
Years-Long Binary Image Broadcast using
Bluetooth Low Energy Beacons

Chong Shao, Shahriar Nirjon, Jan-Michael Frahm
Department of Computer Science

Univerisity of North Carolina at Chapel Hill

Chapel Hill, NC 27599

Email: {cshao, nirjon, jmf}@cs.unc.edu

Abstract—This paper describes the first ‘image beacon’ sys-
tem that is capable of broadcasting binary images over a very
long period (years, as opposed to days or weeks) using a set of
cheap, low-power, memory-constrained Bluetooth Low Energy
(BLE) beacon devices. We design a patch-based image encoding
algorithm to produce encoded images of reasonably high quality,
having sizes of as low as 16 bytes – without any prior knowledge
of the test images. We test our system with different types
of images that contain hand-written alphanumeric characters,
geometric shapes, and arbitrary binary images having complex
shapes and curves. We empirically determine the tradeoffs
between the system lifetime and the quality of broadcasted
images, and determine an optimal set of parameters for our
system, under user-specified constraints such as the number of
available beacon devices, maximum latency, and life expectancy.
We develop a smartphone application that takes an image and
user-requirements as inputs, shows previews of different quality
output images, writes the encoded image into a set of beacons,
and reads the broadcasted image back. Our evaluation shows
that a set of 2–3 beacons is capable of broadcasting high-quality
images (75%–90% structurally similar to original images) for a
year-long continuous broadcasting, and both the lifetime and the
image quality improve when more beacons are used.

I. INTRODUCTION

Lifeless, passive everyday objects have started to become
smarter in this age of the Internet of Things. Advancement
in low-power microcontroller and wireless technology, minia-
turization of circuitry, lower cost of fabrication, and higher
surge in use cases are making it possible today to literally glue
tiny computers to everyday objects – so that they can sense,
react, and tell their own stories. The industry has embraced
wireless standards such as Bluetooth Low Energy (BLE) [3],
and developed protocols such as iBeacon [8], in order to create
programmable ‘beacon’ devices that periodically broadcast
a small amount of preloaded data, and last for multiple
years [11] on a coin-cell battery. Broadcast messages from
beacon devices typically contain information about an object,
a location, a web-resource, or just an arbitrary string. These
messages are received by a BLE capable mobile device to
obtain relevant information – just-in-time and on-the-spot.

Emerging applications of beacon devices include advertis-
ing merchandise in retail stores [9], identifying late passengers
at the airports, authorizing people at the hospitals, smarter
signage, indoor navigation [6], and tracking moving platforms
like airline cargo containers, computers on wheels, museum

Fig. 1. The image beacon system showing a mobile device that writes and
reads the binary image (‘Lenna’) into three BLE beacons. The expected
lifetime of this system is two years (for 3 beacons, and 2 seconds latency).

artworks, or even humans [2]. The enabling technology be-
hind these applications is the ability of a beacon device to
simply broadcast a few bytes of data (called UUID) as BLE
advertisement packets at a rate of less than 16 bytes/sec. The
bound in data rate comes from the lifetime requirement of
these devices. Such tight budgets on payload and maximum
data rate has limited a beacon device’s capability to only be
able to broadcast an identifier or a small amount of text (about
16–18 bytes). To transmit a moderate sized image, either we
require to use hundreds of beacon devices, or we will have to
accept a very long transmission delay.

Hypothetically, if we could broadcast high-resolution im-
ages from a beacon device in real-time, the technology would
enable even more powerful and feature rich applications. Like
the web has evolved from serving hypertexts to streaming
multimedia contents, we envision that the natural successor
of a beacon device would be the one that broadcasts images,
while meeting the same energy and lifetime requirement.
Applications of such an image beacon system would be in
scenarios where there is no Internet connectivity but there is
a need for storing and broadcasting information that can be
best described by an image. Potential applications of beacon
image systems include coordinating rescue workers in disaster
areas, creating a bread-crumb system for adventurous hikers
and mountaineers, remote surveillance (when coupled with a
camera), or even a simple system just to let someone know
that ‘I was here’.

