The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 541 Digital Logic and Computer Design
Fall 2014

Lab #2: Hierarchical Design & Verilog Practice
Issued Wed. 8/27/14; Due Wed. 9/3/14 (11:59pm)

This lab assignment consists of several steps, each building upon the previous. Detailed instructions are
provided, including screenshots of many of the steps. Verilog code is provided for almost all of the designs,
but some portions of the code have been erased; in those cases, it is your task to complete and test your code
carefully. Submission instructions are at the end.

You will learn the following:
* Navigating the ISE development environment
* Designing a hierarchical system, with multiple module types
* Working with buses (multi-bit values)
* Verilog test fixtures and stimuli, including printing and monitoring

* Verilog simulation, including the graphical viewer

Make a New Project

Start the Project Navigator, and open the Lab 1 project if not already open. Make a copy by clicking File >
Copy Project (choose Lab2 as its name). Be sure the last two checkboxes are checked.

,
Conr R ==

Name: Lab2
Location: D:\Comp541\Lab2 E]
Working directory: |D:\Comp541\Lab2 [;]

Description:

Source options

") Keep sources in their current locations
@ Copy sources to the new location

Copy files from Macro Search Path directories
Copy Additional Files...

Generated files option
[¥] Exclude generated files from the copy
Copy options

[¥] Open the copied project

OK][Cancel H Help

Double-click on the file labl partl to open it. Save it under a new name: File= Save as = fulladder.v. Now
right-click on labl_partl.v and click Remove.

r |
& Confirm Remove g

This action will:
Remove all modules in the listed files from the project. =

Do you want to continue?

:D:\Comp541\Lab2\labl _partl.v

Click Add Source (below New Source), and add the file fulladder.v to the project. (This seems unnecessarily
long, but is the only way to rename a file in the project!) Within this file, rename your module name to
“fulladder.”

& Adding Source Files.. [

The following allows you to see the status of the source files being added to the project. It
also allows you to specify the Design View association, and for VHDL sources the library, for
sources which are successfully added to the project.

File Name Association Library

1 @ fulladdery [_Eﬂwork [E’

Adding files to project: |_| 1 of 1 files (0 errors)
| [o J[o J[ne

— —

Select Simulation view, and remove labl _test (we will make a new test fixture in this lab). Now go back to
Implementation view.

(Now from the Windows/Linux file explorer, you can delete the files lab_partl.v and lab1 test from the Lab2
folder.)

For your reference, here is once again the circuit and Boolean equations for a Full Adder (from Comp411).

"N
“Carry”I ' ' ! Cout = Cin (A@B)-I_AB
Logic 1 A Sum=C,, PADB

v7
I ‘ \

\
(:Out I \\. \
“Sum

Sum ogic

- oon e e = »”

Make sure the description of the module is exactly as follows. Note that we have added an intermediate signal
X that computes 4 xor B, which is then shared by the sum logic and the carry logic (thereby saving a gate).

module fulladder (
input &,
input B,
input Cin,
ocutput Sum,
output Cout
)

wire X;

assign X = A ~ B;

assign Sum = Cin ~ X;

assign Cout = (Cin & X) | (A & B);

endmodule

Save the file fulladder.v. At this point, the hierarchy should look like this:

e

Hierarchy
& Lab2
- 3 xc3s1200e-4fg320
[]ef%s fulladder (fulladder.v)

Designing a 4-bit ripple-carry adder

Let us now design a 4-bit ripple-carry adder by stringing together four full adders (FAs). The diagram of a 4-
bit adder (again, from Comp411) is shown here for reference.

