
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 541 Digital Logic and Computer Design
Prof. Montek Singh

Spring 2023

Lab #2A: Hierarchical Design & Verilog Practice
Issued Wed 1/19/23; Due Wed 1/25/23 (11:55pm, via Sakai)

This lab assignment consists of several steps, each building upon the previous. Detailed instructions are
provided, including screenshots of many of the steps. Verilog code is provided for almost all of the designs,
but some portions of the code have been erased; in those cases, it is your task to complete and test your code
carefully. Submission instructions are at the end.

You will learn the following:

• Navigating the Vivado development environment

• Designing a hierarchical system, with multiple module types

• Working with buses (multi-bit values)

• Verilog test fixtures and stimuli, including printing and monitoring

• Verilog simulation, including the graphical viewer

Important Tip: Forcing Vivado to flag undeclared names

One quirk of SystemVerilog is that if a variable name is undeclared, its type defaults to a 1-bit wire. The
language designers thought this feature would be convenient so the user can skip having to declare all 1-bit
wire names. But instead of being useful, this feature is frequently a cause of much angst and frustration!

For instance, if you meant to define a 32-bit output Result of a module, but failed to declare it so, its type
would default to a 1-bit wire. As another example, if you declared a signal as

wire [7:0] result_8bit;

but misspelled it without the underscore as result8bit while using it

mymodule xyz(input1, input2, result8bit);

then the different spelling means the signal name used is actually undeclared, and therefore defaults to a 1-bit
wire type, instead of the 8-bit wire we intended.

In the above examples, we would have much preferred the tool generate a compile-time error, instead of
proceeding with the incorrect default 1-bit wire types for undeclared names.

Solution:

We can change the default behavior of the tool by including the following line at the top of the SystemVerilog
source file:

NOTE: This line must be included at the top of every SystemVerilog source file in order to force compile-
time errors for undeclared signals.

Assignment

In this lab assignment, you will design and test an 8-bit adder-subtractor unit. We will focus on building the
design from the bottom up, giving you practice in hierarchical design. We will start with the design of a full
adder, which will be similar to Lab 1, but with minor modifications. Then, we will string together four full
adders to form a 4-bit ripple-carry adder. Next, we will combine two 4-bit adders to produce an 8-bit adder.
Finally, we will introduce a conditional negation on the second operand to allow the unit to perform addition
or subtraction, depending on a Boolean control input.

Follow the detailed steps described below.

Make a New Project

Launch Vivado, click Create New Project, name it Lab2a (avoid spaces!), select RTL Project, and select the
correct part number (xc7a100tcsg324-1). In this empty project, click Add Sources à Add or create design
sources à Add Files…, and then enter the path to the fulladder SystemVerilog file from Lab 1, as shown in
the picture below. Note: Be sure to check the box next to Copy source into project, so that a new copy of that
file is created in this project; otherwise, any edits you make to this file will be reflected back in Lab 1!

NOTE: Your path to the file fulladder.sv will be different from what is shown in the figure, so enter
carefully. The file to be copied will be under Lab1.srcs/sources_1/new. Once it has been copied into
this lab, it will likely reside under Lab2a/Lab2a.srcs/sources_1/imports/new. This is a
somewhat peculiar folder hierarchy used by Vivado!

This line tells the compiler not to assume that
undeclared names are of the default type
wire. By suppressing the default type, we
are forcing undeclared names to trigger
compiler errors. This helps catch undeclared
names, typos, etc. Very useful! Use it in
every design from now on!

For your reference, below is once again the circuit and Boolean equations for a Full Adder (from Comp411).
In this assignment, we will design the full adder structurally using basic logic gates, exactly following the
topology of the circuit diagram, using only 5 gates (instead of the 6-gate implementation of Lab 1).

Cin

A B

Sum

Cout

�Sum�
Logic

�Carry�
Logic

𝑪𝒐𝒖𝒕 = 𝑪𝒊𝒏(𝑨⨁𝑩) + 𝑨𝑩
𝑺𝒖𝒎 = 𝑪𝒊𝒏⨁(𝑨⨁𝑩)	

Edit the definition of fulladder to make it purely structural as follows. A skeleton of the Verilog description is
provided, with some details erased. Your task is to fill in the blanks. Be sure that your Verilog description
exactly matches the circuit above.

Now, the full adder implementation consists of only 5 gates (not counting the two output buffers inserted by
the tool). Note that it is possible to produce a 5-gate implementation using behavioral Verilog (Boolean
equations only) as well, but the goal of this exercise is to give you practice with structural Verilog.

