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Abstract— Autonomous outdoor navigation algorithms are re-
quired in various military and industry fields. A stable and robust
outdoor localization algorithm is critical to successful outdoor
navigation. However, unpredictable external effects and interrup-
tion of the GPS signal cause difficulties in outdoor localization.
To address this issue, first we devised a new optical navigation
sensor that measures a mobile robot’s transverse distance without
being subjected to external influence. Next, using the optical
navigation sensor, a novel localization algorithm is established
with Inertial-Measurement-Unit (IMU) and GPS. The algorithm
is verified in an urban environment where the GPS signal is
frequently interrupted and rough ground surfaces provide serious
disturbances.

I. INTRODUCTION

Autonomous navigation algorithm in outdoor environment

is an essential part for outdoor robot applications, and diverse

studies have been performed in efforts to resolve the outdoor

navigation problems [1]. Nevertheless, the maturity level of

outdoor navigation algorithms is relatively low compared to

that of indoor navigation [2]. One of the main reasons for this

is that precise localization of an outdoor mobile robot is more

difficult than an indoor environment due to the complex and

unpredictable nature of outdoor environments [3] [4].

There are two major causes of serious error in outdoor

localization: inaccurate odometry and limitation on the use

of Global-Positioning-System (GPS) [5] [6]. First, inaccurate

encoder-based odometry causes significant error of outdoor

localization. Generally, mobile robot navigation algorithms

highly depend on encoder-based odometry as it is the main

information used for state prediction [7]. In the case of indoor

environment, encoder-based odometry is quite reliable, but

in the case of outdoor environment, the odometry is very

uncertain due to the unpredictable contact between the mobile

robot and ground. Depending on the conditions of the surface,

the mobile robot’s wheels slip and sometimes rotate in the air

[5]. In particular, skid-steering vehicles, which are widely used

in research due to their simple structure, suffer from inaccurate

motion models and slippage [8].
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The second problem of outdoor localization is related to

GPS. GPS is the most powerful measurement available in

outdoor environments because it provides absolute position

information. Remark that it is almost impossible to acquire ab-

solute pose information in indoor environments unless artificial

landmarks or indoor GPS is exploited. Despite the strong points

of GPS, its use is quite limited. The most serious problem is

blockage and reflection of the GPS signal from satellites [3].

This interruption of the GPS signal occurs by trees, buildings,

and other obstacles, and it presents a crucial limitation to the

use of GPS in urban environments.

Numerous researchers have proposed diverse schemes in

efforts to solve the aforementioned outdoor problems. In K.

Ohno’s work [9], the robot identifies its position by encoder-

based odometry and (Differential GPS) DGPS. Additionally,

Laser-Range-Finder (LRF) was used for 3D feature mapping.

S. Panzieri et al [6] suggested an outdoor localization solution

using inexpensive commercial GPS and an inertial platform

with Kalman filtering. A. Georgiev et al [2] proposed an

outdoor localization algorithm particularly for skid-steering ve-

hicles. In their approach, an inertial-navigation-system (INS),

magnetic compass, GPS, and encoder-based odometry informa-

tion were fused. In particular, they tried to calculate an accurate

motion model of skid-steering vehicles. Despite the advances

realized with the above approaches, large odometry error and

obstruction of the GPS signal remain significant issues for

outdoor localization.

Against the above problems, first we have developed a new

optical navigation sensor that is able to resolve a fundamental

problem of encoder-based odometry [10]. The function of the

optical navigation sensor is very similar to that of a computer

mouse. Because the optical navigation sensor is self-reliant

and unaffected by the mobile robot’s drift and an inaccurate

motion model, its performance for estimating the robot pose is

remarkably superior to that of encoder-based odometry.

Our localization algorithm is based on an Extended-Kalman-

Filter (EKF). In the prediction step, the robot state is estimated

by the optical navigation sensor and an IMU, and then the

predicted state is corrected by GPS measurement. In the correc-

tion step, DGPS and Single GPS modes are alternatively taken

depending on the quality of GPS communication. Additionally,

a calibration parameter for the optical navigation sensor is
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autonomously tuned.

