TypingRing: A Wearable Ring Platform for Text Input

Shabhriar Nirjon, Jeremy Gummeson, Dan Gelb, Kyu-Han Kim
Hewlett-Packard Labs, CA, USA
{nirjon, jeremy.gummeson, dan.gelb, kyu-han.kim}@hp.com

ABSTRACT

This paper presents TypingRing, a wearable ring platform
that enables text input into computers of different forms,
such as PCs, smartphones, tablets, or even wearables with
tiny screens. The basic idea of TypingRing is to have a user
wear a ring on his middle finger and let him type on a sur-
face — such as a table, a wall, or his lap. The user types as if
a standard QWERTY keyboard is lying underneath his hand
but is invisible to him. By using the embedded sensors Typ-
ingRing determines what key is pressed by the user. Further,
the platform provides visual feedback to the user and com-
municates with the computing device wirelessly. This pa-
per describes the hardware and software prototype of Typin-
gRing and provides an in-depth evaluation of the platform.
Our evaluation shows that TypingRing is capable of detect-
ing and sending key events in real-time with an average ac-
curacy of 98.67%. In a field study, we let seven users type a
paragraph with the ring, and we find that TypingRing yields
a reasonable typing speed (e.g., 33 — 50 keys per minute)
and their typing speed improves over time.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-

time and embedded systems

General Terms

Algorithm, Design, Experimentation

Keywords
Wearable, Typing, Ring

1. INTRODUCTION

As computing systems evolve, so do their input meth-
ods. With advancements in computing technology, different
forms of text input methods have been proposed and used in
practice. These forms include the standard QWERTY key-
boards for PCs, alphanumeric keypads and small keypads in
earlier mobile phones, and on-screen soft keyboards in mod-
ern smartphones and tablets. Each of these input method-
ologies for typing in text has been invented out of the need

for a change as the form factor and the mobility require-
ments of these devices have changed. We are now at the
forefront of technology where wearable computers, such as
smart watches and smart bands, have entered the consumer
market. These devices have even smaller screen sizes and
none of the existing typing methods are viable for these de-
vices. A quick fix to this problem has so far been in the
form of speech-to-text or shared keypads. However, the core
problem has still remained unsolved, i.e. there is no typing
accessory that is portable and usable with computers of all
form factors and mobility requirements.

To meet this need we have created TypingRing, which
is a wearable keyboard in the form factor of a ring. A user
wears the ring on his middle finger and types in text with
his three fingers (the index, the middle and the traditional
ring finger) on a surface, such as — a table, his lap, or a wall.
The user types and moves his hand as if there is an invisible
standard keyboard underneath his hand. By moving the hand
horizontally and vertically, TypingRing identifies one region
to another on the imaginary keyboard. Further, by pressing
one of his three fingers, the user types in the key. By using
the embedded sensors surrounding the ring, TypingRing de-
termines what key is pressed by the user completely inside
the ring and then sends the key event to a remote computer
over the Bluetooth LE network. TypingRing implements the
standard BLE keyboard protocol so that it can be used with
commercially available computing devices, such as — PCs,
smartphones, tablets, or even wearables with tiny screens
that support an external BLE keyboard. A piece of software
running on the computing device intercepts the key events
and provides a visual feedback to the user by highlighting a
key or a portion of a custom on-screen keyboard, as the user
moves his hand on the surface and types in keys.

Several salient features when combined together make
TypingRing unique of its kind. First, TypingRing being a
wearable device, is mobile and portable. The ring comes
handy in scenarios where a quick and on-the-go text input
is needed or scenarios when an alternative input method is
not convenient, e.g. devices with tiny screens. Second, Typ-
ingRing is fast and highly accurate in detecting keys, and it
performs all its computations inside the ring — without re-
quiring any computational support from a more capable de-

vice. Third, TypingRing is multi-platform. Because of its
adoption of standard BLE keyboard protocol, TypingRing is
usable with any computing device that supports an external
BLE keyboard. Fourth, typing with TypingRing is intuitive
and it is easy to learn. TypingRing breaks down the task
of typing on a standard keyboard into two intuitive tasks, i.e.
moving a hand on a surface and then pressing a finger, which
require little or no practice to get started with. Fifth, Typin-
gRing is flexible and extensible. It is not tied to English
alphabet or any specific keyboard layout. By changing the
mapping between a position and a key, TypingRing is usable
with keyboards of different layouts and dimensions.

TypingRing brings both engineering and computational
challenges in front of us. The hardware architecture of Typ-
ingRing is designed to obtain the relative movements of the
finger, and horizontal and vertical motions of the hand on
a surface, so that thus-obtained data can be used to infer
the position of the hand and typing gestures from just a sin-
gle finger. To realize this, we embed a tiny microcontroller,
an accelerometer, multiple line sensors, an optical displace-
ment sensor, and a BLE chip on the perimeter of a circular
ring platform. These sensors are read by a software run-
ning inside the ring, which detects and classifies typing ges-
tures using an offline trained Hidden Markov Model (HMM)
classifier. As an additional feature in TypingRing, we have
implemented a simple Naive Bayesian classifier to infer 3D
gestures, such as - pitch, roll, and yaw, and map them to
commonly used keys on a keyboard to offer shortcut keys to
the user.

We have created a prototype of TypingRing using off-
the-shelf sensors and an open source miniature hardware
platform called TinyDuino [11]. In order to, tune various
parameters of the system and train the typing and gesture
classifiers, we perform an empirical study involving 18 users
who uses the ring to type in letters, words, lines, and ges-
tures while we store all the raw sensor readings. Based
on this empirical data, we measure execution time, energy
consumption, and the accuracy of typing and gesture clas-
sifiers. Our empirical evaluation shows that TypingRing is
capable of detecting and generating key events in real-time
with an average accuracy of 98.67%. Finally, we perform
a field study, in which, we let seven users type a paragraph
with TypingRing and we find that TypingRing yields a typ-
ing speed of 0.55 — 0.81 keys per second, and their typing
speed improves over time.

The contributions of this paper are the following —

e We introduce TypingRing, which is a wearable, portable
accessory device that allows a user to input text into mo-
bile and non-mobile computers of different forms.

e We describe a Hidden Markov Model (HMM) based typ-
ing gesture recognizer that uses acceleration, optical dis-
placement and proximity sensors to infer the typing fin-
ger in real-time and with an average accuracy of 98.67%.

e We perform a field study by letting seven end users type a

paragraph with TypingRing and we find that TypingRing
yields a typing speed of 33 — 50 keys per minute, and
their typing speed improves over time.

2. USING TYPING RING

This section describes the working principle of the Typ-
ingRing along with some potential use cases.

2.1 Working Principle

TypingRing is worn on the middle finger of a user. As
the user rests his ring on a horizontal surface, three consecu-
tive keys on the on-screen keyboard of the computing device
are highlighted. By using embedded sensors surrounding
the perimeter of the ring, the TypingRing detects typing ges-
tures made by the user’s three fingers — middle, index, and
traditional ring fingers. To highlight a different set of keys,
the user simply drags the ring up, down, left or right on the
surface. As long as the user is seeking a key or typing it
in, visual feedback is provided to him on the screen of the
computing device.