A3 B3 A2 B2 Al Bl A0 BO
|| || || ||

Cout —| FA FA FA FA~ |— Cin

S3 S2 S1 SO

The corresponding Verilog code is shown here, but portions of it have been obscured. Please fill in
appropriately. (You do not need to add any extra lines of code; just fill in the missing details into what is
provided.)

nodule adder4bit (
input [3:0] A,
input [3:0] B,
input Cin,
output [3:0] Sum,
output Cout

):

wire C1, C2, C3;
fulladder a0 (A[0], B[O], Cin, Sum[0], C1):;

fulladder al(&A[1], B[1], , Sum[1],)2
fulladder a2 (A[2], B[2], , Sum[2], ;
fulladder a3 (A[3], B[3], ., Sum[3], ;

endmodule

Before you can enter this code, you will need to create a new source file. See the following screenshots for
what to enter into the dialog boxes:

’_.New Source Wizard

Select Source Type

Select source type, file name and its location.

[f BMM File

€* ChipScope Definition and Connection File
"] Implementation Constraints File

/ IP (CORE Generator & Architecture Wizard)
%) MEM File
[©] Schematic ! .
3t System Generator Project Eile name:
=] User Document [adder‘lbit
Verilog Module)
Location:

] Verilog Test Fixture
Fay VHDL Module D:\CompS41\Lab2 | (aas)

[VHDL Library

(] VHDL Package

s VHDL Test Bench

¢ Embedded Processor

Add to project

@ & New Source Wizard

Define Module

Specify ports for module.

Module name [adder4bit
h Port Name Direction Bus MSB LSB =
| A input ~ 3 0

B input v 3 0

Cin input v

Sum output v 3 0
| linput [+]
i input N
I input w7
: input v
| input v |
: input v -
|

Create your own test fixture to test your 4-bit adder. Really, do test your 4-bit adder before moving on!

Designing an 8-bit ripple-carry adder

Now we will design an 8-bit adder using two 4-bit adders. The procedure is very similar: create a new source
file, and this time use “adder8bit” as the name for the module, and specify the ports as follows:

[S=)
@ New Source Wizard
Define Module
Specify ports for module.
Module name |adder8bit
Port Name Direction Bus MSB LSB ol
il |a input E] 7 0
| B input E] 7 0
Cin input E]]
Sum output E] 7 0
Cout output E] [=
input E]]
input E] |
input E]]
input E] |
input E] =@ n
input E] | o
[Next] [Cancel
= — = = =

Use the following code, and fill in the missing details.

module adder8bit (
input [7:0] A&,
input [7:0] B,
input Cin,
output [7:0] Sum,
ocutput Cout
)

wire C3;
adder4bit AO(A[3:0], B[3:0], Cin, Sum[3:0], @) :

adder4bit 21 (D D & D WD) :

endmodule

Once again, create your own test fixture to test your 8-bit adder. Really, do test it before moving on!

Designing an 8-bit Adder-Subtractor

Now you will design a circuit that can perform 8-bit additions as well as subtractions. That is, given 4 and B,
the circuit will produce either the sum 4+5, or the difference 4-B, depending on whether the value of a
Boolean input Subtract is 0 or 1, respectively. This circuit was also covered in Comp411, but is repeated here
for reference.

B7 B6 Bl BO
\I‘L | | | Subtract
Ll) Ll
A7 A6 .. Al AO
| | || |
8-bit adder _
| | | |

Result7 Result6 ... Resultl Result0

Once again, you will create a new source file, with the name add_sub_8bit.v, and the following ports:
r Es B

@ & New Source Wizard

Define Module

Specify ports for module.
Module name |add_sub_8bit

Port Name Direction Bus MSB LSB 5l
A input v 7 0
B input El 7 0
Subtract input EI O]

Result output El 0
input EI O]
input El [
input EI O]
input El]
input EI O]
input El [l b

input EI [=

[Next] [Cancel

m

Note that there is no C;, and no C,,,.