In this paper, we chase this seemingly impossible goal of
creating a beacon device that efficiently broadcasts images
over a long period. As a first step toward realizing an image
beacon, we explore the challenges to broadcasting binary im-
ages of different categories (e.g., alpha-numeric characters, ba-
sic shapes, and arbitrary binary images), and design algorithms
to efficiently store contents of an image inside a set of beacon



devices. The set of beacons simultaneously broadcasts chunks
of an image over BLE, which are captured by a mobile device
to reconstruct the image. A fundamental challenge toward
achieving this is to efficiently represent an image using as
few bits as possible. Standard image compression algorithms
are not good enough to archive the required compression
ratio so that an image can be stored inside a beacon. We
investigate image approximation/coding techniques that take
into account the limits on number of beacon devices, number
of bits available in a beacon device, data rate, latency, and
lifetime. Based on empirical analysis, we devise a patch-
based image approximation algorithm which greatly reduces
the image data while keeping the image distortion under a
threshold. We investigate the tradeoffs between the image
quality and the power consumption to determine the best set
of parameters for the system under user-specified constraints.

We have developed a prototype of an image beacon system
using a set of commercially available Estimote beacons [1],
and developed an iPhone application that takes an image along
with user-specified requirements and constraints on broadcast-
ing the image as inputs, generates previews of the image to be
written, writes the image representation into a set of beacons,
and reads the broadcasted image back. Figure 1 shows the
complete system where a writer application on the phone takes
a standard JPEG image, converts it to binary format, and shows
the user a preview of the compressed image to be written.
The user is allowed to change the settings (e.g., the number
of available beacons and/or expected device lifetime) and the
app immediately shows the best possible compressed image
under these constraints. The application writes the image data
into the beacons and the image is broadcasted by the beacons.
A reader application reads the broadcasted image and displays
it on the phone.

We perform an in-depth evaluation of the system. We
describe a set of results showing the tradeoffs between device
lifetime and image quality, when image type, number of
beacons, and other system parameters are varied. We also
deploy the image beacon system and perform user studies in
two real-world scenarios where a group of participants (1) use
the smartphone application to draw, preview, write into, and
read from a set of image beacons, and (2) use a beacon guided
navigation system in a multi-floor indoor setting.

The main contributions of this paper are as follows:

• To the best of our knowledge, we are the first to propose
an image beacon system that uses multiple BLE beacons
to broadcast binary images over the BLE advertisement
messages.

• We have devised a patch-based image approximation algo-
rithm that greatly reduces the image sizes. We quantify the
tradeoffs between the image quality and the device lifetime,
and determine the best set of parameters, under the user-
specified constraints on the number of beacons, latency, and
expected system lifetime.

• We have developed and evaluated a prototype of an image
beacon system that broadcasts binary images of various
types (e.g., alpha-numeric characters, basic shapes, and

arbitrary binary images). Our evaluation shows that a set of
2–3 beacons is capable of broadcasting high-quality images
(75%–90% structurally similar to original images) for a
year-long continuous broadcasting, and both the lifetime and
the image quality improve when more beacons are used.

II. PROBLEM FORMULATION

We propose a self-contained image beacon system that
is capable of storing and broadcasting contents of a binary
image, without the aid of any additional sources of information
about the image. The image is either a photo taken with a
camera which has been converted to a binary image, or an
image containing basic shapes, or a hand-drawn image by the
user on his smartphone’s touchscreen. The image data will
be written to and read from the image beacon system using
a smartphone application. We assume that the system is self-
contained, i.e., no additional information about the broadcasted
image is available from any other sources globally (on the
web) or locally (on the smartphone).

The problem is formally stated as: given a binary image
x (i.e. each pixel is represented by one bit) having the
dimensions of N×M bits, the number of available beacon
devices K, the payload size of each beacon packet C bytes,
the maximum allowable broadcast rate of R packets/sec, and
the maximum allowable latency for an image T, the objective
is to find an approximate representation of the image x̂ so
that the lifetime τ of the beacon system is maximized while
the approximation ratio λ(x, x̂) ∈ [0, 1] of the image is high
(λ = 1 means no distortion).

Now, for a single beacon, the broadcast rate:

R =

(

NM

8C

)

1

T
(1)

For K beacons, considering logK overhead bits for ad-
dressing the beacons, and K times more payload capacity:

R =

(

NM+ logK

8CK

)

1

T
(2)

Both (1) and (2) are for undistorted images.

The lifetime τ of a BLE device depends on its inter packet
interval and in general, τ ∝ 1

R
. Replacing R and incorporating

approximation ratio λ into (2):

1

τ
∝

(

λNM+ logK

8CK

)

1

T
(3)

The above equation relates the lifetime of an image beacon
system and the approximation ratio of any image compression
algorithm. In this paper, we devise a patch-based image
approximation algorithm that achieves a sufficiently large λ
for a reasonably high lifetime of the system.

III. CHALLENGES

There are two major challenges in designing an image
beacon system. First, the limited payload size of beacon
packets, and second, the limited bandwidth of BLE.



