of Q factor along
individual source nodes, target nodes, and bispans.
The combination of the KL objective and our par-
ticular factored form of Q make our inference pro-
cedure a structured mean field algorithm (Saul and
Jordan, 1996). Structured mean field techniques are
well-studied in graphical models, and our adaptation
in this section to multiple grammars follows stan-
dard techniques (see e.g. Wainwright and Jordan,
2008).

Rather than derive the mean field updates for  ,
we describe the algorithm (shown in Figure 3) pro-
cedurally. Similar to block Gibbs sampling, we it-
eratively optimize each component (source parse,
target parse, and alignment) of the model in turn,
conditioned on the others. Where block Gibbs sam-
pling conditions on fixed trees or ITG derivations,
our mean field algorithm maintains uncertainty in

[Burkett et al., 2011]	



Neural Machine Translation (next week) 