A skid-steering type vehicle is used for the experiment,

which was conducted on the campus of Korea Institute of

Science and Technology (KIST). The KIST campus is a typical

urban environment. Even when the robot moves on rough and

rugged ground and passes beside tall buildings that disrupt

stable GPS communication, it was able to maintain consistency

in estimating its position. The experiment results show that the

algorithm tracks the robot’s position in an urban environment

successfully.

The remainder of this paper is organized as follows. Section

II introduces the sensor configuration of the mobile robot

system. Section III describes our localization algorithm. Sec-

tion IV introduces a hardware description and analyzes the

experiment results. Finally, our conclusion is given in Section

V.

II. SENSOR CONFIGURATION FOR OUTDOOR

LOCALIZATION

Before outlining the proposed localization algorithm, we

briefly introduce the sensor configuration in this section. The

algorithm uses three sensors: An Optical navigation sensor,

IMU, and GPS.

A. Optical navigation sensor

The newly developed optical navigation sensor is comprised

of an illumination part and a laser mouse sensor. An Avago

Technologies ADNS-6010 sensor consists of a 30x30 pixel

image sensor and a DSP for image processing. The image

sensor in ADNS-6010 takes snapshots of the surface contin-

uously and the DSP extracts features from every image and

compares the features to determine the distance and direction

traveled and the distance along the x-axis and y-axis. The

measured distance information is sent to the host device via

RS232 communication.

Since ADNS-6010 is designed for a laser mouse, the sensor

functions only when the sensor is 2-3mm above the surface.

However, our algorithm aims for outdoor localization, and the

sensor should be equipped on outdoor vehicles. We thus used

a lens devised for mobile phones. Finally, the image sensor

can capture images at 50-60mm from the surface, and is hence

applicable for outdoor environments. [10]

The illumination part, which consists of three high power

LEDS and a diffuser, helps the image sensor take snapshots

in constant lighting conditions. By the aid of the illumination

parts, the optical navigation sensor is able to measure the

vehicle’s distance even in poor lighting conditions unless the

sensor moves on mirrors, glass, or a glossy surface.

The optical navigation sensor can be used as an odometer

and does not suffer from slippage, which causes a serious

problem in encoder-based odometry. Fig. 1 shows two parts

of the optical navigation sensor, and more specific information

is described in [10].

B. Inertial Measurement Unit (IMU)

An IMU measures velocity, orientation, and gravitational

forces, using a combination of accelerometers and gyroscopes.

By the aid of MEMS technology, it is easy to produce a small,

low-cost MEMS IMU. In this study, we use an XSens MTi

IMU in Fig. 2 which has a sensing range of 300deg/s (angular

velocity) and 2g (acceleration) [11]. However, the acceleration

output includes biased and random noises that change with the

elapse of time, as shown in Fig. 3 . Moreover, acceleration

values should be integrated to calculate the vehicle’s position.

Finally, the error accumulation of the position by noise is

exacerbated. Therefore, we use only the angular velocity from

the IMU output in the proposed algorithm.

C. Global Positioning System (GPS)

The GPS is a satellite navigation system that provides

location and time information. It is operated by United States

and is available to anyone who has a GPS receiver. The location

data that are computed by the received data from the satellites

contain some errors due to the following inherent limitations:

(a) Configuration

(b) Actual picture

Fig. 1. Description of optical navigation sensor
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Fig. 2. Inertial Measurement Unit(IMU), Xsens MTi
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Fig. 3. Linear velocity measurement from Xsens MTi when robot stops. The
linear velocity value is calculated by integration of linear acceleration, and
biased drift was calibrated.

atmospheric effects, multipath effects, ephemeris and clock

errors [12] [13].