TypingRing assumes that the standard keyboard layout is
divided into multiple zones. A zone is defined as a sequence
of consecutive 3 keys on the same row on a keyboard lay-
out. With this definition of a zone, the task of locating a key
becomes a two-step problem: first, to identify the zone of
the intended key, and second, to identify the key within that
zone.

By moving the ring horizontally and vertically on a sur-
face, a user moves from one zone to another. The user is
given visual feedback by either highlighting the 3 keys on the
zone on a soft-keyboard or just showing 3 keys on the screen
when the computing device has a limited screen space. Once
a zone is selected, each of the three fingers is associated with
one of the 3 keys in that zone. To type in a specific key, the
user makes a typing gesture using the corresponding finger.
The ring detects the finger and sends the key associated with
it to the computing device over the wireless channel.

(b) Typing Ring

(a) 3-Letter Zones
Figure 1: Working principle of TypingRing.

Example. In Figure 1(a), we show sixteen zones on an
Android keyboard layout marked with dotted rectangles and
the selected zone £gh with a solid rectangle. Only one zone
is allowed to be active at a time. A large key (e.g. the space
bar) may be a part of multiple zones and the last zone on a

row may not have all three keys. To type in a letter, e.g. w,
the user at first moves his ring up and left to select the owe
zone, and then makes a typing gesture with his middle finger
to input the key.

2.2 Usage Scenarios

TypingRing may be used with a variety of computing
devices that support standard external wireless keyboards.
The list includes desktops, laptops, tablets, smartphones, and
smart watches. However, below we list several compelling
usage scenarios, where TypingRing is a more convenient
choice than other input methods (e.g., on-screen keyboard).

e Devices with Tiny Screens. Some computing devices,
such as smart watches and smart wristbands, have very
small sized screens where a full scale touch enabled key-
board is not an option. TypingRing can be used with
these devices as it physically separates the actual typing
action from the visual feedback, and hence, the keyboard
layout can be scaled down enough to just to show a tiny
keyboard with highlighted keys, or a single row of keys,
or just the 3 keys on a selected zone.

e Saving Screen Space on a Mobile Display. Typical on-
screen soft keyboards on a mobile device block out more
than 40% of the display. This is annoying to the user
as the blocked out area may contain information that the
user needs to see while typing in his inputs. With Typ-
ingRing, the size of the blocked area is reduced up to 10
times, and hence, the freed space can be utilized by the
application to improve user experience.

e Quick and On-the-Go Typing. In some situations, e.g.
self checking-in at an airport kiosk, making transactions
at ATMs, or inputting pass codes into locks, we want
to input text quickly and on-the-go. Health conscious
people who want to avoid touching the keypads on these
public devices might want to use their personal mobile
device for input. The TypingRing being a wearable de-
vice, is more convenient in these scenarios than pulling
out a mobile phone from the pocket and interacting with
the display.

3. SYSTEM OVERVIEW

This section overviews the system architecture of Typin-
gRing. We defer the algorithms and implementation details
to subsequent sections.

3.1 The Hardware Architecture

TypingRing hardware platform is a redesign of conven-
tional rings that has embedded sensors surrounding its perime-
ter and a tiny micro-controller unit having wireless data com-
munication capability. The platform enables continuous sens-
ing of user’s hand and finger movements and processes the
sensing data on-board to generate the key events. Figure 2
is a schematic of the TypingRing— showing the components
and their placements on the ring.

[Bluetooth LE
1 Accelerometer

MCU + Battery
....... b 4
Right Finger
L Proximity
Left Finger
Proximity
Displacement

AX, AY

Figure 2: Hardware architecture of TypingRing.

e Microcontroller. The top of the ring, where usually a
jewel is placed, consists of three boards stacked on top
of each other. One of these is a micro-controller unit
(MCU) that operates all the components, processes sens-
ing data to determine key events, and transmits the key
information. The MCU is powered by a thin film battery.

e Accelerometer. A 3-axis accelerometer is placed on top
the ring, and it primarily detects the movement of the
middle finger and helps detect other fingers. This sensor
is kept always on to detect the presence of motion and
turn on and off other sensors as needed.

e Proximity Sensors. Two proximity sensors are placed
on the sides of the ring facing the two fingers which are
next to the middle finger. Their placement allows the
ring to measure the proximity between the middle finger
and the two fingers next to it. This is used to detect which
finger is used for typing.

o Displacement Sensor. An optical displacement sensor,
like the ones used in an optical mouse, is placed under-
neath the ring to detect the X and Y displacements of
the ring. This is used to detect when the user changes his
typing zone.

e Bluetooth LE. A Bluetooth LE chip is connected on top
of the ring, which is used by the MCU to send key events
wirelessly to the computing device using the standard
BLE keyboard protocol.

3.2 The Firmware Architecture

The TypingRing determines the key events completely
inside the ring without relying on the computing device for
any computational help. This makes it a self-sufficient in-
put accessory just like a regular Bluetooth LE keyboard. An
alternative to this would be to transmit raw or partially pro-
cessed sensing data and let the device determine the key
events. This, however, would require higher bandwidth com-
munication, increase the data transmission cost, and make
the ring a non-standard input accessory. The firmware run-
ning inside the TypingRing is responsible for controlling the
sensors, determining the key strokes, and generating and
sending key events to the computing device.

Figure 3 shows the architecture of the firmware. Figure
3 shows the architecture of the firmware. As shown in the
figure, the firmware is composed of three layers: sensing,
recognition, and communication.

j=2]
(=S .. .
2 % Accelerometer Proximity Optical
» [[[
! i 1
T
° Controller
25 [low motion, Lnit [high motion,
O e ring down] ring lifted]
=R
s 8
E o Key Stroke Gesture
Recognizer Recognizer
| |
|]
=
- O
c 'S
© ©
o8
£5
=)
(@]

Figure 3: Firmware architecture of TypingRing.

Sensing Layer. The top layer of the firmware contains
sensor sampling modules, which are the accelerometer, the
left and right proximity sensors, and the optical displace-
ment sensor modules. These modules read and hold sensor
values in bounded circular FIFO queues.

Key and Gesture Recognition Layer. The controller
Unit is responsible for turning on and off a particular type of
sensor. Since sampling the accelerometer is relatively inex-
pensive, only the accelerometer is continuously monitored.
If it detects a significant motion, it turns on the optical sensor
to check if the ring is lifted up or is on a surface, and triggers
either the key or the gesture detection module.

The Key-sStroke Recognizer kicks off when the user’s
hand movement is low to moderate and the ring is on a sur-
face. It takes into account all three types of sensors to deter-
mine the zone or the finger using the algorithm in Section 4.
The cesture Recognizer, on the other hand, starts when the
ring is lifted up and the user’s hand movement is relatively
higher. Using the algorithm described in Section 4.4, Typin-
gRing detects simple 3D gestures (e.g. pitch, roll, and yaw)
to enable short-cuts for commonly used keys.