A. Limited Beacon Payload

The maximum payload size C available in beacon devices
is 18 bytes (from the specification). However, there are 33
special characters which cannot be read from the beacon
devices since they are control characters. So, practically the
payload size is ⌊log(256 − 33)17⌋ ≈ 132 bits ≈ 16 bytes.
On the other hand, the size of a jpeg compressed 64 × 64
pixels binary image is typically between 400 bytes to 2
KB, depending on the quality settings. Therefore, to transmit
such an undistorted binary image, a beacon would require
25−125 broadcast packets, or alternatively, we would require
up to K = 125 beacon devices to simultaneously broadcast
different slices of an image. By using an image approximation
algorithm having a sufficiently high compression ratio, the
required number of beacons can be reduced significantly.

B. Limited BLE Bandwidth

The main advantage of BLE over any other wireless proto-
cols is its extremely low-energy packet transmission capability.
This is achieved by aggressively maximizing the sleeping
interval and sending data packets at a much lower rate than
classic Bluetooth’s.

500 1000 1500 2000

Packet Interval (ms)

0

25

50

75

L
ife

tim
e
 (

m
o
n
th

s)

-30 dbm

-12 dbm

-4 dbm

+4 dbm

Fig. 2. The lifetime depends on packet transmission rate and signal strength.

Figure 2 shows the expected lifetime of Estimote BLE
beacons for various inter-packet interval. For example, the
beacon would last up to 3.5 years if a packet is sent at
every second (i.e. R = 1). Therefore, for a beacon system that
lasts for 3.5 years, its broadcast bandwidth is bounded to the
maximum limit of 16 bytes/sec, and the latency of a complete
image transmission cycle would be 125 seconds for a single
beacon, or 1 second for a set of 125 beacons. Again, by using
an image approximation algorithm having a sufficiently high
compression ratio, this latency can be reduced significantly.

IV. ALGORITHM DESIGN

The process of converting an input image to its approxi-
mate equivalent is described in this section. The process has
an one-time, offline phase where an ‘alphabet’ of carefully
designed ‘patches’ are generated. During the on-line phase,
the input image is encoded using these patches in order to
generate a reduced version of it, which is suitable for writing
into the beacons. Figure 3 illustrates the overall process.

A. Offline Processing: Patch Set Generation

In order to store an image into a limited amount of storage,
one has to make a tradeoff between image variety and the
quality of the compressed image. By limiting the image type
to binary images that contain mostly curves, we show that it

Fig. 3. Beacon image processing pipeline.

is possible to design a predetermined set of patches, which
can represent the image in a way that the encoded image is
extremely compressed, while it’s of high quality. The encoding
of an image is based on an agreement on the set of patches
between the encoder and the decoder. Hence, only the indices
of the patches are needed to be stored/broadcasted in order to
encode/decode an image. An immediate question is therefore:
how do we design a suitable set of patches?

There are two main considerations in designing the set
of patches. First, determining the number of patches to use,
and second, determining the content of each patch. The set
of patches should be general enough to be able to represent a
wide variety of binary images. On the other hand, the size of
the set should not be too large, otherwise, the number of bits
required to encode the patch indices will be large, resulting
in larger images. A rule of thumb in designing base elements
for images is to let the set of patches be rich enough for an
input image so that– given any sub-region within the image

that has the same size as that of a patch, there is always patch

in the set whose texture is roughly the same as the sub-region’s

texture, with a very high probability.

Since we have limited the image type to binary images, we
seek to design a set of patches that contains binary textures of
varies types and curves in different directions. The two-step
process of generating the set of patches are as follows.

Step 1. Generating Patch Population: A simple approach
to generating a population of patches is to divide a spiral image
using a g × g grid to obtain a total of g2 patches. We use spiral
images since they are easy to parameterize. By having a set of
parameterized spirals we can easily control the curvature and
the direction of the curves in the patches. Figure 4(a) shows an
example of a spiral in a 3× 3 grid. This approach, in general,
produces a diverse set of patches containing curves of different
orientations and directions. However, the patches are biased by
the choice of the original spiral. Because of this, we choose to
start from a set of binary images, where each image contains a
parameterized spiral whose parameters are different from other
spiral images. Figure 4(b) shows an example where we have



m spiral images. The parametric equation of the nth spiral
is: x = t sin(t), y = t cos(t), 0 ≤ t ≤ nπ. Each of these n
spirals is divided using a g × g grid to obtain a population
of g2n patches. Let us denote the population of patches as
{Pi,j}, where 1 ≤ i ≤ n, 1 ≤ j ≤ g2.

