
 1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 541 Digital Logic and Computer Design
Fall 2014

Lab #5: Working with the boards!

Issued Wed 9/17/14; Due Wed 9/24/14 (submit by 11:59pm)

This lab introduces you the new hardware development kits that you will be using for the remainder of the
semester. The lab assignment consists of three steps, each building upon the previous. This lab assignment
will be explained in detail during the lab session. But, I am providing written instructions here, along with
some screenshots, especially since this is the first assignment using the hardware kits.

You will learn the following:

• Safe handling of the boards, powering them up, connecting to your computers

• Designing encoders/decoders (to drive a 7-segment display)

• Designing timing references using counters

• Specifying pin mappings between the I/O ports of your design and the board pins

• Downloading circuit implementation onto the board, and running it

Part 0: Read the Manual!

Download the manual for the kits from the class website, and go through the following sections carefully:

• Overview
• Power Supplies
• Oscillators/Clocks
• Basic I/O (for Nexys 4, skip Tri-Color LEDs)

Follow these guidelines when using the kits:

• Ground yourself before touching the kit! And I don’t mean that in a metaphysical sense. Please touch
a metal faucet, an all-metal door (e.g., fire door), or the outside of a ground appliance (refrigerator,
microwave oven). This step is all the more important during winter, especially if you wear rubber
soles and walk on synthetic rugs or tiles. A static shock can send 2,000-4,000 volts to your circuit
board and ruin it. And we don’t have any extras.

• Set the power supply jumper on the board to derive power from the USB cable. (In the pictures on the
next two pages, the jumper is on the top left of the board, near the “POWER” switch. It is labeled JP1
on Nexys 3 boards, and JP3 on Nexys 4 boards.) The jumper has a blue plastic cap. If the cap is not
already on the “USB” setting, move it from the “Wall” setting to the “USB” setting.

• Now connect the board to your computer using the USB cable provided. The smaller end of the cable
should go into the micro-USB programming socket near the power switch, labeled “USB PROG” on
Nexys3 boards, and “PROG UART” on Nexys 4 boards). The larger end of the cable goes into a USB
port on your computer.

• Turn the “POWER” switch (on the top left of the board) on. If you see the board light up and pass the
self test, everything is good.

 2

Nexys 3 Board

If you have a Nexys 3 board, study the above picture carefully. If you have a Nexys 4 board, study the picture
on the next page.

Nexys3 Reference Manual

Doc: 502-182 page 3 of 22

JTAG (both jumpers loaded), and board power is cycled. The FPGA will automatically reject any .bit
files that are not built for the proper FPGA.

After being successfully programmed, the FPGA will cause the "Done" LED to illuminate. Pressing the
Reset button at any time will reset the configuration memory in the FPGA. After being reset, the
FPGA will immediately attempt to reprogram itself from one of the PCM devices if the J8 Mode jumper
is set to BPI or SPI mode.

Adept
USB Port

Power
Switch

USB HID
Host Port

Power
Jack

JTAG
Header

MODE
Jumper

Power
Good LED

Done
LED

Reset
Button

Power Select
Jumper

 LEDs Slide switches Push buttons

7-seg
Display

USB
UART

VGA
Port

10/100
Ethernet

Pmod
Connectors

VHDC
Conncector

Digilent's Adept software offers a simplified programming interface and many additional features as
described below. The Adept USB port is fully compatible with all Xilinx tools, including the iMPACT
programming software. The Adept features are always available, regardless of how the FPGA was
programmed.

 3

Nexys 4 Board

 4

Part I: A 7-Segment Display Encoder (Decimal digit ! Display character)

Let us begin by designing a simpler encoder to convert a single decimal digit (4-bit value) to a bit pattern
suitable for driving one letter of a 7-segment display.

Create a new project called Lab5. Be sure to use the proper settings for the kits we are now using, by setting
the Family, Device, Package and Speed parameters exactly as in the picture below:

Nexys 3 Project Settings Nexys 4 Project Settings

Important: The Family, Device, and Speed parameters depend upon whether you are using a Nexys 3 board
or a Nexys 4 board.