Mapping and Communication Layer. The xey Event
Generator translates the detected zone, finger or the 3D ges-
ture into appropriate key events according to a predefined
mapping.

e A reported typing gesture by the Key-Stroke Recognizer
is mapped into a real key event corresponding to the fin-
ger in the currently selected zone.

e A reported change of zone by the key-Stroke Recognizer

is mapped to a ‘fake’ key event, such as an unused ALT
+ a specific key, and is sent to the computing device to
enable visual feedback to the user. Such a fake key event
is ignored by the OS of the computing device, but is use-
ful to the TypingRing system, as this is used to determine

which zone to highlight (Section 5.3 describes this in de-
tail).

e A reported 3D gesture by the Gesture Recognizer is
mapped to a commonly used key. For example, pitch is
mapped to space bar, double pitch to enter, yaw to delete,
and roll to shift.

4. KEY STROKE RECOGNITION

This section describes the typing finger recognition algo-
rithm for key strokes along with a simple gesture recognition
algorithm for shortcut keys.

4.1 The State Machine

As described earlier, typing with the ring involves two
phases — seeking for a zone followed by making a typing
gesture. To enable this, the ring maintains a state machine
which is shown in Figure 4. The transitions between states
happen at some specific events (shown in brackets) which
are determined by processing the sensor streams. Below we
describe the states, the events and transitions.

[drag> 8]

o Zone Changed

[finger = closed] and Send Update

_
-

[drag > 8] Seek !
[ring =down] and [drag < €] or
[motion = present] [ring = up]

Hold

Finger Detected
Send Update

[ring = up] or (type done]
[motion = idle]
[finger = lifting] Type -9

Figure 4: The state machine for key stroke detection.

ey-Stroke Recognizer I iv , i
Once the Key-Stroke R i is activated, the rin
stays in one of its three states: hold, seek, O type.

e Hold. This is both the start and the final state of the
state machine. This state is entered when the ring is on
a surface (ring = down) and motion is detected (motion
= present). From then on, this acts as the intermediate
state between the seeking and the typing phase. The ring
leaves this state when it is lifted up (ring = up) orisidle
(motion = idle).

o Seek. The seek state is entered when the user starts drag-
ging the ring on the surface (drag > &) while keeping his
fingers close to each other (finger = closed), i.e. the
user is not making any typing gestures. Since a user may
have to cross multiple zones until he reaches the desired
one, the seek state repeats itself. Every time there is a
change in zone, the information is sent to the key event
generator. The ring leaves this state when it is lifted
up (ring = up) or no significant movement is detected
(drag <).

e Type. The type state is entered when the user lifts up
one or both of his fingers (finger = 1ifting)indicating
an intention to type. This state runs the typing gesture
detection algorithm (Section 4.3) to determine a valid
typing gesture and the finger used, and then goes back
to the hold state. In case of a valid gesture, it sends the
detected finger to the key event generator.

4.2 Detecting Sensor Events

All the state transitions in the state machine depend on
the values of four types of event variables: ring, motion,
drag, and finger.

e Drag Events. The drag event relates to the dragging of
the ring on a surface. These events are triggered when-
ever the displacement of the ring over a period crosses
a certain threshold. A large drag results in a change of
zone whereas the ring leaves the seek state when there is
no significant drag. The value of a drag is calculated
from the optical displacement sensor’s readings. The
optical sensor periodically sends updates on X- and Y-
displacements of the ring as a vector, Ad = (Ax, Ay).
These values are too noisy and are hardware accelerated.
To compute a drag, Ad is first passed through a moving
average filter and then integrated continuously. Transi-
tion from one zone to another happens when the inte-
grated value exceeds an empirically obtained threshold
d4- Equations 1 and 2 show the filtering and drag com-
putation steps.

Ad=a Ady + (1 — a) Adg—1 €))

drag :‘ /Ad dt‘ 2)

e Finger Events. The finger events happen whenever the
user lifts up one of his fingers or presses down both of his
fingers. These events are determined by two identical
detectors, one for each finger. Each of these detectors
accumulate proximity values, {py} over a period of 7,
and compute the range. The range is compared to two
empirically obtained thresholds d,, and ¢, to detect finger
lifting and pressing events.

range = max St{pzf} -, Dnin St{pk} 3)

e Motion Events. The presence or absence of motion is
determined from the 3-axis accelerometer sensor read-
ings (az, ay,a.). The ring keeps track of running vari-

az + a2 +a?
over a period 7,, and based on a threshold, ¢,, it deter-
mines the presence or absence of motion.

ances of the magnitude of acceleration

e Ring Events. The ring events, i.e. whether or not the
bottom of the ring is touching the surface, are read di-
rectly from the optical sensor. The optical sensor has a
built-in lift detector, which is programmed to detect up
to 5 mm lifting.

4.3 Detecting the Typing Finger

A naive algorithm to detect the typing finger is to use
thresholds to detect finger events similar to Section 4.2 and
thereby identify the finger. However, we empirically found
that such an algorithm does not work in practical cases and
results in false positives (multiple detections of one or more
fingers), false negatives (no detection), and does not provide
any confidence on the inference. By employing conservative
thresholds false positives may be eliminated, but this induces
delays in typing gesture detection and frustrates the user as
unlike zone seeking there is no visual feedback on how much
additional effort is needed to exert to type in the key.

In order to enable a robust and accurate finger detection,
we leverage an observation that — each finger’s movement
has an effect on the accelerometer readings obtained from
the middle finger — either directly (for the middle finger) or
indirectly (for the other two). With this observation, we de-
sign an algorithm that takes both the proximity sensors and
the accelerometer into account. Hence, the problem of typ-
ing finger detection is stated as — given periodic proximity
and accelerometer sensor readings over an interval, what
is the probability of making a typing gesture with one of
the three fingers?. If the highest probability for a finger is
greater than a threshold, the finger is reported by the algo-
rithm.

Because the algorithm runs inside the ring, the solution
has to meet some additional requirements. The algorithm
needs to be simple enough for implementation inside the
ring’s microcontroller, and also has to be fast, accurate, and
robust. To achieve this, we use a N-state Hidden Markov
Model (HMM). This satisfies our goals as HMMs are known
to be robust classifiers for time series signals [25] and they
provide a confidence value of the solution (i.e. a probabil-
ity for each class), and a trained HMM is compact enough to
store inside the ring and is fast enough to obtain the probabil-
ities in real time. The steps of the algorithm are as follows:

e Quantization. The left and right proximity sensor val-
ues, pZL and pZR, and the accelerometer reading aj, are
first quantized using Q" and Q" functions, respectively.

Q' (pi) = argmin|q;, — p; “)
1<k<IL

O’ (as) = argmin| g} — v<||ai||>])
1<k<L

where, V (||a;||) is the variance in acceleration over a
second, L is the number of quantization levels, and q}c
and ¢; are the quantization levels for proximity and ac-
celeromoter sensors, respectively. To limit the number
of possible states in the HMM, we use L = 3 level quan-
tization, and the levels correspond to the quartiles of the
empirical data.

e Encoding. At every sampling interval, the quantized

values from the 3 sensor streams produce a 3-tuple, (pt, pI', av;),

1 < plpf o < L. Considering all possible combi-

nations and 3-level quantization, there can be at most
L3 = 27 different tuples. Each of these tuples is con-
sidered as an observed event (called an emmision) in the
HMM, resulting in a set of possible emissions, {Y;},
1 < ¢ < 27, at each state of HMM.