Highlight the full adder module under Design Sources and click Elaborated Design under RTL Analysis. You
should see the following schematic diagram:

Let us re-use the tester from Lab 1 to test this implementation. Click Add Sources à Add or create simulation
sources. Then, click Add Files…, navigate to the path shown in the picture, and select the tester from Lab 1,
fulladder_test.sv. Next, be sure Copy sources into project is checked, and Include all design sources
for simulation is checked, and click Finish.

NOTE: Again, your path for the file fulladder_test.sv will start out different, but will likely have
Lab1/Lab1.srcs/sim_2/new at the end.

Reminder: Use this line at
the top of every Verilog file
to force compiler errors for
undeclared names.

Now run the simulator and observe the output waveforms. They should be identical to the results from Lab 1,
reproduced here:

Designing a 4-bit ripple-carry adder

Let us now design a 4-bit ripple-carry adder by stringing together four full adders (FAs). The diagram of a 4-
bit adder (again, from Comp411) is shown here for reference.

The corresponding Verilog code is shown here, but portions of it have been obscured. Please fill in
appropriately. (You do not need to add any extra lines of code; just fill in the missing details into what is
provided.)

Before you can enter this code, you will need to create a new source file. Click Add Sources à Add or create
design sources, and name it adder4bit. Be sure to select SystemVerilog as the file type. (If you choose the
wrong file type, you can later fix it by right-clicking the file under Project Manager à Sources, and in the
panel called Source File Properties below the file hierarchy, clicking the Type property dropdown to select
SystemVerilog.)

Make sure that adder4bit is marked as the top-level module (with the symbol); otherwise, right-click
on it and hit Set as Top. Generate its schematic (RTL Analysis à Elaborated Design). It should look like the
picture below. Observe that this circuit diagram is topologically equivalent to the block diagram above. The
actual schematic you see might appear somewhat different depending on the size of your view window, but
please check that it is topologically equivalent.

IMPORTANT: From here on, we will be
connecting input/output signals to embedded
modules by explicitly naming the ports to which
they connect, instead of relying on the ordering of
ports inside the embedded module. This practice
helps avoid missed/crossed connections. E.g.,
“.Cout(C1)” means the wire named C1 is
connected to the port named Cout inside the
module instance a0 of type fulladder.

Observe how the 4-bit inputs A[3:0] and B[3:0] are drawn, and the places where individual bits are peeled off
(little cone shaped symbols indicate that a single bit is being selected out of a multibit signal). Also observe
how individual bits of the output are combined into a multibit Sum[3:0] output (with mirror-image cones
indicating how single bits feed into a wider signal).

Verilog Test Bench

Click Add Sources à Add or create simulation sources, and create a new simulation set (sim_2), then create a
new tester filer called adder4bit_test (of type SystemVerilog). Download the tester from the class website,
and copy its contents into the simulation source you just created. (Alternatively, you can choose to Add
Files… instead of Create File, and point to the file you downloaded.)

Read through every line of the test bench, and make sure you understand it! Refer to the online Verilog
reference linked from the class website.

Verilog Simulation

Right-click the simulation set (sim_2) and mark it as active (Make Active). Right-click the tester you just
created and make it the top-level module for simulation (Set as Top). Run the simulation. Select zoom to fit.
If you are seeing 0’s and 1’s instead of hex values, select the signals under Name (use shift-select), right-click,
choose Radix, and select Hexadecimal. You should now see the outputs as below.

Designing an 8-bit ripple-carry adder

Now we will design an 8-bit adder using two 4-bit adders. The procedure is very similar: create a new source
file, and this time use adder8bit as the name for the module. Use the following Verilog skeleton, and fill
in the missing details.

Generate its schematic diagram.

Each module that has a “+” sign on it can be expanded to show its internals (i.e., zoom in and zoom out).
Spend a few minutes navigating the hierarchy in this schematic.

Verilog Simulation

Modify the tester for your 4-bit adder to make it work with 8-bit operands. You will only need to make trivial
changes. Be sure to assign it to a new simulation set (sim_3), and mark this set as active (right-click and
choose Make Active), and mark the new tester as the top-level module. Really, do test it before moving on!

Designing an 8-bit Adder-Subtractor

Now you will design a circuit that can perform 8-bit additions as well as subtractions. That is, given A and B,
the circuit will produce either the sum A+B, or the difference A-B, depending on whether the value of a
Boolean input Subtract is 0 or 1, respectively. This circuit was also covered in Comp411, but is repeated here
for reference. Note that there is no Cin and no Cout.

