
1 of 7

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 541 Digital Logic and Computer Design
Prof. Montek Singh

Spring 2017

Lab #8: A Basic Datapath and Control Unit
Issued Wed 3/22/17; Due Wed 3/29/17 (11:59pm)

This lab assignment consists of several steps, each building upon the previous. Detailed instructions are
provided. Verilog code is provided for almost all of the designs, but some portions of the code have been
erased; in those cases, it is your task to complete and test your code carefully. Submission instructions are at
the end.

You will learn the following:

• Specifying memories in SystemVerilog

• Initializing memories

• Designing a multi-ported memory (3-port register file)

• Integrating ALU, registers, memory, etc., to form a full datapath

• Encoding instructions

• Designing the control unit for a processor

• More practice with test fixtures

Part 0: Understand how memories are specified in SystemVerilog

Memory Specification

A typical single-ported RAM module is described in SystemVerilog as shown in the file ram.sv. The
number of “ports” in a memory is the number of distinct read/write operations that can be performed
concurrently. Thus, the number of ports typically is the number of distinct memory addresses that can be
provided to the memory. A single-ported RAM takes a single address as input, and can perform a read or
write (determined by a write enable signal) to that address. Below is the main part of a memory specification:

logic [Dbits-1:0] mem [Nloc-1:0]; // The actual storage where data resides

always_ff @(posedge clock) // Memory write occurs on clock tick

 if(wr) mem[addr] <= din; // … but only if write is enabled

assign dout = mem[addr]; // Memory read occurs asynchronously

Please refer to ram.sv for the complete description of the RAM module.

Memory Initialization

(Note: You will not need to initialize memory in this lab assignment, but will need it for the next one.)

An uninitialized memory module contains junk (i.e., undefined values), although typically your board will
initialize it to all zeros (or ones). You can, however, specify the actual values to be stored in memory upon

2 of 7

initialization. This is done using the command $readmemh or $readmemb. The former command allows
you to specify values in a file in hex format, while the latter uses binary format.

Add the following line in the register file module right after the line where the core of the storage is specified
(i.e., right after “logic [Dbits-1 : 0] mem [Nloc-1 : 0];”):

initial $readmemh(”mem_data.mem”, mem, 0, Nloc-1);

(Remember to put the initialization line after the declaration of the logic type mem, and remember to replace
mem with the actual name of your memory storage.)

The first argument to $readmemh is a string that is the name of the file to be read, line by line, during
compilation and synthesis, and its contents are used to initialize memory values. The second argument is the
name of the variable that is the memory storage. The last two arguments specify the range of memory
locations. In this case, they start with 0, and go up to Nloc-1, but you are welcome to specify a subset of the
range if you do not have data to initialize the entire memory.

Create the file mem_data.mem in the project folder (using an external editor), and add it to your project
using Add Source… and selecting its type as Memory Initialization File. Add values, one per line, in hex. Do
not prefix each value by ‘h’. Thus, if your memory has 8-bit data, your initialization file may look like this:

05 // Comments are allowed
A0
C1
...

You can also use the binary version of the initialization ($readmemb instead of $readmemh). In that case,
the file will have a sequence of binary values, one per line (no ‘b’ before though):

0000_0101 // Underscore can be used for clarity
1010_0000
1100_0001
…

Remember that if your datapath uses 32 bits, then the initialization values in mem_data.mem will have to be
32-bit values as well.

IMPORTANT: You must select the type of the file containing memory values as Memory File. Otherwise,
the tool may not be able to access it properly.

3 of 7

Part 1: Register File

Today you begin to implement the MIPS subset that we will use for this class. You will implement the portion
of the CPU datapath shown in the following diagram, and test it. However, since we do not yet have a source
for instructions, and to aid in testing, we will slightly modify this part of the datapath to provide more
controllability and visibility. In particular, we will cut the feedback from the ALU to the write port of the
register file, and instead allow Write data to be directly supplied by a test fixture. A modified picture is shown
on the next page.

First, you will design a 3-port register file. We call it 3-port because three different addresses can be specified
at any time: Read Address 1, Read Address 2, and Write Addr. These are required to access (up to) two
source operands and one destination operand required for MIPS instructions.

Do the following:

• Start with the ram_module from the website. Modify it to create a new module called
register_file, which has the enhancements specified below. A skeleton is provided on the
website (register_file.sv).

o three address inputs instead of just one (e.g., ReadAddr1, ReadAddr2 and WriteAddr).

o two data outputs instead of just one (e.g., ReadData1 and ReadData2).

o the write enable and clock stay the same.

o when writing, WriteAddr is used to determine the memory location to be written.

o when reading register 0, the value read should always be 0 (it does not matter what value is
written to it, or whether you write any values into it).

o use parameters for number of memory locations (Nloc), number of data bits (Dbits), and
the name of the file which contains initialization values (initfile).