¢ HMM Classification. Assuming we have a precom-
puted HMM corresponding to sensor data obtained by
typing with a specific finger, this step computes the like-
lihood of a given sequence of emissions, y = (y1, ..., y7)
being generated by the model. The length of the se-
quence 7" depends on the sampling frequency f; and the
duration of a typing event . In TypingRing, we use a
sliding window of W = 1 second (with 50% overlap)
to capture a typing event. This bounds the value of 7" to
[W/fs]. Using Viterbi [14] algorithm, we compute the
maximum likelihood of y given the precomputed HMM
—having a state space .5, initial probabilites of each state
mi, 1 < lei < |S|, and transition probabilities u; ; of
transitioning from state ¢ to j — as follows:

v(1,4) = p(y1]i). m; 6)
U(tvi) :p(ytli)‘glea?(us,i'v(t - 178)) @)

where, v(t,1) is the probability that the most probable

state sequence that could emit y ends in state ¢. Now, to

obtain the maximum likelihood of our HMM to generate

y, we apply the following:

vy = max v(T,1))
1<i<|S|
This step is performed once for each of the 3 HMMs corre-
sponding to typing with 3 fingers and the model that has the
maximum vy, is classified as the most likely finger. The
complexity of this algorithm is O (T * |S|?).

In order to train the HMMs, we use our empirical data to
estimate the parameters of these HMMs offline. At first, all
labeled training examples — containing the proximity and ac-
celerometer sensor readings for typing with one of the three
fingers — are quantized and encoded to form a time series
of emissions. We truncate each instance of typing data to 1
second by removing the leading and trailing no-motion val-
ues. This makes the length of each encoded training example
exactly 1/ fs elements long, which is used in classification.
Using the encoded training examples for each finger, we use
the standard Baum-Welch [25, 29] algorithm to find the un-
known parameters of the HMM. These models are stored
inside the ring and the ring only runs the classification step
in real-time.

4.4 Detecting Gesture Shortcuts

Gesture recognition from motion data is a well-studied
problem and there are many efficient and highly accurate
algorithms that detect a wide variety of gestures from ac-
celerometer readings obtained from mobile and wearable de-
vices. We have adopted one of the simplest of them in Typ-
ingRing that uses an offline trained Naive Bayesian classi-

fier to detect the gestures from 3-axis accelerometer readings
from the middle finger. TypingRing recognizes three simple
3D gestures - pitch, roll, and yaw, and maps them to six com-
monly used non-alphabetic keys on a keyboard. In general,
the mapping could be anything, but in our implementation,
we have done it as shown in the Table 1. To support more
than three keys, we consider repetitions of the same gesture
within a small period of time (2 seconds) as two different
keys.

Gesture Repetition Key

Pitch 1 Space Bar
2 Enter
Roll 1 Shift
2 Caps Lock
Yaw 1 Delete (letter)
2 Delete (word)

Table 1: Gesture shortcuts in TypingRing to enable
faster entry of common keys.

We use an offline-trained Gaussian Naive Bayesian clas-
sifier that uses the variance in each of the three axes of ac-
celeration as a feature. The steps that run inside the ring for
real-time gesture classifications are the following-

o Windowing. The ring periodically samples the accelerom-
eter and accumulates 1 second worth of 3-axis accelerom-
eter readings, a' = (ay,, a,, a’). This window of 1 sec-

ond is shifted by 0.5 second to form the window for the
next iteration.

e Feature Computation. We compute a 3-element con-
tinuous valued feature vector, f = (fi1, f2, f3), where
the elements are the variances of {a; }, {aj }, and {a’},
respectively.

o C(lassification. To determine the most likely class, vy p
for the feature vector f among the classes, C' = {pitch,
roll, yaw}, we use Equation 9:

UNB = argmax _expq — | —=¢
ME cgec 11;[1 V2nol p{ < 207%) }
9

where, 1% and o are the mean and standard deviation of
the feature f; for the class ¢ € C' which are empirically
determined in our system.

We use this model as our empirical observation reveals
that, for each gesture, the features —i.e. the variance in accel-
eration along each axis — closely follow normal distributions.
The algorithm is also highly efficient as these variances are
calculated as part of motion detection, hence no extra com-
putation is required for feature extraction. Given a fixed set
of classes the classification step is also essentially a constant
operation and runs very fast.

S. SYSTEM IMPLEMENTATION

This section describes the implementation details of our
TypingRing prototype. We describe the hardware, commu-
nication between the ring and the computing device, and the
software that enables visual feedback.

5.1 Hardware Implementation

The hardware is comprised of a total of seven sensor
boards surrounding all four sides of a circular titanium ring.
Figure 5 shows the top view, side view, and the bottom view
of the TypingRing prototype.

(b) Side View

(c) Bottom View

Figure 5: The top view, side view, and bottom view of the
TypingRing.

The top of the ring consists of a stack of four TinyDuino [11]

boards. TinyDuino is an open source platform that features
the full capability of the popular Arduino platform but minia-
turizes the board to make its size smaller than a quarter. Each
board has dimensions of 20 mm x 20 mm, and the stack of
four boards has a height < 15 mm. Of the four boards, the
bottom one contains an Atmel ATmega328P MCU (8MHz,
32KB Flash, 2KB RAM, 1KB EEPROM) and is powered
by a coin cell battery. The board on top of it is a Bosch
BMA250 3-axis accelerometer shield, which connects to the
MCU using the I12C bus. The third board contains a low en-
ergy Bluegiga BLE112 [1] Bluetooth module, which is used
to send the key events over the air. The top is an extension
board of the MCU, containing ten digital and four analog IO
pins.

The two sides of the ring, facing the index finger and
the traditional ring finger, have two identical QRE 1113 IR
line sensor boards attached to them. Each of these boards
contains an IR emitting LED and an IR sensitive photo tran-
sistor and has an optimal sensing distance of 3 mm. At the
bottom of the ring, there is an ADNS 9800 optical motion
sensor board. This sensor is used by the ring to measure the
X and Y displacements when the user drags the ring on a

surface. The motion sensor communicates to the MCU over
the standard SPI interface.

5.2 Ring to Device Communication

The Bluegiga BLE112 Bluetooth low energy system on
chip (SoC) is used for communications. A Tinyduino micro-
controller communicates with the SoC using the BGLib API
to configure the hosted radio stack. After the user presses a
button, the SoC begins sending undirected, connectable ad-
vertisement beacon packets that contains the name “Typing
Ring”; additionally, a field indicates the ring should have
the appearance of a keyboard-based human interface device
(HID).

After scanning for devices, a remote device will see “Typ-
ing Ring” appear in a list of available devices and has the
option of connecting to it. During the connection process,
Android’s Bluetooth Low Energy stack scans the remote de-
vice’s global attribute table (GATT) and determines that the
device is implementing the HID over GATT profile [2]. Once
this discovery process completes, the remote Android device
can receive keystroke events generated by the ring.