(a) (b)

Fig. 4. (a) single spiral, (b) multiple spirals.

Step 2. Selecting Patches using k-means: Given a set
of test images {Xi}, 1 ≤ i ≤ l, the goal is to find a K-sized
optimal subset S ⊂ {Pi,j}, so that the sum of distances of the
fitted image to the original image is minimized, i.e.–

argmin
S

l
∑

i=1

g2

∑

j=1

min
sk∈S

{

d(xi,j, sk)

}

(4)

where, sk ∈ S denotes a selected patch, xi,j is the jth patch-
sized subregion of image Xi, and d(.) is a distance function
that measures the fitness of a patch to a subregion of an image.

Finding an optimal subset of S for any arbitrary distance
function is in general an NP-complete problem. Hence, we
employ a clustering-based approach where we use k-means
algorithm to cluster the population of patches into K clusters.
We use the structural similarity metric (SSIM) [12] as the
distance function. The intuition behind this approach is that,
given the distance metric, as long as the distribution of patches
in S resembles that of the unknown images, k-means will se-
lect a near optimal subset which minimizes Equation 4. More
specifically, had we used patches from actual test images, k-
means would be highly likely to find an optimal subset of
patches that best fits the images.

B. Online Processing: Encoding and Refinement

During the online phase, every new image at first is
converted to binary images based on a color threshold, and
then it is encoded (using the selected patches from the offline
phase) and is refined to improve the quality of encoding, prior
to writing it into the beacons.

We use a simple, fixed-length encoding scheme to de-
scribe each input image as a sequence of patch identifiers.
Non-overlapping, patch-sized regions of the input image are
sequentially accessed, and for each region, the patch (within
the set of selected patches) that has the maximum structural
similarity to the region is noted, and its index is stored in a
queue. When all the regions of the input image have been
processed, the queue contains the encoded image. This simple
encoding scheme can be further improved if we have prior
knowledge on each patch’s probability of occurrence. For
example, by assigning short-length codes to more frequent
patches, the overall length of encoded image could be reduced.
To keep things simple and generic, we do not employ such a
variable-length encoding approach in this paper.

Fig. 5. (a) original image; (b) result from patches generated from single spiral
image; (c) result image from patches generated from single spiral image after
morphology refinement; (d) result image from patches generated from multiple
spiral images and k-means; (e) result from patches generated from multiple
spiral images and k-means after morphology refinement.

After encoding an image, two standard mathematical mor-
phology operations [10] –dilation and erosion– are applied
to enhance the quality of the resultant image. Examples of
images before and after these refinements are shown in 5.
The parameters of these operations are their ‘operator sizes’
(in pixels), which depend on the curve-width of the input
image and the patch set. In our experiments, we found that the
resultant image has its best quality when the erosion/dilation
operator sizes are 3 pixels.

C. Image Decoding

To decode an image, the broadcasted patch indices from
all the beacons are received and serialized by the decoder
application. The image is reconstructed by arranging the
patches in the correct order as dictated by the index sequence.
The refinement process is applied in the decoder as well.

V. EMPIRICAL EVALUATION

In this section, we describe a series of empirical evalua-
tions. At first, the patch-based image compression approach
is compared with JPEG encoding. Then we describe a set of
results that quantifies the tradeoffs between the device lifetime
and the image quality, when the type of images, number of
beacons, patch function generation method, number of patches,
and the grid or patch size are varied. We also perform full
system evaluations involving real users and multiple use cases
– which are described in the next section.

A. Experimental Setup

In all of our experiments, we have used Estimote model
Rev.D3.4 Radio Beacons [1] having a 32-bit ARM Cortex M0
CPU, 256 KB flash memory, 4 dBm output power, 40 channels
(3 for advertising), and 2.4–2.4835 GHz operating frequency.
We vary the BLE broadcast interval for a beacon between 100
ms to 2,000 ms. However, an encoded image (broadcasted
from multiple beacons) reaches a user’s device in less than
1 second. The transmission power is set to -12 dBm, which
limits the range of each beacon to about 30 meters. The image
writing and reading application runs in an iPhone 5s having
an ARM v8 based dual-core 1.3 GHz Cyclone CPU, Apple
A7 chipset, 1 GB DDR3 RAM, BLE v4.0, and runs iOS 9.2.