Use the following code, and fill in the missing pieces:

module add_sub 8bit(
input [7:0] A,
input [7:0] B,
input Subtract,
output [7:0] Result
)

wire [7:0] ToBornottoB:;
wire Cout;

assign ToBornottoB[7:0] = (Subtract) ?.['7:0] :.['7:0];
addergbit add8 (A[7:0], ToBornottoB[7:0], Subtract, Result[7:0], Cout):;

// It is also okay to write it as follows, but there is less chance
// of error while coding if you use the above version

// adder8bit addg (A, ToBornottoB, Subtract, Result, Cout):;

endmodule

Note that while the 8-bit adder has a carry out, the add _sub_8bit module does not send it out! Also, observe
carefully what the carry in of the adder is connected to.

Save the file, and take a look at the hierarchy; it should look exactly like this when you expand all the nodes:

View: @ {l\:&lmplementation © 8 simulation

Hierarchy

Lab2
= £ xc3s1200e-4fg320

= [W)e add_sub_8bit (add_sub_8bit.v)
= [v] add8 - adderBbit (adder8bit.v)
= [¥] A0 - adderdbit (adderdbit.v)
v| a0 - fulladder (fulladder.v)
v| al - fulladder (fulladder.v)
v| a2 - fulladder (fulladder.v)
v| a3 - fulladder (fulladder.v)
= Al - adderdbit (adderdbit.v)
v| a0 - fulladder (fulladder.v)
v| al - fulladder (fulladder.v)
v| a2 - fulladder (fulladder.v)
v| a3 - fulladder (fulladder.v)

Verilog Test Bench

Create a new source file, and select Verilog Test Fixture as its type, and name it Lab2_test, as shown.

===

TR S—
- - — L
A @ - —

& New Source Wizard -
8 o —
Select Source Type

Select source type, file name and its location.
BMM File

€* ChipScope Definition and Connection File
7] Implementation Constraints File

{ IP (CORE Generator & Architecture Wizard)

MEM File I
2] Schematic) .
3t System Generator Project Eile name:

=] User Document |Lab2_hest

Verilog Module)

4] Verilog Test Fixture Logation:

" VHDL Module D:\CompS41\.ab2 | (aaa)

7 Embedded Processor

Add to project

(o) [os |

= .
. T —
S —TT F5)
5 ® e —
@ New Source Wizard -
8 - —

Associate Source

Select a source with which to associate the new source.
add_sub_8bit |

adder8bit
adderdbit
fulladder

|

T [|

Download the code for the test fixture from the website (you can copy-and-paste it into the stub that the tool
automatically creates for you).

Carefully go through every line of the test bench, and make sure you understand it! Refer to the online
Verilog reference linked from the class website.

Verilog Simulation

Change to Simulation view (instead of Implementation view), and click to select Lab2 _test underneath, and
then double-click Simulate Behavioral Model. The simulator ISim will launch, and the results should look like
the picture below (click Zoom to Full View).

Since it is hard to make sense of all the 0°s and 1°s, select all the signals under Name (use shift-select), right-
click, choose Radix, and select Signed Decimal.

£ ISim (0.87xd) - [Defaultwcfg] C=na

[T File Edit View Simulation Window Layout Help
OP2E|IZEDDOX® v o | @ QBETIo| AR A2LB 2 R|iwar|t @ b »X[Los[Z]6z Il |[@Retound

InstancesandP.. « O & X| Objects 08 X
EQF 5y Simulation Objects for Initial_4.