In order to send a keystroke to the remote device, the
ring encodes key presses as HID reports that each consist of
8 bytes. The first byte indicates a modifier value (i.e. Shift,
Alt, Control), the second byte is reserved, and the remaining
6 bytes contain slots that indicate individual characters that
are in the key down state. Communications between the ring
and the remote device are achieved by sending a key down
event, where a single slot in an HID report is populated by
a character, and optionally the modifier field. After trans-
mitting the key down event, a null report where all bytes are
set to 0x00, indicate that the key(s) have been released from
their down state.

Two types of HID reports are sent to the remote device.
The first type indicates values that indicate the visual feed-
back a user receives should be updated. As the user moves
their hand around on the surface, the position on the vir-
tual keyboard changes in terms of the row/column position.
These movements are encoded as non-visible keyboard val-
ues that make use of the identifier slot: ALT+1-4 indicate
the column of the currently highlighted zone, and ALT+6-9
indicate the row of the currently highlighted zone. In total,
4 HID reports are used to indicate an update to the current
row/column position — 2 key down reports and 2 key release
reports.

Additionally, when a virtual key is pressed, the user uses
one of their middle 3 fingers on the ring worn hand. The in-
dex finger is encoded as ALT+Q, the middle finger as ALT+W
and the ring finger as ALT+R — this is used as additional
feedback to highlight a particular key in the currently high-
lighted zone. The second type of HID report that is sent
consists of the characters themselves. Each HID report con-
tains a single key value in byte position 3, while the modifier
is either set to 0x00 — no modification, or 0x02 — indicating
capital letters with the left shift modifier.

5.3 Enabling Visual Feedback

We have created an Android keyboard application to run
on the user’s device and provide visual feedback for the ring.
It functions similarly to a traditional Android software key-
board but has additional functionality to provide ring related
feedback. It can be used as a traditional on-screen software
keyboard when the ring is not connected. When the ring is in
use with the app the ring transmits three types of messages.
All the messages are sent as Bluetooth keyboard HID events.
The first type of message is used to indicate the current zone.
This is used to draw a box around the currently active zone
to the user has visual feedback on what keys finger typing
gestures will activate. The second message type is to indi-
cate a finger press event and which finger was pressed. This
is used to draw a circle around the pressed key to give vi-
sual feedback that a press was registered. These messages
are based as ALT-key modifiers of keys that have no mean-
ing in Android. The ALT-key messages are intercepted by
the keyboard app and used to update the visual feedback as
shown in Figure 6. The final message type is the actual key
character event generated by a press event. This is sent as
a standard key event so that the ring could be used for typ-
ing with any device that supports Bluetooth keyboards or if
the keyboard app was not running. Figure 6 shows the ap-
pearance of the visual feedback for a normal sized Android
keyboard when a key has been recently pressed. The circle
around the pressed key serves as visual feedback that the key
press event was detected.

Figure 6: Visual Feedback for Key Press

Our technique can be easily adapted for devices with
very limited screen area, such as wearables including watches
or eyeglass displays. In such devices displaying a full key-
board is undesirable since it can consume a significant por-
tion of the display, hiding valuable visual information from
the user. In these situations we can display only a very lim-
ited keyboard representation showing only the active region.
This is illustrated in Figure 7. As the user moves their hand
and changes the active zone the micro-keyboard is updated.
The figure shows a region in a keyboard with the typical
QWERTY layout, but other layouts including a simple al-
phabetically ordered keyboard can also be used if desired.

Figure 7: Minimal Keyboard for Small Screen Devices

6. EVALUATION

In this section, we describe three types of experiments.
First, we measure the execution time and energy consump-
tion of various components of TypingRing. Second, we per-
form an empirical study to select various parameters and to
evaluate the performance of the key-stroke detection algo-
rithm. Third, we perform a user study by letting 7 users type
with the ring and summarize the findings.

6.1 System Measurement

The TypingRing is a self-contained system where all the
computations — from sensing to key stroke detection and
then sending the key events to the computing device — hap-
pen inside the firmware of the ring. Understanding the exe-
cution time and the energy consumption of its component is
important to gauge its responsiveness and lifetime.

6.1.1 Execution Time

We measure the execution time of all major components
of the system software. Since the timer provided by the Ar-
duino platform is not precise, we use a more reliable ap-
proach to measure the execution time using a Saleae Logic16
high-sensitivity logic probe [8]. Prior to measuring the ex-
ecution time, we instrument the code by enclosing it inside
two instructions — one that writes a logic H1cH to an unused
digital pin of Arduino and another that writes a logic row to
high. The digital pin is monitored by the logic probe which
samples the pin at 100 MHz — giving us a 10 ns resolution
in time measurement. We cross-check measured execution
times using Arduino’s micros () API which has a us level
resolution and have found that the measurements are close
to each other when rounded to the nearest ms.

Sensing E—
Controller m
Events m
HIVIIV 1
Gesture |
BILE (Sl 1
BLE (ACK) me—

0 2 4 6 8
EXECUTION TIME (MS)

Figure 8: Execution time of different components in Typ-

ingRing.

Figure 8 shows the measured execution time of seven
major components of the TypingRing system software which

includes both computation and communication modules. Among

all the computational modules, the HMM classification task
takes the highest amount of execution time of 6.75 ms, while
combining all other tasks the total computation time still re-
mains < 10 ms. The BLE (Send) of 6.99 ms denotes the
duration between time of issuing a send command and the
instant when the key is actually transmitted by the Bluetooth
LE chip. The BLE (ACK) of 3.67 ms denotes the time it
takes to get an acknowledgment back from the computing
device, after a key has been sent. Overall, the system has
an end-to-end execution time of about 20 ms from making a
typing gesture to getting back an acknowledgment. Consid-
ering the 100 ms sensor sampling interval of TypingRing,
this indicates that the system is capable of detecting and
sending a key in real-time.

6.1.2 Energy Profile

We create an energy profile of our prototype and esti-
mate its lifetime. We identify the states of the system and
the components (e.g. processor, sensors, and BLE) that con-
sume power in each state. Using the estimated power of each
component and the duration of each state from our empirical
data, we obtain an energy profile that is shown in Figure9.

Arduino (3.6 mW) m 4.14
Accelerometer (0.45 mW) 0.52
Proximity (60 mW) messmm 24
Displacement (75 mW) m———— 73
BLE TX/RX (80 mW) 0.34
Total 102

0 20 40 60 80 100 120
ENERGY/KEY (MJ)

Figure 9: Energy profile of TypingRing.

