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1. Introduction 
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AUVs based on reinforcement learning scheme. 
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 Reinforcement learning is learning
to maximize a numerical reward sig
agent is not told which actions to t
which actions yield the most rewar
In the scheme, the agent interacts w
The agent observes its state from 
takes an action derived from its o
that, the agent’s state is changed a
the reward. The agent always 
maximize its reward at the terminal 
agent and the environment, there are
a reinforcement learning system: a
function, a value function, and, opti
the environment. A policy defin
agent’s way of behavior. A reward
the goal in a reinforcement learni
reward function tells what the goo
are for the agent. A value function 
good in the long run. Whereas rewa
values indicate the long-term desira
the environment mimics the b
environment. [2] 
 First, we need to define the 
reinforcement learning system. Bef
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is three dimensional Cartesian co
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vehicle(AUV). The actions are 
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environment.  

Figure 2. Defined acti
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For the elementary solution me
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 Q-Learning algorithm that w
vehicle is following. 
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Figure 3. The self-organizing
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4. Simulations 
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coordinate space. A cell dimensio
cubic cell. We initialized ten start
And a million iterations for each
target point which is (15, 15, 5) in th
remained same for all simulations. T
4 shows our simulation result with s
with 50 random obstacles. The ve
simulation is ODIN which is
University of Hawaii. It has six de
and the weight is 125kg and the rad
is 0.3m. We set current effect of the
along the y axis. 
 After the learning phase, the veh
policy to find the safe path to the ta
given map. The policy maps dur
phase are shown Figure 5. 

 
g controller 

n implies that the 
zero performance 
ctory. Because we 
oller, the table F 
nput cu. The error 
multiplied by the 

efore entering the 
F the table lookup 
ut gain GCU and 
gnal U. The outer 
e, and it modifies 
This procedure is 
e target point. 

sumed that the 
ensional Cartesian 
on is 2m*2m*2m 
t points arbitrary. 

h start point. The 
he environment is 
The path in Figure 
start point (1, 1, 1) 
ehicle used in the 
s developed by 
egrees of freedom 
dius of the vehicle 
e ocean as 0.3m/s 

hicle generated its 
arget point for the 
ring the learning 

 

Figure 4. Path generated 
navigation system from (1, 1,
50 random obstacles. 
 

(a) At iteration

(b) At iteration #

(c) At iteration #

(d) At iteration #
Figure 5. The policy generate
navigation system during a 
learning. 
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desired trajectory of the vehicle. 

 
Figure 6. The desired trajectory and the actual 
trajectory. 
 
 The vehicle position and attitudes are shown in 
Figure 7. 

(a) The positions of the vehicle 

 
(b) The attitudes of the vehicle. 

 
(c) The position errors of the vehicle 

 
(d) the attitude errors of the vehicle 

Figure 7. The positions and the attitudes of the 
vehicle. 
 
The self-organizing controller modifies its lookup 
table F to adapt for a given environment. We can see 
the convergence of the table F in Figure 8. 
 

 
(a) 

 

 
(b) 
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(c) 

Figure 8. The convergence of (a) x axis (b) y axis (c) 
z axis table F. 

 
5. Conclusion 

 The designed system for the AUV produces the safe 
path through the Q-learning scheme with iterations. 
After the learning phase the fuzzy controller sends 
current location to the navigation system, and then 
the navigation system gives reference signals to the 
controller. The planned path leads the vehicle to the 
target points without hitting obstacles.  The self-
organizing controller adjusts its own table without 
human intervention to adapt to a given environment. 
Finally we successfully designed two sub systems for 
intelligent autonomous underwater vehicle and 
verified its performance by simulations. In our result 
the vehicle could find the safe path and arrive the 
target point with its own intelligence. Future study 
can be applying this system to the dynamic 
environments. 
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