• While in the final CPU design, the three addresses will come from the register fields in the instruction
being executed, for now you will use a Verilog test fixture (in Part 2) to provide these addresses, the
data to be written, and the RegWrite signal. The test fixture does a few different reads and writes so
you can see via simulation that your register file is working.

Flags

NOTE: We will NOT
implement the datapath
of this figure in this
part. See figure on next
page.

X	

4 of 7

Part 2: Putting the datapath together

Design a top-level module that contains the register file and your ALU (from Lab 3). Name the Verilog source
datapath.sv. This module must exactly correspond to the block diagram below.

Note the following:

• To aid in testing your design, send “ReadData1”, “ReadData2” and “ALUResult” to the output of the
top-level module so they can be easily observed during simulation. The Zero flag (Z) must also be
generated as an output from the top-level module (because branch instructions will need it).

• For now, do not feed the ALU result back to the register file. Instead, the data to be written into the
register file should come in directly from the test fixture as an input to the top-level module.

• The inputs to the top-level module are: clock, RegWrite, the three addresses, the ALU operation to be
performed (ALUFN), and the data to be written into the register file (WriteData).

• Use the Verilog test fixture provided on the website to simulate and test your design. The text fixture
is self-checking, so any errors will be flagged automatically. Please use exactly the same names for
the top-level inputs and outputs as used in the tester where the “unit under test” is instantiated.

5 of 7

Part 3: The Control Unit

In preparation for designing a full MIPS CPU, we will develop the Control Unit in this exercise. Below are
two diagrams of our single-cycle MIPS CPU (from Comp411), first a top-level overview, then a detailed one.

Here is the picture showing the details:

6 of 7

In Part 2, we put the register file and the ALU together. Now we will develop the control unit. We will NOT
yet develop the full MIPS datapath, nor will we be adding memories yet; those tasks will be the next lab.

The control unit should handle ALL of the following instructions:

• lw and sw
• addi, addiu, slti, sltiu, ori, lui

o NOTE 1: Contrary to what you may have learned earlier (e.g., in Comp411), addiu actually
does not perform unsigned addition. In fact, it sign-extends the immediate. This instruction
(along with addu) was actually misnamed! The only difference between addiu and addi is
that addiu does not cause an exception on overflow, whereas addi does. Since we are not
implementing exceptions, addiu and addi are identical for our purposes.

o NOTE 2: Also, contrary to what you may have learned earlier, sltiu actually sign-extends the
immediate, but performs unsigned comparison, i.e. ALUFN is “LTU”.

o Also note that ori should zero-extend the immediate because it is a logical operation! Finally,
sign-extension for lui is a don’t-care because the 16-bit immediate is placed in the upper half of
the register without any need for padding.

• R-type: add, sub, and, or, xor, nor, slt, sltu, sll, sllv, srl, sra
• beq, bne, j, jal and jr

First study the Powerpoint slides on Single-Cycle MIPS processor. Next, fill out the table below with the
values of all the control signals for the 25 basic MIPS instructions listed here.

Instr werf wdsel wasel asel bsel sext wr alufn pcsel
 Z=1 Z=0
LW 1 10 01 00 1 1 0 0XX01
SW
ADDI
ADDIU
SLTI
SLTIU
ORI
LUI
BEQ
BNE
J
JAL
ADD
SUB
AND
OR
XOR
NOR
SLT
SLTU
SLL
SLLV
SRL
SRA
JR

These values
will depend on
the Z flag.

MIPS instruction
decoding table

7 of 7

Using the values in this table, complete the Verilog description of the control unit in the file
controller.sv available on the website.

Use the Verilog test fixture provided on the website to simulate and test your design. The text fixture is self-
checking, so any errors will be flagged automatically. Please use exactly the same names for the top-level
inputs and outputs as used in the tester.

What to submit:

• Your Verilog source for the register file (register_file.sv), datapath (datapath.sv), and control
unit (controller.sv)

• A picture of the instruction decoding table from Part 3.

• A screenshot of the simulation waveform windows of Parts 2 and 3 using the self-checking
testers.

How to submit: Please submit your work by email by 11:59pm, Mar 29 (Wed) as follows:

• Send email to: comp541-submit-s17@cs.unc.edu

• Use subject line: Lab 8

• Include the attachments as specified above