We show the energy consumption per key in this figure.
The labels on the left show the hardware components and
their power consumption when they are active. From our
empirical data, we get the fraction of time each of these com-
ponents are active when typing a key and by multiplying the
power to an average key stroke length, we obtain the energy
values. For example, BLE TX/RX power in general is about
80 mW. However, when we consider idle time and data ex-
changes separately, the average power to maintain connec-
tion and send one key becomes less than 0.3 mW. Similarly,
not all sensors are active at all states - e.g. proximity sensors
are not used during seeking, optical sensors are not using
during typing, and accelerometer is used in hold and gesture
states. With this energy profile and a coin cell battery of
125m Ah, TypingRing’s life-time is about 13, 650 — 15, 500
key events. Assuming approximately 1s per key stroke, the
lifetime of TypingRing is about 3.8 — 4.3 hours.

6.2 Empirical Evaluation

In this section, we evaluate various aspects of the key

stroke recognition algorithm. First, we determine the pa-
rameters of the sensor event detectors that have been intro-
duced in section 4.2. Second, we evaluate the accuracy of
the HMM based finger detector and compare its performance
with two other baseline classifiers. Third, we evaluate the
accuracy of the gesture recognition algorithm.

6.2.1 Empirical Dataset

We have created an empirical dataset that we obtained
by letting 18 users (4 females, and 14 males) use the ring.
The users were shown randomly generated characters and
randomly selected text from a standard phrase set [23] on a
mobile device. They typed the text — at first, using the Typ-
ingRing, then on the touch-based soft keyboard of a mobile
device, and then by clicking on a Windows 7 on-screen key-
board. Each user typed in about 50 random characters, 5—15
phrases, and about 30 gestures. The users were given visual
feedback on the screen by showing the input text, the high-
lighted zone, and the typed text. In order to enable visual
feedback, we used a bootstrap classifier that is trained on a
singe user prior to the data collection. We programed the
ring to sample and store accelerometer, proximity, and op-
tical sensor readings at 100 ms interval. The collected data
were analyzed offline in a desktop computer.

6.2.2 Drag Events

The drag event depends on two parameters — the smooth-
ing factor () and the drag threshold (d4) which we deter-
mine in this experiment.

The smoothing factor is used to reduce the variance in
optical sensor reading prior to integration. However, the re-
quired amount of smoothing depends on the surface material
on which the sensor is being dragged. Hence, we conduct an
experiment to understand the relationship between the qual-
ity of a surface and the amount of variance in displacement
sensor reading on that surface. We leverage this relationship
in TypingRing to tune in the smoothing factor («) based on
the surface on which the user is typing.

The ADNS 9800 optical sensor comes with a register that
contains the amount of high-quality optical features it used
to compute the displacement. This gives us an indication of
the quality of the surface underneath the sensor. In our ex-
periment, we collect displacement sensor readings from var-
ious types of surfaces, such as — wooden table, wall, plastic,
white board, various types of fabrics, and paper. As read
by the ADNS 9800, these materials have a surface quality
value ranging from 15 to 75. On each surface, we drag the
ring horizontally, vertically, and diagonally for about 3 feet,
at a speed of approximately 4 inches per second, and then
measure the variance in displacement.

From Figure 10 we see that there is a linear relationship
between the surface quality and the variance in sensor read-
ings. We leverage this information to obtain the smoothing
factor « for a particular surface. We do the mapping by first
computing « for a white paper surface so that the zone tran-

sitions are smooth. For other surfaces, we scale the value
of « according to its relative surface quality with respect to
white paper. This technique makes the zone transition con-
sistent across different types of surface materials.

w B U
o O o

=
o

VARIANCE IN DRAG (%)
o S

15 25 35 45 55

SURFACE QUALITY
(AS READ FROM SENSOR)

65 75

Figure 10: Impact of surface quality on variance in data.

The drag threshold (d4) represents the total linear dis-
placement reached when a zone transition happens. A smaller
04 results in a quicker zone transition and vice versa. We
perform an experiment to quantify this inverse relationship
between the drag threshold and the zone transition rate. Fig-
ure 11 shows that as the total displacement (shown in units
of optical sensor reading) increases from 60 to 270, the ring
updates the zone at the rate of 200 to 50 times per minute.

In TypingRing, we adopt an adaptive thresholding scheme
for d4 depending on the state of typing. For an initial zone
transition, we use a larger threshold to make certain that the
user really wants to move and it is not just casual hand mo-
tion. For successive zone transitions, a smaller threshold is
used so that the zone transitions are smoother.

120
100
80
60
40
20
0

ZONE CHANGES / MINUTE

60 90 120 150 180 210

DRAG THRESHOLD

240 270

Figure 11: Adaptive thresholding for smooth zone tran-
sitions.

6.2.3 Finger Events

The finger lift and press events depend on the range of
proximity sensor values. Two thresholds 6, and €, are used
to detect these two types of events. Both of these thresholds
are chosen so that the false positives, false negatives, and the
overall error in event detection are minimal. As an illustra-
tion of this, we describe how d,, is determined.

Each typing gesture made by either the left or the right
finger in our dataset contains exactly one finger lift event and
one finger press event. For a given threshold, based on the

10

—4—FPR —@—FNR —@—ERR

100
80
60
40
20

PERCENT (%)

0 0.1 0.3 0.5 0.7

PROXIMITY THRESHOLD

0.9 1

Figure 12: Finger threshold to reduce false posi-
tive/negatives and overall error.

type of finger and the number of times the time vs. prox-
imity curve crosses the threshold, we determine whether it
contributes to false positives or false negatives, or if it is ac-
curate.

Figure 12 shows the false positive rates (FPR), false neg-
ative rates (FNR), and the error in detection (ERR) of the
finger lift events, as the threshold 6, is varied. A smaller d,,
increases the false positives and larger ones tend to increase
both the false negative rate and the overall error. We choose
0, = 0.25 to ensure negligible false positives as this is more
problematic than the other two.

6.2.4 Motion Events

The presence or absence of significant motion is detected
from the variance in acceleration. To obtain a threshold to
distinguish motion and non-motion, we divide our empirical
data into two subsets — one containing examples that are col-
lected when a user is typing or seeking a zone, and the other
one containing examples when the user’s hand is resting and
idle. Figure 13 shows the box plot of variance in acceleration
for these two cases. We see that the two classes are clearly
separable with a small threshold between 20 — 50.

1500
1200
900
600

VARIANCE IN
ACCELERATION

300

0

No Motion Motion

MOTION DETECTION

Figure 13: Variance in acceleration for motion detection.

6.2.5 Typing Finger Detection

The goal of this experiment is to evaluate the accuracy of
the HMM based classifier that determines which of the three
fingers a user used to make a typing gesture. The HMM is
trained and tested on the empirical dataset that contains a to-

tal of over 2500 letters (including phrases). Each letter in the
alphabet is typed in at least 75 times, and each of the three
fingers has been used at least 650 times. Letters in a phrase
are isolated by noting the duration in zones, and sensor val-
ues for each letter are stored separately. The training phase
of HMM is run for 1000 iterations and the initial values of
transition and emission matrices are randomized. Because
there is randomness involved, the experiment is repeated 10
times to increase the confidence. On each run, 70% of the
examples are used for training and the rest are used for test-
ing. The accuracy is measured by calculating the percentage
of correct predictions among all test cases. The accuracy of
the algorithm is compared with the accuracy of two other
baseline classifiers: a decision tree classifier and a Naive
Bayesian classifier. Both of these use the same set of fea-
tures — which are the quantized proximity and accelerometer
readings.