We use three types of images in our experiments images
containing alpha-numeric characters, basic shapes, and arbi-
trary binary images. Examples of these images are shown in
Figure 6. Some of these images are directly drawn on the



phone by a user (e.g., letters, numbers, and free hand draw-
ings), while some are real pictures that have been converted to
binary format by our writer application. All images are down-
sampled to 64× 64 pixels prior to writing.

Fig. 6. Test images used in the empirical evaluation.

The two main metrics that are used in the experiments
are structural similarity (SSIM) scores, and device lifetime
in months. We measure these two under different conditions
and show their tradeoffs. The structural similarity scores are
used to measure the quality of the produced images when
compared to the original ones. The device lifetime is estimated
from its relation to a beacon’s transmission frequency. Before
each experiment, we program the beacons to set a transmission
frequency and use the corresponding estimated device lifetime
(as reported by the Estimote beacon API) in our experiments.

B. Comparison with JPEG

In this experiment, we compare the proposed patch-based
image encoding algorithm with JPEG. We pick the image of
a handwritten ‘2’ as test images. This is also used in Section
V-D, V-F, and V-G. In Figure 7, we plot the quality of encoded
images obtained from three methods – two versions of the k-
means patch-based approach (4 and 8 pixels per patch) and
JPEG, for various sizes of images. The result suggests that–
JPEG generates better quality images in general, however, it
also requires larger sized images. For a 64×64 binary image,
JPEG encoded image is about 464 bytes, even with the lowest
quality settings. Compared to that, our patch-based method
generates images in smaller sizes (30–200 bytes), making it
possible to store an image inside a small number of beacon
devices.

Besides JPEG, we also studied several other image com-
pression techniques [7][13][14]. But none of these yield suit-
ably small sized images.

C. Effect of Image Type

We conduct an experiment to measure how the patch-based
image encoding method’s performance (in terms of quality)

4 6 8 10 12

Image Size (Log of Bytes)

0.7

0.8

0.9

1

Im
a

g
e

 Q
u

a
lit

y 
(S

S
IM

)

k-means

(4 pixels)

k-means

(8 pixels)

JPEG

Fig. 7. Image quality versus image size for different encoding methods.

changes when the type of input images is varied. The three
types of images we use include hand-written alpha-numeric
characters, basic geometric shapes, and arbitrary binary images
containing complicated shapes and curves. For each type, we
compute the average image quality for a given lifetime. We
use three beacons in this experiment to store and read images.

0 20 40 60 80

Device Lifetime (Months)

0.25

0.5

0.75

1

Im
a

g
e

 Q
u

a
lit

y 
(S

S
IM

)

Alpha-numeric

Basic Shapes

Arbitrary Binary

Images

Fig. 8. Image quality versus beacon battery life for different images being
approximated.

Figure 8 shows that the image quality drops when the
beacon’s power consumption is reduced to target a prolonged
device lifetime. A longer lifetime limits the broadcasting
frequency, and as a result, the amount of data we can transmit
within a fixed period (1 second in our setting) is reduced–
resulting in a poor quality encoding that uses less amount
of bytes. This can however be fixed by allowing a longer
image transmission delay (i.e. more than 1 second wait-time
for the reader application). We also notice that the basic
geometric shapes and alpha-numeric characters achieve very
high structural similarity scores under all power settings. This
happens since their sub images are very similar to the patches.
However, the system does not perform its best when tested
with arbitrary, complex binary images (specially the ones with
a lot of dark regions).

D. Effect of Number of Beacon Devices

In this experiment, we investigate the impact of the number
of beacons on image quality. Recall that, we have used the
the Eddystone URL beacon packet format to store the custom
image data where each beacon can contain at most 16 bytes of
image data. Hence, the more beacons we use, the more bytes
we have available to store the same image. Figure 10 shows
that as the number of beacons is increased from 1 to 6, the
quality of produced images also increases from 0.72 to 0.84.

E. Effect of Patch Function Type

In this experiment we compare three patch generation
methods. The first one is the proposed k-means based ap-



0 20 40 60

Device Lifetime (Months)

0.4

0.6

0.8

1

Im
a
g
e
 Q

u
a
lit

y 
(S

S
IM

)

1 beacon

2 beacons

3 beacons

4 beacons

5 beacons

6 beacons

Fig. 9. Image quality versus device lifetime for various number of beacons.

proach that considers multiple spirals. The second one uses
only a single spiral, and the third one generates patches from
a standard test dataset for hand-written characters MNIST [5].
To generate patches, we up-scale the images to 64×64, adjust
intensity, and dilate the background. Then we divide each
image into patches and run k-means on the patches.