Download the Verilog file dec7seg.v from the class website. Add it to your project by clicking the “Add Copy
of Source” button near the top left (see picture on the right) and then selecting the file you downloaded.
Understand that this button makes a copy of the file you select, and places it into the project folder. If
you instead use “Add Source”, that leaves the file where it is, and adds it to the project. In my opinion,
it is always better to use “Add Copy of Source”, especially if you are copying a file from an earlier lab;
otherwise, any changes you make to the file will be reflected in the earlier lab as well.

Depending on the board, you either have a 4-digit display or an 8-digit one. In this lab, we will be using only a
single digit (the rightmost one). But the remaining ones (three or seven) need to be kept unlit. Therefore, one
line in the Verilog description will be different depending on which board you are using. Please follow the
comments in the file and use the appropriate line.

Go through the Basic I/O section of the manual very carefully to understand how the slide switches and the 7-
segment display work. The schematic is repeated here for convenience.

 5

Nexys 3: Switches and LEDs

Nexys 4: Switches and LEDs

Now we need to specify how the inputs/outputs of your Verilog module map to the actual I/O pins on the
board.

• We want to use the 4 rightmost slider switches for the 4-bit input to your module, A[3:0]. These
would be pins {M8, V9, T9, T10} on the Nexys 3 board and pins {R6, R7, U8, U9} on the Nexys 4
boards (see the relevant figure above, and also find these labels next to the switches on the board). In
this mapping, M8/R6 is the MSB and T10/U9 is the LSB.

• We want to connect the 8-bit display output of the Verilog module, segments[7:0], to the
following eight pins: T17-M13 on Nexys 3 and L3-M4 on Nexys 4.

• Finally, we want to connect the digit select output of the Verilog module, digitselect[], to the
corresponding selection outputs on the board (“anode selects”). For Nexys 3, which has a 4-digit
display, connect digitselect[3:0] to P17-N16. For Nexys 4, which has an 8-digit display,
connect digitselect[7:0] to M1-N6.

These connections are specified in a “User Constraints File” (sometimes called an “Implementation
Constraints File” in some dialog boxes). Do the following: Click on “New Source” ! select “Implementation

 6

Constraints File”, and give it the name segdisplay.ucf. An empty file will be created and added to the
project. Cut and paste the contents of the file by the same name provided on the class website. (Alternatively,
you could have downloaded the file from the website, and used the “Add Copy of Source” command.)

Carefully go through the Verilog source and the reference manual, and be sure you understand all of the
following:

• What does digitselect[] do? Why is it 4 bits long for Nexys 3 but 8 bits for Nexys 4?

• Why is there a negation in front of the pattern assigned to digitselect[]?

• Look at the patterns used for lighting up a decimal digit in the picture above, and verify that the
Verilog module does the same.

• Why is there a negation in front of the pattern assigned to segments[7:0]?

(As you must have gathered, there is only one pattern that can be output at a given time. To show a multi-digit
number, each of the digits is displayed on the corresponding position on the display for a brief time, before
moving on to the next digit. By cycling through all the digits are a high speed, we see the illusion of an multi-
digit display! This is the task for the next lab!)

Now let us compile and get it ready for the board. Be sure Implementation view is selected at the top. Click
Synthesize-XST, Implement Design and Generate Programming File one after the other in sequence. Or,
simply click Generate Programming File, and the tool will automatically perform all the steps in sequence.
Once successfully completed, this step generates a “.bit” file in your project folder (decto7seg.bit). Look for
it.

TIP: Sometimes, when things go terribly wrong, you may have to run each of these three steps separately.
Sometimes, you may have to force a complete rebuild by right-clicking and selecting ReRun All.

Now let us download the implementation onto the board. This step is also called “programming the board.”
First, connect the board to your computer according to instructions provided in Part 0. The tool we will be
using for this step is called iMPACT. You can launch it by clicking Tools! iMPACT, or by clicking
Configure Target Device. The tool ISE iMPACT opens in a new window. Run the wizard by clicking Edit !
Launch Wizard.