EHMM m Decision Tree Naive Bayes
100
& 90
>
2
< 80 I
-
3
< 70 I

I

Right

[e2)
o

Left Middle

Figure 14: Accuracy of typing finger detection.

Figure 14 compares the accuracy of the three algorithms
in detecting the typing finger. Of the three, HMM performs
the best with an average accuracy of 98.67%, which is 15%—
27% higher compared to the other two. The main reason for
HMM to perform better than the other two is that the HMM
considers the sequence of states and each state is formed by
taking all combinations of the three sensors into account.
The other two classifiers are fundamentally extreme in this
issue. The Naive Bayesian classifier assumes independence
of all three sensor types — which is not true in our problem.
The decision tree classifier, on the other hand, assumes that
all variables interact with each other — which is also not quite
true in TypingRing, e.g. the left and the right proximity sen-
sors are mostly independent of each other. The decision tree
also suffers from over fitting the training data, which results
in better training accuracy, but because of their poor gener-
alization ability, the cross validation accuracy remains lower
than the HMM.

One design decision in HMM is to select the number of
hidden states. For our problem, we empirically determine
this by varying the number of states from 2 to 5, and then
comparing the accuracy. Figure 15 compares the classifica-
tion error, false positive rate, and the false negative rate of
four HMMs. The number after the HMM denotes the num-
ber of states. We observe that a 3 state HMM is the best

11

M Error BFPR FNR

15
< I
£ 10 LI
=
z
w
&
£ 5
o =

0 —

HMM-2 HMM-3 HMM-4 HMM-5

Figure 15: Performance of different sizes of HMMs.

among the four having the lowest error rate of 1.3% with less
than the 1.5% false positive and false negative rates. Com-
pared to other models, this is 2.4—9.13 times lower. HMM-3
is better than HMM-2 as it is more expressive and capable of
encoding more information. HMM-4 and HMM-5 however
is not better than HMM-3, because of their tendency to over-
fit the training data and then failing to recognize unknown
examples from the test set.

100
< 95 98.67
>
2
= 9 92.33
8 89.33
g 85 88.67 .

80

0.5 0.67 0.75 1

SCALED SAMPLING FREQUENCY

Figure 16: Effect of sampling frequency.

While detecting the typing finger, we use a sampling pe-
riod of 100 ms for all three types of sensors. This results
in a very high accuracy in finger detection of over 98%. A
higher frequency does not have enough room for further im-
provement, but we wanted to determine the lowest sampling
frequency for which our algorithm still performs reasonably
well. To do this test, we down-sample the sensor streams to
lower the sampling frequency to 3, 2, and 1 of the origi-
nal frequency and then evaluate the accuracy of HMM using
these modified samples. Figure 16 plots the results. We see
that we could potentially double the sampling interval, but
in that case we have to sacrifice about 10% accuracy. Fur-
ther investigation reveals that most of the misclassifications
at the lower frequencies come from the right finger (the tra-
ditional ring finger when worn on the right hand) detection
errors. This is due to the fact that humans have limitations in
lifting up the traditional ring finger higher than other fingers.
This results in higher false positives and false negatives un-
less the right proximity sensor is sampled at a higher rate.
We leave this as a future work to enhance the efficiency of
the ring by suitably choosing the sampling intervals for each

sensor individually.

6.2.6 Gesture Detection

We perform an experiment to determine the accuracy of
the gesture recognizer. Our participants perform about 25 —
35 gestures of each type, i.e. pitch, roll, and yaw, which
results in a sample size of over 500 gesture instances. This
dataset is used to train the 3-class Gaussian Naive Bayesian
gesture recognizer in TypingRing. We use randomly chosen
70% examples for model training and use the rest for testing.
The experiment is repeated 10 times.

100
90

80

ACCURACY (%)

70

60

100 200 300 400 500 600

SAMPLING PERIOD (MS)

700 800

Figure 17: Accuracy of gesture recognizer.

Figure 17 shows the accuracy of gesture recognizer for
various sampling intervals of the accelerometer. During data
collection, we set the sampling interval to 100 ms. During
our analysis, we down-sample the accelerometer readings
to vary the sampling frequency and compute the accuracy
of the classifier for different sampling intervals in the range
100 — 800 ms.

We observe that up until 400 ms sampling interval, the
classifier’s accuracy remains 100%, and it starts to make
mistakes afterward. This indicates that when the ring is
lifted by the user to make a gesture we may use a larger
sampling interval to save some CPU cycles. However, this
does not help much in practice as gestures in TypingRing are
for shortcut keys with long intervals and last for a short du-
ration. In applications where short-cut keys may be used for
a longer duration, e.g. pressing only the ‘next’, ‘cancel’ or
‘okay’ button at an interactive kiosk, this principle could be
applied.

6.3 User Study

We performed a user study involving 7 users (2 females
and 5 males). The differences between this experiment and
our empirical data collection experiments were that during
the user study the system was trained on empirical data and
computations happened inside the ring. We gave each user
a paragraph printed on a piece of paper to type using the
TypingRing. Users were asked to type the entire paragraph
correctly — i.e. they were allowed to use the delete key in
case of an error. Each user participated in the study in two
sessions. In order to compare the performance of Typin-
gRing, we used two baseline solutions. The first one is an

12

on-screen soft keyboard of an Android smartphone, and the
second one is a Windows 7 on-screen keyboard where a user
types by clicking a mouse.

6.3.1 Typing Speed

Figure 18 plots typing speed in terms of number of typed
keys per second for each user, for each of the three key entry
methods. We order the users according to their typing speed
with TypingRing. We observe that, the typing speed on a
soft keyboard (shown as Soft KB) is the highest with an av-
erage speed of 1.63 keys/sec. This is about 2.4 times higher
than TypingRing. This is somewhat expected as our users are
highly experienced with touch-screen keyboards on mobile
devices. A major reason of this gap in speed is the amount
of hand movements in each technique. In case of a soft key-
board, fingers can be directly targeted to a key, but in case of
TypingRing, a user needs to seek a zone and then press the
key. TypingRing’s speed, however, is comparable to that of
a mouse based on-screen keyboard. For some users, e.g. U1,
U5, U6, and U7, TypingRing’s speed is as close as 0.92—1.0
times and on average the ratio is 0.88.

W Soft KB W Mouse Click Typing Ring

2
1.5
1
0.5
0
Ul u2 u3 U4 us U6 u7

Figure 18: Typing speed of our participants.

SPEED (KEY/SEC)

6.3.2 Learning Effect

As TypingRing is a new input technique, it requires some
practice to get used to it. This is evident when we compare a
user’s typing time in two separate sessions, which is shown
in Figure 19. For the first 4 users, we see a dramatic reduc-
tion in typing time by 4.5 — 8.6 times. Further investigation
reveals that, for the most part, the improvement comes from
the reduction in seek time. This is intuitive since zone seek-
ing is more time consuming than making typing gestures and
it also requires some practice to coordinate between ring
movement and visual feedback. From our experience with
end users we noticed that those who took time to practice
before telling us that they are ready for the session were the
ones who achieve the best results with TypingRing.