Instance and Process Nami| . 0 X0 0. 01101000 X0 X0 X0. 3. X 11011000

- - Ctrl+X —
{J Lab2_test Object Name Valug § e 00101100 0. 0. X0 X0 X ogoo010 ____§
DS Result7:01 1101| ¢ - | trl e\ P
D‘ i 9 Result(7.0] 1101 S 00111100 0... ¥ 0. X0.. X0.. X
(5 Initial_45_0 R A70] 0000 Paste Ctrl+V b _—i b
ER L] R 87.0] 0011) -
% Subtract 1 i s 00000000
Rj iBLO 0000
Ctrl+F
Select All Ctrl+A
Expand
Name »
v Defaut
Signal Color > Binary
Divider Color Heeieamal
Reverse Bit Order Unsigned Decimal
3 6o To Source Code | Signed Decimal _|
T Octal
ASCI
< [am) p 4
&% Instanc. Men @ <[m v || = Dl Lab2_test.v
Console 08 X
WARNING: Please use Xilinx License Configuration Manager to check out a full ISim license. .4, New Group -
WARNING: ISim will run in Lite mode. Please refer to the ISim documentation for more informatic New Divider iand the Full version.
This is a Lite version of ISim. -
Time resolution is 1ps X New Virtual Bus
Simulator is doing dircuit initialization process. E
Finished dircuit initialization process.
Stopped at time : 23 ns : File "D:/Comp541Aab2/lab2 test.v"Line 67
ISim> &
B Console |[Z] CompiationLog | @ Breakpoints | a§ Findin FiesResults | [y Search Results

Sim Time: 23,000 ps

EBe | 0ok ‘

Uses signed decimal representation

ElEL CY o

Fivar

=

You should now see the simulation outputs in decimal.

—_— e e e =]
B Result[7:0] 0 [XewxsaXmX | 104 X X0xXo0 X20X |40
_ ## —
Rj Ar:0] X1LX ||- (0 X30Xx20X |10 J

—
B 80 s --ﬁ_ﬁlﬁD'_
_ e— ———

[Subtract

o) - WA
RJ iBL0] |m||||-ﬁ

Look through them carefully to make sure they are correct.

Now, let us display the bus ToBornottoB that is inside the add_sub_8bit module. Go to the left, select uut, and
you will see the objects and wires inside it. Click and drag ToBornottoB/[7:0] into the Name column in the
waveform window:

“netance and Process Nam] L Gal GBI TRLIBI15)| » (Neme |
Instance and Process Namu lﬁ — : '
{J Lab2_test Object Name Valug > B Result[7:0]
{ uut B4 A[7:0] 0000 Q> W A0)
(3 Initial_45_0 B[7:0] 0011 > g B[7:0]
L) gl Subtract 1 | 1 Subtract
Result[7:0] 1101 . B1:0
:§ ToBornottoB[... 1100 ' IB1:0]
s Cout a [l =3 ToBornottoB[7:0]

Click Simulation =2 Restart, and then Simulation 2 Run All. This time the value of ToBornottoB/[7:0] is also
displayed in the waveform window. Right-click ToBornottoB in the name column, and change its radix back
to Binary. Also, change the radix of B back to Binary. Observe that they are identical for the first half of the
simulation, and bitwise complements during the second half.

This exercise showed you how to examine objects and wire that are not at the top level, but down the
hierarchy.

Also, observe that you can click at a particular time instant in the waveform window. The Value column is
updated to show the values of all the signals at that time instant. There are also other buttons available for
zooming in/out, skipping to next transition, etc.

Why does the value of i appear as X for the first 5 ns?

Using Display and Monitor Commands

Look at the bottom of the test fixture. You will see commands using $time, $timeformat, and $Smonitor.
The $monitor command tells the simulator to print a message whenever any of its arguments (except for
$time itself) changes value. The output appears in the horizontal panel at the bottom of the simulator.

Please refer to the online Verilog reference website for details on these commands, and make sure you
understand them well! You should also look into the $display and $write commands.

What to submit: A screenshot of the ISim window clearly showing the final simulation result of the
adder-subtractor, i.e., with ToBornottoB[7:0].

* The values of ToBornottoB[7:0] and B[7:0] should be shown in binary.
¢ The values of Result[7:0], A[7:0], Subtract, and i should be shown as signed decimals.

How to submit:
* Send email to: comp541submit-cs@cs.unc.edu, with “Lab 2” in the subject line.

e Attach the simulator screenshot using the filename waveforms . png (or other appropriate
extension).

* Submit your work by 11:59pm on Wednesday, September 3.