The following screenshots show you the sequence of dialog boxes that pop up. Make the selections exactly as
shown.

 7

Click OK.

Click Yes.

 8

Select the “.bit” file that you generated (decto7seg.bit).

Select No (we are not working with flash memories etc., at least not yet).

 9

Click OK. If all went well so far, you will see an “Identify Succeeded” message:

Next, right-click on the green Xilinx box (this is the chip in the middle of the board onto which you are
“burning” your compiled design), and click Select Target Device. You should see this:

 10

Finally, click Program (either in the middle left of the window, or right-click Xilinx and select Program). If all
went well, your design has now been implemented onto the circuit board, and is now running! Play with the
slider switches and verify the output is as expected.

Part II: A Hex Display Encoder (Hex digit ! Display character)

Make a copy of dec7seg.v from Part I and give it the name hexto7seg.v. Remove dec7seg.v from
your project (right-click ! Remove); this will not delete the file, only remove it from your project. Use Add
Source to add the new hexto7seg.v file into your project. Modify the display encoder to handle a
hexadecimal digit (i.e., “0” to “F”). Also, change the module’s name to hexto7seg(). You will simply
need to add six additional lines of code to your Verilog module to handle the cases “A” through “F”. It does
not matter whether you choose to display certain letters in lowercase or uppercase (e.g., “a” vs. “A”). Rerun
the tool chain, generate the programming file (hexto7seg.bit), and download it to the board and confirm
that you can now display ‘0’ through ‘F’.

Part III: Displaying a single-digit hex counter

Modify the design of Part II so that the value to be displayed is not input via the slide switches. Instead, create
a counter that cycles through the values “0”—“F” repeatedly, and feed that value to your hex display encoder
from Part II. For you to be able to observe if this design is working properly, the counter must be running at a
reasonable speed! Make it count at a rate of close to once per second. Note the following:

• Your counter will need a clock. The board provides a 100 MHz clock on pin V10 for Nexys 3 boards,
and pin E3 for Nexys 4 boards (see Oscillators/Clocks in the manual). Add this to your .ucf file
(simply uncomment the relevant line).

• Make a counter that is 32 bits long, even though we are displaying only four bits. The lowermost bits
are clearly changing too rapidly. (The LSB flips 100 million times a second!) The uppermost bits are
changing too slowly. You need to find 4 consecutive bits somewhere in the middle so that the least
significant of those is changing approximately once per second. These 4 bits form a hexadecimal
number (from 0 to 15) that is to be displayed. TIP: You will not get a frequency of exactly once per
second, but anything between half second and two seconds is okay.

 11

• You will need to modify the .ucf file to remove the inputs from the slide switches, since they are no
longer used (simply comment them out).

• Be sure your design is modular. That is, the top-level module should internally have two modules (a
counter, and a hex display encoder). Accordingly, there should be three distinct Verilog files:

1. hexto7seg.v (your hex to 7-segment display encoder from Part II). Observe that it should no
longer produce digitselect[], which should instead be produced by the top-level
module. Simply comment out the appropriate line from the module’s header.

2. counter1second.v (your counter module with a 4-bit output that changes roughly once per
second)

3. hexcounterdisplay.v (the top-level module), which should contain one instance of the module
from hexto7seg.v, and one instance of the module from counter1second.v. This top-level
module should now have the output digitselect[].

Please use the filenames specified.

• The following block diagram shows the hierarchy that your design must follow. You will not receive
full credit if your design does not follow the modular construction specified in this figure.

What to submit:

• The three Verilog sources (hexto7seg.v, counter1second.v, and hexcounterdisplay.v).

• Show a working demo of your design for Part III during the next lab hours.

How to submit: Please submit your work by email as follows:

• Send email to: comp541submit-cs@cs.unc.edu

• Use subject line: Lab 5

• Include the three attachments as specified above