0 20 40 60

Device Lifetime (Months)

0

0.25

0.5

0.75

1

Im
a
g
e
 Q

u
a
lit

y 
(S

S
IM

)

Alpha-Numeric

0 20 40 60

Device Lifetime (Months)

0

0.25

0.5

0.75

1

Im
a
g
e
 Q

u
a
lit

y 
(S

S
IM

)

Basic Shape

0 20 40 60

Device Lifetime (Months)

0

0.25

0.5

0.75

1

Im
a
g
e
 Q

u
a
lit

y 
(S

S
IM

)

Arbitrary Image

k-means on Spirals Single Spiral k-means on MNIST

Fig. 10. Image quality versus lifetime for different patch generation methods.

From Figure 10 we observe that patches generated from
MNIST dataset performs the best for alpha-numeric characters.
This is expected since MNIST is designed specifically for
handwritten digits. Our multiple spiral-based method performs
better for basic shapes, and both algorithms perform similar
when tested with arbitrary images. This shows that having
prior knowledge helps, but even if we do not have have it, our
method performs reasonably well.

F. Effect of Patch Set’s Size

An important parameter of the beacon system is the size
of the patch set, which is same as the number of clusters k
in k-means clustering. A larger patch set is more capable in
representing an input image, but requires more bits to encode
the image. This leads to a higher broadcasting frequency
(given the 1 second bound on the maximum transmission
latency), and more power consumption. So, it is important
to find a good value for k. Figure 11 shows image quality
versus device lifetime for various k. The plot shows that
k = 64 almost always outperforms others as expected. The
other two values of k also perform reasonably well (0.65–0.7
when expected lifetime is between 20–40 months). Note that
k = 128 is not applicable to our setup (i.e., 3 beacons and 1
second latency) since this would require an excessive amount
of space to store an image.

G. Effect of Grid Size

Similar to the patch set’s size, the grid size used to divide
a spiral image to produce different sizes of patches also
has impacts on the image quality and the encoded image’s
size. Using smaller patches results in high resolution image

0 20 40 60

Device Lifetime (Months)

0.4

0.6

0.8

1

Im
a

g
e

 Q
u

a
lit

y 
(S

S
IM

)

k = 16

k = 32

k = 64

Fig. 11. Image quality versus device lifetime for various patch set sizes.

encoding, but the size of the encoded image will be larger. For
example, a grid size of 1 pixel results in an exact replica of
the original image. Figure 12 shows the system’s performance
for different grid sizes. Using 3 beacons and a grid size of
4 pixels, the system cannot encode images when the desired
device lifetime life is more than 20 months, but produces best
quality images for shorter expected lifetimes. With a grid size
of 8 pixels, the system would last for about 50 months and
will perfprm consistently well to produce images having about
0.75 structural similarity scores. Using larger grids (16 and 32
pixels) results in even longer device lifetime, but the quality
of images degrades to 0.5.

0 20 40 60

Device Lifetime (Months)

0

0.25

0.5

0.75

1

Im
a

g
e

 Q
u

a
lit

y 
(S

S
IM

)
Grid Size = 4

Grid Size = 8

Grid Size = 16

Grid Size = 32

Fig. 12. Image quality versus device lifetime for various grid sizes per patch.

VI. REAL DEPLOYMENT

We deploy the image beacon system in two scenarios
where a group of participants (1) use the smartphone applica-
tion to draw, preview, write into, and read from a set of image
beacons, and (2) use a beacon guided navigation system in
a multi-floor indoor setting. All the participants are graduate
students in our department.

A. Write-Read-Recognize

We ask 12 participants to use the ‘previewer’ app to draw
images on the phone using its touchscreen. These images
are converted to binary and saved into the phone’s internal
storage. Each participant draws random images containing
digits, letters, numbers, and recognizable symbols and shapes.
They also label their drawings with meaningful tags. These
images are then encoded so that they can be stored in 4
beacons, their transmission delay is 1 second, and the lifetime
of the system is over two years. A subset of these encoded
images are then shown to other participants who are asked to
recognize them and then provide subjective scores for them.
The score denotes how a participant feels about the overall
quality of the shown image and his difficulty in recognizing
the symbols and objects in that image. The score ranges from



1 to 10, where ‘1’ stands for the lowest perceived quality and
the hardest to recognize. Seven of these images are scored by
all participants. These are shown in Figure 13.

Fig. 13. Images drawn by the participants.

1 2 3 4 5 6 7

Image ID

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 S

co
re

s

Subjective Score

Structural Similarity

(SSIM)

Fig. 14. Subjective and SSIM scores for each image.