Once again, you will create a new source file, with the name add_sub_8bit. Use the Verilog template below,
and fill in the missing pieces:

In the Verilog description above, a repetition construct is used: {8{Subtract}} simply means, “repeat the
value of Subtract to produce an 8-bit value that is 00000000 if Subtract is 0, and 11111111 if Subtract is 1.
The operator “^” is a bitwise XOR operator. Therefore, each bit of B is XOR’ed with Subtract, just as in the
circuit diagram above.

Note that while the 8-bit adder has a carry out, the add_sub_8bit module does not send it out! Also, observe
carefully what the carry in of the adder is connected to.

Save the file, and take a look at the hierarchy; it should look exactly like this when you expand all the nodes:

Highlight the add_sub_8bit module under Design Sources, and generate its schematic.

In this diagram, the single XOR gate represents a bitwise operation on 8-bit inputs. Therefore, it is equivalent
to the 8 separate XOR gates.

Note on multi-bit wires and connections: Single wires are drawn using a thin line, and multi-bit wires (called
“buses”) using thicker lines. Where the number of wires coming in (e.g., O[7:0] going into the adder) match
the number of input terminals (B[7:0] in this example), the connection is one-to-one: O[7] to B[7], O[6] to
B[6], and so on. But if there is only one wire shown connecting to multiple input terminals—e.g., a 1-bit
Subtract to the 8-bit input I0[7:0]—then, that single value is applied to each of the input terminals.

Verilog Test Bench

Click Add Sources à Add or create simulation sources, and create a new simulation set (sim_4), then create a
new tester filer called addsub_test (of type SystemVerilog). Download the tester from the class website, and
copy its contents into the simulation source you just created. (Alternatively, you can choose to Add Files…
instead of Create File, and point to the file you downloaded.)

Read through every line of the test bench, and make sure you understand it! Refer to the online Verilog
reference linked from the class website.

Verilog Simulation

Right-click the simulation set (sim_4) and mark it as active, and set your new tester as the top-level module,
and then run the simulation. Since the default size of the waveform window is too small, click the “pop out”

button (), and resize the window and select zoom to fit. Also, this time select all the signals under Name

(use shift-select), right-click, choose Radix, and select Signed Decimal. You should now see the outputs in
decimal.

Look through them carefully to make sure they are correct.

Now, let us display the bus ToBornottoB that is inside the add_sub_8bit module. Under the Scope pane, select
uut, and you will see the objects and wires inside it in the Objects pane. Click and drag ToBornottoB[7:0]
into the Name column in the waveform window:

Click on Run in the top menu bar, then select Relaunch Simulation. If asked if you want to save the waveform
configuration, click Yes and accept the default file name. This time, once the simulation is completed, the
value of ToBornottoB[7:0] is also displayed in the waveform window. Right-click ToBornottoB in the name
column, and change its radix back to Binary. Also, change the radix of B back to Binary. Observe that they
are identical for the first half of the simulation (since additions are being performed), and bitwise complements
during the second half (since now subtractions are being performed).

Your simulation output should look like this:

This exercise showed you how to examine objects that are not at the top level, but down the hierarchy. Also,
observe that you can click at a particular time instant in the waveform window. The Value column is updated

to show the values of all the signals at that time instant. There are also other buttons available for zooming
in/out, skipping to next transition, etc.

Why does the value of i appear as X for the first 5 ns?

Using Display and Monitor Commands

Scroll to the bottom of the test fixture. You will see commands using $time, $timeformat, and $monitor.
The $monitor command tells the simulator to print a message whenever any of its arguments (except for
$time itself) changes value. The output appears in Tcl Console tab (select able near the bottom of the screen):
scroll up a few lines to the see the output of these “print” statements in the tester.

Please refer to the online Verilog reference website for details on these commands, and make sure you
understand them well! You should also look into the $display and $write commands.

What to submit:

• A screenshot of the waveform window clearly showing the final simulation result of the adder-
subtractor, i.e., with ToBornottoB[7:0].

• The values of ToBornottoB[7:0] and B[7:0] should be shown in binary.

• The values of Result[7:0], A[7:0], Subtract, and i should be shown as signed decimals.

• Please zoom in enough to be able to read these values. If you cannot capture all the relevant
details in one picture because of your screen resolution, feel free to include more than one
picture.

• You do not need to submit any Verilog files for this lab.

How to submit:

• Submit via Sakai (“Lab 2A” under Assignments).

• Attach the simulator screenshot using the filename waveforms.png, or other similar name(s)
and/or other appropriate extension. (The submission is read manually, not by software.)

• Submit your work by 11:55pm on Wed, Jan 25.

CONTINUE ON TO LAB 2B

