
1 of 7 

The UNIVERSITY of  NORTH CAROLINA at CHAPEL HILL 
 

Comp 541 Digital Logic and Computer Design 
Prof. Montek Singh 

Spring 2017 
 

Lab #8:  A Basic Datapath and Control Unit 
Issued Wed 3/22/17; Due Wed 3/29/17 (11:59pm) 

 
This lab assignment consists of several steps, each building upon the previous.  Detailed instructions are 
provided.  Verilog code is provided for almost all of the designs, but some portions of the code have been 
erased; in those cases, it is your task to complete and test your code carefully.  Submission instructions are at 
the end. 

You will learn the following: 

• Specifying memories in SystemVerilog 

• Initializing memories 

• Designing a multi-ported memory (3-port register file) 

• Integrating ALU, registers, memory, etc., to form a full datapath 

• Encoding instructions 

• Designing the control unit for a processor 

• More practice with test fixtures 

 
 
Part 0:  Understand how memories are specified in SystemVerilog 

Memory Specification 

A typical single-ported RAM module is described in SystemVerilog as shown in the file ram.sv.  The 
number of “ports” in a memory is the number of distinct read/write operations that can be performed 
concurrently.  Thus, the number of ports typically is the number of distinct memory addresses that can be 
provided to the memory.  A single-ported RAM takes a single address as input, and can perform a read or 
write (determined by a write enable signal) to that address.  Below is the main part of a memory specification: 

logic [Dbits-1:0] mem [Nloc-1:0]; // The actual storage where data resides 

always_ff @(posedge clock)                  // Memory write occurs on clock tick  

    if(wr) mem[addr] <= din;   // … but only if write is enabled 

assign dout = mem[addr];                    // Memory read occurs asynchronously 

 

Please refer to ram.sv for the complete description of the RAM module. 

 

Memory Initialization 

(Note:  You will not need to initialize memory in this lab assignment, but will need it for the next one.) 

An uninitialized memory module contains junk (i.e., undefined values), although typically your board will 
initialize it to all zeros (or ones).  You can, however, specify the actual values to be stored in memory upon 
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initialization.  This is done using the command $readmemh or $readmemb.  The former command allows 
you to specify values in a file in hex format, while the latter uses binary format. 

Add the following line in the register file module right after the line where the core of the storage is specified 
(i.e., right after “logic [Dbits-1 : 0] mem [Nloc-1 : 0];”): 

initial $readmemh(”mem_data.mem”, mem, 0, Nloc-1); 

(Remember to put the initialization line after the declaration of the logic type mem, and remember to replace 
mem with the actual name of your memory storage.) 

The first argument to $readmemh is a string that is the name of the file to be read, line by line, during 
compilation and synthesis, and its contents are used to initialize memory values.  The second argument is the 
name of the variable that is the memory storage.  The last two arguments specify the range of memory 
locations.  In this case, they start with 0, and go up to Nloc-1, but you are welcome to specify a subset of the 
range if you do not have data to initialize the entire memory. 

Create the file mem_data.mem in the project folder (using an external editor), and add it to your project 
using Add Source… and selecting its type as Memory Initialization File.  Add values, one per line, in hex.  Do 
not prefix each value by ‘h’.  Thus, if your memory has 8-bit data, your initialization file may look like this: 

05    // Comments are allowed 
A0 
C1 
... 

You can also use the binary version of the initialization ($readmemb instead of $readmemh).  In that case, 
the file will have a sequence of binary values, one per line (no ‘b’ before though): 

0000_0101  // Underscore can be used for clarity 
1010_0000 
1100_0001 
… 

Remember that if your datapath uses 32 bits, then the initialization values in mem_data.mem will have to be 
32-bit values as well. 

IMPORTANT:  You must select the type of the file containing memory values as Memory File.  Otherwise, 
the tool may not be able to access it properly. 
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Part 1:  Register File 

Today you begin to implement the MIPS subset that we will use for this class.  You will implement the portion 
of the CPU datapath shown in the following diagram, and test it.  However, since we do not yet have a source 
for instructions, and to aid in testing, we will slightly modify this part of the datapath to provide more 
controllability and visibility.  In particular, we will cut the feedback from the ALU to the write port of the 
register file, and instead allow Write data to be directly supplied by a test fixture.  A modified picture is shown 
on the next page. 

 
First, you will design a 3-port register file.  We call it 3-port because three different addresses can be specified 
at any time:  Read Address 1, Read Address 2, and Write Addr.  These are required to access (up to) two 
source operands and one destination operand required for MIPS instructions. 

Do the following: 

• Start with the ram_module from the website.  Modify it to create a new module called 
register_file, which has the enhancements specified below.  A skeleton is provided on the 
website (register_file.sv). 

o three address inputs instead of just one (e.g., ReadAddr1, ReadAddr2 and WriteAddr). 

o two data outputs instead of just one (e.g., ReadData1 and ReadData2). 

o the write enable and clock stay the same. 

o when writing, WriteAddr is used to determine the memory location to be written. 

o when reading register 0, the value read should always be 0 (it does not matter what value is 
written to it, or whether you write any values into it). 

o use parameters for number of memory locations (Nloc), number of data bits (Dbits), and 
the name of the file which contains initialization values (initfile). 