To enhance localization accuracy, Differential Global Posi-

tioning System (DGPS) is used in our algorithm. DGPS has

three different cases of implementation: Standard Real Time

Kinematic (RTK), Moving Base, and Heading. In this paper,

we used the standard RTK method [14] that is provided by the

Ashtech DG14 GPS receiver [14]. The standard RTK system

needs a fixed base station whose position is accurately known.

The mobile robot, a rover, moves around the base station.

The base station continuously sends correction data to the

rover and the real-time position of the rover is calculated from

the received data and the correction data. Fig. 4 shows this

standard RTK scheme. When DGPS mode is activated, the

rover can estimate its position with very small uncertainty

(less than 2 3m). Nonetheless, DGPS mode needs high quality

communication between a rover and a base station. If there is

any communication interruption, DGPS mode stops operating.

In the proposed localization algorithm, both Single GPS

mode and DGPS mode are used for correcting the mobile

robot’s position estimated by the optical navigation sensor and

IMU.

Fig. 4. Configuration of Stnadard Real Time Kinematics(RTK) GPS

III. LOCALIZATION ALGORITHM WITH OPTICAL

NAVIGATION SENSOR, IMU AND GPS

In this section, a novel outdoor localization algorithm is

proposed. The algorithm is devised for an outdoor mobile robot

moving around an urban area. The core algorithm is based on

an Extended Kalman Filter (EKF), and environment informa-

tion is acquired from a newly developed optical navigation

sensor, IMU, and GPS. The optical navigation sensor provides

transverse distance in the robot’s x-axis, ρ, and IMU gives

the angular velocity, ω, for state prediction. Absolute position

information from GPS is used for the update step of the EKF.

A. Augmented Robot State

The optical navigation sensor needs a scale parameter to

convert the sensor output value into a real distance value. The

scale parameter is slightly changed depending on the ground

condition or the texture of the surface. By calibrating the

parameter autonomously, it is possible to estimate the robot

pose more accurately. For autonomous calibration, a calibration

parameter α is introduced. The calibration parameter α is a

random variable modeled by a Gaussian distribution, and its

variance slightly increases with the elapse of time by adding a

constant random variable whose mean is zero and variance is

σα as shown in (1).

αk+1 = αk +N (0, σα) (1)

The calibration parameter is added to the general robot state

(xk, yk, θk) and simultaneously estimated by a localization al-

gorithm [15]. The augmented state at the kth step is represented

by xk as (2).

xk = [xk yk θk αk]
T (2)

B. Prediction Step

Prediction of the robot state is based on the transverse dis-

tance, ρ, acquired from optical navigation sensor and angular

velocity, ω, acquired from the IMU. They are represented by

the vector uk, as shown in (3).

uk = [ρk ωk]
T (3)
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Based on uk, mean prediction of robot state is conducted by

(4).

x
−

k+1
= f(xk,uk)
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θk+1
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=









xk + αkρk cos(Φk)
yk + αkρk sin(Φk)

θk + ωk∆t
αk









(4)

where Φk = θk +
1

2
ωk∆t

f is a prediction function for the robot state. x− is the predicted

mean before update, and ∆t is the duration of prediction.

Continuously, prediction of the covariance is performed by (5)

P−

k+1
= JxPkJ

T
x + JuQkJ

T
u + σ2

αζζ
′ (5)

where Jx =
∂f

∂xk

, Ju =
∂f

∂uk

ζ = [0 0 0 1]T

P− is the predicted covariance matrix before the update, and P
is the covariance after the update. Jx, Ju are Jacobian matrixes

with regard to x,u respectively. The last term of (5) is for

adding noise to the calibration parameter α to realize the

assumption of (1).

C. Update Step

In the update step of the EKF localization algorithm, GPS

information is used as a measurement. GPS provides one of the

most powerful tools available in outdoor environments because

it gives absolute position information of a mobile robot, not

relative information. The proposed algorithm uses two different

GPS modes, as stated in the previous section, single GPS mode

(GPS) and Differential GPS (DGPS) mode.