We gather user scores and normalize them to [0, 1].
To compare these subjective scores with structural similarity
(SSIM) based objective scores, we computed the mean of the
user scores for each image and show them in the same plot
with their SSIM scores. SSIM scores are also scaled to [0,
1]. Figure 14 shows that the trend in the SSIM curve and the
averaged subjective quality scores are about the same except
for the last image of ‘pi’. The averaged subjective scores for
different images vary more than the SSIM scores. The reason
for this is that the participants tend to give a relatively low
score (around 1 to 3) for the images they fail to recognize. This
has happened for the ‘@’ symbol. Many participants tend to
recognize this as a compressed version of double ‘O’. The ‘pi’
image has a very high average subjective score but a relatively
low SSIM score. This ‘outlier’ may be due to the fact that
unlike other images, this image takes the whole image display
area, and therefore, it is easier for human to recognize.

B. Navigation in the Building

In this experiment, we choose six locations inside the
UNC Computer Science building, and at each location we
place a beacon that broadcasts a compressed image. These
compressed images serve as ‘guides’ for navigating inside the
building. Each participant is asked to follow the navigation
information displayed on his phone screen. The participant has
been instructed that ‘walking forward’ is the default direction,
and if he sees, for example, a ‘turn right’ image at a turning
point, he should make a right turn and keep walking straight
until the current image disappears and the next image is
displayed. This experiment is designed to simulate a real world
use case. In a place, where the Internet is not accessible, one
can write arbitrary graphical information into a set of beacons
for others to read at a later point. Therefore, it is critical
to support arbitrary binary image writing functionality in our
system, instead of having a predefined set of symbols.

The navigation path was designed so that it starts at a
corner on the second floor, goes across half of the floor,
continues to the third floor, goes across to the half of the third
floor, and then stops. Figure 15 shows the path. Each beacon’s
broadcasting interval is set to 1000 ms and the broadcasting

Fig. 15. Map of second and third floors showing the navigation path.

strength is set to -20 dBm so that it’s range does not overlap
with its neighboring beacon’s. The experiment finishes when a
participant successfully reaches his final destination (the last
beacon showing the ‘STOP’ image) or the participant feels
totally lost and cannot continue. After the experiment, the
participants are asked a set of questions to answer: (1) overall
difficulty of going from the starting point to the third floor, (2)
overall difficulty of going from the starting point of the third
floor to the destination, (3)–(8): how clear each image looked,
(9) usability of the app (image reader). The score ranges from
1 to 10, where ‘1’ stands for the least perceived quality and
the hardest to recognize.

Fig. 16. Images stored at the six locations.

1 2 3 4 5 6

Image ID

4

6

8

10

U
se

r 
S

co
re

 (
1

-1
0

)

Fig. 17. Subjective scores for each image.

Of the 5 participants who completed the user study, 4
successfully research the destination point. 1 participant was
lost after he reached the third floor. The images used in the
study are shown in Figure 16. For each of these six images, we
plot the average subjective scores in Figure 17. It is interesting
to note that, although the second and the fifth image are
the same, the fifth image has got a higher average score.
We believe, this is because when a person sees the same
direction for the second time, he tends to be more confident



in recognizing the image. The third image has got the lowest
score. This is due to the fact that the instruction at that location
asks the user to go upstairs which was confusing to many
participants who did not expect a multi-floor travel path.

We also asked each user about his difficulty in following
the navigation signs in floor 2 and floor 3. The average scores
for these questions are 0.74 and 0.88, which means the users
thought that the directions were easier to follow during the
later stage of the experiment when they became used to the
system. The overall satisfaction of the application was very
high. All participants commented that the app is ‘easy to use’.

VII. RELATED WORK

Previously people have developed various image com-
pression techniques. Many of these techniques have been
standardized and widely used, including JPEG that is based
on discrete cosine transform, and JPEG2000 that is based
on wavelet transform. If the images are limited to binary, a
compression method designed for binary images is expected
to show a better performance (smaller compressed image
but equivalent image quality) than JPEG or JPEG2000. One
approach to compress binary images is to partition the shape
in the image into rectangles and record the upper-left and
bottom-right pixel location of every rectangle [7][14]. This
works great on images that contain shapes that can naturally
be divided into rectangles. But in our system, many images
contain curves in different directions and different curvatures.
For binary images containing curves, rectangle-based approach
do not give a desired performance within the limited storage
constraint. Given the fact that many of our binary images
contains curves, chain coding based compression [4] would
be preferred. [13] proposed another chain-coding based com-
pression method. They showed that their coding method could
losslessly compress a complex contour shape into around 900
bytes. And their result outperforms previous image coding
techniques including JBIG1, JBIG2 and data compression
library WinZip. Their method yields compressed image sizes
of at least 200 bytes for our data. This still does not satisfy our
storage requirement, and at the same time we do not need the
very-high compressed image quality that their method offers.
Therefore, we design a binary image compression method that
better fits our requirement.