• While in the final CPU design, the three addresses will come from the register fields in the instruction 
being executed, for now you will use a Verilog test fixture (in Part 2) to provide these addresses, the 
data to be written, and the RegWrite signal.  The test fixture does a few different reads and writes so 
you can see via simulation that your register file is working. 

 

  

Flags 

NOTE:  We will NOT 
implement the datapath 
of this figure in this 
part.  See figure on next 
page. 

X	
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Part 2:  Putting the datapath together 

Design a top-level module that contains the register file and your ALU (from Lab 3).  Name the Verilog source 
datapath.sv.  This module must exactly correspond to the block diagram below. 

Note the following: 

• To aid in testing your design, send “ReadData1”, “ReadData2” and “ALUResult” to the output of the 
top-level module so they can be easily observed during simulation.  The Zero flag (Z) must also be 
generated as an output from the top-level module (because branch instructions will need it). 

• For now, do not feed the ALU result back to the register file.  Instead, the data to be written into the 
register file should come in directly from the test fixture as an input to the top-level module. 

• The inputs to the top-level module are:  clock, RegWrite, the three addresses, the ALU operation to be 
performed (ALUFN), and the data to be written into the register file (WriteData). 

• Use the Verilog test fixture provided on the website to simulate and test your design.  The text fixture 
is self-checking, so any errors will be flagged automatically.  Please use exactly the same names for 
the top-level inputs and outputs as used in the tester where the “unit under test” is instantiated. 
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Part 3:  The Control Unit 

In preparation for designing a full MIPS CPU, we will develop the Control Unit in this exercise.  Below are 
two diagrams of our single-cycle MIPS CPU (from Comp411), first a top-level overview, then a detailed one. 

Here is the picture showing the details: 
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In Part 2, we put the register file and the ALU together.  Now we will develop the control unit.  We will NOT 
yet develop the full MIPS datapath, nor will we be adding memories yet; those tasks will be the next lab. 
 
The control unit should handle ALL of the following instructions: 

• lw and sw 
• addi, addiu, slti, sltiu, ori, lui 

o NOTE 1:  Contrary to what you may have learned earlier (e.g., in Comp411), addiu actually 
does not perform unsigned addition.  In fact, it sign-extends the immediate.  This instruction 
(along with addu) was actually misnamed!  The only difference between addiu and addi is 
that addiu does not cause an exception on overflow, whereas addi does.  Since we are not 
implementing exceptions, addiu and addi are identical for our purposes. 

o NOTE 2:  Also, contrary to what you may have learned earlier, sltiu actually sign-extends the 
immediate, but performs unsigned comparison, i.e. ALUFN is “LTU”. 

o Also note that ori should zero-extend the immediate because it is a logical operation!  Finally, 
sign-extension for lui is a don’t-care because the 16-bit immediate is placed in the upper half of 
the register without any need for padding. 

• R-type:  add, sub, and, or, xor, nor, slt, sltu, sll, sllv, srl, sra 
• beq, bne, j, jal and jr 

 
First study the Powerpoint slides on Single-Cycle MIPS processor.  Next, fill out the table below with the 
values of all the control signals for the 25 basic MIPS instructions listed here. 
 
Instr werf wdsel wasel asel bsel sext wr alufn pcsel 
         Z=1 Z=0 
LW 1 10 01 00 1 1 0 0XX01  
SW          
ADDI          
ADDIU          
SLTI          
SLTIU          
ORI          
LUI          
BEQ           
BNE           
J          
JAL          
ADD          
SUB          
AND          
OR          
XOR          
NOR          
SLT          
SLTU          
SLL          
SLLV          
SRL          
SRA          
JR          

These values 
will depend on 
the Z flag. 

MIPS instruction 
decoding table 
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Using the values in this table, complete the Verilog description of the control unit in the file 
controller.sv available on the website.   
 
Use the Verilog test fixture provided on the website to simulate and test your design.  The text fixture is self-
checking, so any errors will be flagged automatically.  Please use exactly the same names for the top-level 
inputs and outputs as used in the tester. 
 
 
 

 

What to submit: 

• Your Verilog source for the register file (register_file.sv), datapath (datapath.sv), and control 
unit (controller.sv) 

• A picture of the instruction decoding table from Part 3. 

• A screenshot of the simulation waveform windows of Parts 2 and 3 using the self-checking 
testers. 

 

How to submit:  Please submit your work by email by 11:59pm, Mar 29 (Wed) as follows: 

• Send email to:  comp541-submit-s17@cs.unc.edu 

• Use subject line:  Lab 8 

• Include the attachments as specified above 

 

 
 