The single GPS mode utilizes only signals from satellites,

and DGPS mode is operated by an additional GPS station.

Single GPS mode is available in most outdoor environments,

but the accuracy is not high due to reflection and blockage of

the satellite signal and an insufficient number of satellites. In

contrast, DGPS mode provides more accurate position of the

vehicle, but its available area is quite limited due to commu-

nication problems. If the vehicle is out of the communication

range or an obstacle blocks the signal from a GPS base station,

communication fails and DGPS mode is unavailable.

In this paper, a novel update procedure is suggested with

consideration of the characteristics of the optical navigation

sensor, IMU, and two GPS modes. The update step follows

(6) and (7).

xk = x
−

k +Kk(zk − ẑk) (6)

Pk = [I −KkHk]P
−

k (7)

Where

Kk = P−

k HT
k Ψ

−1

k (8)

Ψk = HkP
−

k HT
k +Rk (9)

zk = [xhk
yhk

tan−1

(

yhk
− yhk−1

xhk
− xhk−1

)

]T (10)

ẑk = h(xk) = [xk yk θk]
T (11)

Hk =
∂h(xk)

∂xk

=





1 0 0 0
0 1 0 0
0 0 1 0



 (12)

Rk =





σ2
gps 0 0
0 σ2

gps 0

0 0 (σθ(
∑

|ω|+ κω)/(
∑

ρ+ κρ))
2





(13)

K of (8) is Kalman gain, Ψ of (9) is an innovation matrix,

z of (10) is measurement from GPS. The heading angle is

calculated from the difference between previous and current

GPS values. ẑ of (11) is the estimated measurement. H of (12)

is the Jacobian of h. R of (13) is a measurement covariance

matrix. σgps and σθ is alternatively selected depending on the

GPS mode: single GPS or DGPS.
∑

|ω| and
∑

ρ are the sum

of |ω| and sum of ρ acquired from the previous to current

GPS measurement. κω and κρ are small constants to prevent

the variance of the heading angle measurement from becoming

zero or an infinite value.

The remarkable point in the update step is (10) and (13).

GPS provides only the vehicle’s absolute position, namely

x and y, but it does not give heading angle information.

Nevertheless, update of the heading angle is very important

to prevent uncertainty of the heading angle from divergence.

The most intuitive way of determining the vehicle’s heading

angle is to take advantage of the arc-tangent value between

two GPS positions, as shown in (10). However, determining

covariance is not a simple task. A robot does not travel

straight all the time and sometimes moves slightly less than

the GPS uncertainty. Considering these factors, covariance of

the heading angle measurement is built as shown in (13). As

the robot moves farther without turning, its covariance becomes

smaller, and its scale is determined by parameters.

IV. EXPERIMENT

For verification of the proposed algorithm, an experiment

is performed. The experiment is conducted with an outdoor

mobile robot on the KIST campus, and the mobile robot path

is organized to show the robustness of the algorithm effectively.

A. Hardware description

The outdoor mobile robot used for the experiment has the

following specifications and Fig. 5 shows a photograph of

the robot. The mobile robot is a skid-steering vehicle and is
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Fig. 5. Unmanned ground vehicle which is equipped with newly developed
optical navigation sensor, Xsens MTi IMU, Ashtech GPS and Maxon EC
Motors. It is a skid-steering vehicle and operated by a laptop.

equipped with an optical navigation sensor, Xsens MTi IMU,

and Ashtech DG14 GPS for localization. All wheels are driven

by Maxon 250W EC motors. The vehicle’s operating program

is written in C++ language under an Intel Atom 1.6Ghz proces-

sor laptop PC with Windows XP. Additionally, a TI LM3S8962

microcontroller board is used to collect optical and IMU sensor

data at 100Hz. The collected data are sent to a laptop PC

every 10ms. The GPS position outputs position data that are

enhanced with a Real-Time Kinematic (RTK) algorithm at 5Hz.