In [9], the author discussed an intelligent system involving
beacon devices for Customer Behavior Analysis (CBA). The
goal is to show how beacon technology could help gather and
classify customer behavior data in retail stores. They deployed
the system into a real retailing scenario and collected the data
from mobile devices interacting with Beacon devices. They
also proposed the further data analysis process on the collected
data. [6] talks about an indoor localization system constructed
with beacon devices. With multiple beacons places in the
environment, the author showed that the error of the estimated
location of the object could be as small as 0.53 meters in
average. [2] discusses an Beacon occupancy detection system
deployed in smart buildings. In the implementation, they mod-
ified Apple’s iBeacon protocol to better fit their requirement.

They showed that with the BLE technology such system could
be more energy and cost efficient than previous solutions.

VIII. CONCLUSION

In this paper, we described a system involving beacon
devices and smartphones with BLE receiving functionality.
Our system allows a user to generate binary images, write
binary images into the very limited beacon device storage,
and receive compressed binary images from beacon devices’
broadcasting packets. The main contribution of this work
is the overall system construction, the patch-based binary
image compression method, the evaluation of various system
parameters in the system, and the evaluation of the trade-off
between image quality and beacon battery lifetime based on
our patch-based image compression method. Our work widens
the usage of the energy efficient, long lifetime beacon devices
by allowing easy storage and access of custom image data in
scenarios where there is no Internet connection.

Our system is most useful when the application scenario
requires years-long working time without maintenance. In the
future, it is meaningful to design a long timescale experiment
to analyze the data write-read pattern within a long time
period.

REFERENCES

[1] Estimote Beacons. https://estimote.com/.
[2] G. Conte, M. De Marchi, A. A. Nacci, V. Rana, and D. Sciuto.

Bluesentinel: a first approach using ibeacon for an energy efficient
occupancy detection system. In 1st ACM International Conference on
Embedded Systems For Energy-Efficient Buildings (BuildSys), 2014.

[3] C. Gomez, J. Oller, and J. Paradells. Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology.
Sensors, 12(9):11734–11753, 2012.

[4] S.-D. Kim, J.-H. Lee, and J.-K. Kim. A new chain-coding algorithm for
binary images using run-length codes. Computer Vision, Graphics, and
Image Processing, 41(1):114–128, 1988.

[5] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of
handwritten digits, 1998.

[6] P. Martin, B.-J. Ho, N. Grupen, S. Muñoz, and M. Srivastava. An ibeacon
primer for indoor localization: demo abstract. In Proceedings of the 1st
ACM Conference on Embedded Systems for Energy-Efficient Buildings,
pages 190–191. ACM, 2014.

[7] S. A. Mohamed and M. M. Fahmy. Binary image compression using
efficient partitioning into rectangular regions. Communications, IEEE
Transactions on, 43(5):1888–1893, 1995.

[8] N. Newman. Apple ibeacon technology briefing. Journal of Direct,
Data and Digital Marketing Practice, 15(3):222–225, 2014.

[9] R. Pierdicca, D. Liciotti, M. Contigiani, E. Frontoni, A. Mancini,
and P. Zingaretti. Low cost embedded system for increasing retail
environment intelligence. In Multimedia & Expo Workshops (ICMEW),
2015 IEEE International Conference on, pages 1–6. IEEE, 2015.

[10] R. J. Schalkoff. Digital image processing and computer vision, volume
286. Wiley New York, 1989.

[11] M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen. How
low energy is bluetooth low energy? comparative measurements with
zigbee/802.15. 4. In Wireless Communications and Networking Confer-
ence Workshops (WCNCW), 2012 IEEE, pages 232–237. IEEE, 2012.

[12] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. Image
Processing, IEEE Transactions on, 13(4):600–612, 2004.

[13] S. Zahir, K. Dhou, and B. Prince George. A new chain coding based
method for binary image compression and reconstruction. PCS, Lisbon,
Portugal, pages 1321–1324, 2007.

[14] S. Zahir and M. Naqvi. A new rectangular partitioning based lossless
binary image compression scheme. In Electrical and Computer Engi-
neering, 2005. Canadian Conference on, pages 281–285. IEEE, 2005.