We used the standard RTK algorithm supported by the DG14

receiver, which has a static base station. With this mobile robot,

we conducted an experiment to demonstrate the performance

of the proposed localization algorithm.

B. Experiment Result

The experiment was performed with the above robot on the

campus of KIST. In the experiment the robot continuously

moves on grass and paved ground in the vicinity of many

buildings. The experiment site represents a typical urban en-

vironment. Fig. 6 shows the robot’s path and the experiment

environment, and further details are provided below.

First, the robot started moving on point A in Fig. 6(a) which

exists on the grass as shown in Fig. 6(b). Then, across the

boarder (Point C, Fig. 6(d)), the robot entered paved ground

(refer to Fig. 6(c)) where a large building (Area E of Fig. 6(a))

is located. Next, the robot returned from the paved road, and

re-entered the grass area through a border (Point D). Lastly,

the robot moved with complex and sharp turning and finally

arrived at Point B.

As shown in Fig. 6(a), the GPS signal was frequently

interrupted. Thus, GPS mode frequently alters between DGPS

mode (marked by a green ’*’) and Single GPS mode (marked

by a red ’x’). Particularly when the robot passed beside a tall

building (Path C-D), the quality of GPS was extremely low.

The reason is that the number of available satellites was very

small and, even worse, the remaining signals were very noisy

due to reflection by buildings.

In addition to the GPS trouble, the uneven ground surface

conditions also made localization more difficult. The surface

of the grass is rough, and this leads to wheel revolution in the

air and slippage. Moreover, in the transition phase between the

paved ground and the grass, the robot received a strong shock

and drifted abruptly.

Despite the above severe conditions, the localization al-

gorithm showed stable performance as shown in Fig. 6(a).

When GPS information was uncertain, although the covariance

became larger, the estimated path did not seriously deviate from

the actual path. When DGPS mode became available again,

the algorithm rapidly recovered its uncertainty. Furthermore,

the mobile robot was consistently able to estimate its path

even during continual slippage and disturbances from surface

transition.

V. CONCLUSION

In this paper, we suggested a novel localization algorithm

with a newly developed optical navigation sensor, IMU, and

GPS. Its performance was verified by an experiment in an

urban environment. The experiment results show that the

proposed localization algorithm is able to maintain stable

performance even under very severe conditions: GPS signal

interruption and uneven ground surface.

From the analysis of the results, it is found that the primary

factor for these desirable results is the advantage of the optical

navigation sensor. In outdoor navigation, unpredictable and

various external dynamical effects that make mobile robot

localization difficult are inevitable. The greatest advantage of

our newly developed optical navigation sensor is that it is

invariant to such external influences. Although the mobile robot

is subjected to various and sudden external effects, the optical

navigation sensor could successfully estimate the robot pose.

Additionally, correction of the heading angle from GPS

information was considered to be an important issue in devel-

oping the localization algorithm. In particular, covariance of the

heading angle measurement was built after long consideration

and several trials, because both the IMU and optical navigation

sensor information should be considered concurrently. Finally,

the covariance of the heading angle measurement was built as

(13), and as shown in the experiment results, the mobile robot’s

heading is successfully estimated.

Experiment results show the potential of the optical navi-

gation sensor for outdoor navigation. As future study, sensor
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(a) Localization result; Red: Single GPS data, Green: DGPS(Differential
GPS) data, Black: estimated robot pose, Blue eclipse: size of covari-
ance(scaled), A: start point, B: end point, C,D: border of the grass, E:
a tall building, fixed GPS base stands on the top of this building

(b) The grass (A-C, D-B) (c) The paved ground (C-D)

(d) Border of the grass (C,D) (e) Fixed GPS base

Fig. 6. Description of experiment environment and result analysis

fusion with other sensors such as a magnetic compass or LRF

would be an interesting subject.
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