6.3.3 User Survey

At the end of the sessions, we ask our participants some
questionnaire to understand their satisfaction on various as-
pects of the system. We ask them how they feel about the
size, weight, portability, usability, and visual feedback. We

B Seek Time M Typing Time

TIME (SEC)
O N b OO

Il Il Il II II ™
Ul u2 U3 U4 us U6 u7
TWO SESSIONS PER USER

Figure 19: Learning effect in TypingRing.

also ask them if they notice any difference in their own per-
formance between two sessions, and their feeling about the
ring to becoming a replacement for other text input methods
on mobile computers. From their responses, some unani-
mous things are noticed, e.g. everybody seems to love the
visual feedback, felt that the system is easy to use, and with
practice they are doing better. For other issues, such as
about the size, weight, and portability, we have got mixed
responses. Several of them think that it is fine for typing,
but they might not want to wear it all day long. Some of
them complain about the size as it is larger than a typical
ring. Others who have used a smart ring before, are some-
what neutral on this issue. Most of them would like to see
this replace the on screen keyboard so that they get more
screen space which is a limitation of current mobile devices.
Overall they gave the ring a rating of 7.6. We note their feed-
back and plan to improve the usability of the ring in our next
iteration which we keep as a future work.

Size and Weight
Portability

Ease of Use
Visual Feedback
Learning Effect
Replacement
Overall

o

2 4 6 8 10
SCORES (1 = POOR, 10 = EXCELLENT)

Figure 20: Summary of user ratings.

7. RELATED WORK

Ring-based wearable devices. Several ring-based wear-
able devices have been proposed for variety of purposes. [16]
proposes an energy harvesting wearable ring platform for
gesture input on surfaces. Ring [7] is proposed for text recog-
nition, gesture detection, and payment. Fin [3] is another
gesture detecting ring that a user wears on his thumb and

then makes gestures by touching other fingers with his thumb.

NFC Ring [5] uses passive near field communication to pro-

vide easy locking/unlocking of a door or a smartphone. Thumb-

Track [10] is an ergonometric ring that performs the func-
tions of a mouse. Similarly, a ring proposed in [21] uses
a mouse optical sensor and an RGB camera to detect fin-
ger movements as well as surface types / textures. Smar-
tyRing [9] pairs with a smartphone and shows useful infor-
mation, such as notifications, triggers camera, tracks phone,
and shows time. In contrast, TypingRing is designed specific
for a text-input with all types of computer devices.

Wearable input devices. Other than the ring-form fac-
tor used in our work, there have been various wearable form-
factors used for new input methods. Keyglove [4] is a wear-
able glove that places 37 touch sensors on the palm of a
glove. Using the combination of these touch sensors, it is
possible to input text on to a computer. [15] uses sensors
worn on each finger as a PDA input device, while our system
uses only one finger. Virtual keyboard [6] is another wear-
able keyboard with high detection accuracy achieved by us-
ing artificial neural networks. It requires a user to wear the
device on both hands, while TypingRing requires only one
finger.

Gesture recognition with various sensors. Gesture recog-
nition as an input method has been extensively investigated.
uWave in [21] uses dynamic time warping (DTW) techniques
to classify movements of a hand in free space as 1 of 8 dif-
ferent gestures. Work in [26] is similar to uWave, but it uses
a HMM approach to classify 5 different gestures. Authors
in [12] use an accelerometer to detect characters and words
drawn in the air. Recently, authors in [27] used a RF signal
and NFC receiver to detect a gesture in air and translate it to
characters. While these gesture recognition work is exciting,
TypingRing is different in that it focuses on both key events
and hand gestures.

Keyboards for mobile devices and surfaces. Various
types of keyboards have been proposed for mobile devices
and surface environments. Recently the use of acoustic sen-
sors for keyboard has drawn significant attention. Ubik [28]
is a portable text-entry method that allows a user to make
keystrokes on conventional surfaces, e.g., wood desktop, by
extracting location-dependent multi-path fading features from

the audio signals. This however relies upon the dual-microphone

interface on a smartphone and not suitable for other devices
or surfaces. Stane [24] is a synthesized surface that makes
particular sounds and facilitates tactile interactions based on
the sounds. [17] uses a microphone on a stethoscope at-
tached to different surfaces to interpret gestures based on
sound alone. In [20], identifiers are carved into a surface
similar to a barcode. A microphone listens to a fingernail
move through the notches to determine the identifier. [22,
18] use microphones inside the surface to distinguish be-
tween different types of finger strikes (e.g., Knuckle vs. pad
of finger). [13, 19] combine acoustic sensors and sounds

from the body (e.g., bone movement) to detect movement/gesture

of finger or location of taps. TypingRing uses off-the-shelf
motion and proximity sensors without requiring any external
computing entity or synthesized surfaces.

8. CONCLUSION

This paper describes the design, implementation, and eval-
uation of a ring-based wearable platform, called TypingRing
that enables text inputs into computers of different forms
and mobile requirements. TypingRing employs embedded
sensors to detect the position of a hand and typing gestures
made by a finger, and infers the key using a HMM classifier.
Evaluations on empirical data and field tests show that the
ring detects and reports keys in real-time, achieves over 98%
accuracy, yields a typing speed of up to 0.81 keys per sec-
ond, the typing speed improves as a user uses it more. While
TypingRing is capable of inputting text into any computer
that supports a BLE keyboard, it’s typing speed is still not
comparable to that of a regular keyboard or on-screen soft
keyboards. However, in some scenarios where quick text in-
put is needed or other methods are inconvenient, TypingRing
presents a viable solution.

9. REFERENCES

[1] Bluegiga technologies. bluegiga.com/.

[2] Bluetooth Developer Portal.
developer.bluetooth.org/.

[3] Fin. www. finrobotics.com.

[4] Keyglove. keyglove.net.

[5] NFC Ring. nfcring. com.

[6] Project Virtual Keyboard.
www.senseboard.com/.

[7] Ring: Shortcut Everything.
www.kickstarter.com/projects/
1761670738/ring-shortcut-everything.

[8] Saleae Logic Probe. saleae.com/logiclé.

[9] Smarty Ring. smartyring.com.

[10] ThumbTrack. mindstreaminc.com.

[11] Tiny Duino. tiny-circuits.com/.

[12] S. Agrawal, I. Constandache, S. Gaonkar,

R. Roy Choudhury, K. Caves, and F. DeRuyter. Using

mobile phones to write in air. In Proceedings of the

9th international conference on Mobile systems,

applications, and services, pages 15-28. ACM, 2011.

T. Deyle, S. Palinko, E. S. Poole, and T. Starner.

Hambone: A bio-acoustic gesture interface. In

Wearable Computers, 2007 11th IEEE International

Symposium on, pages 3—10. IEEE, 2007.

[14] G. D. Forney Jr. The viterbi algorithm. Proceedings of
the IEEE, 61(3):268-278, 1973.

[15] M. Fukumoto and Y. Tonomura. "body coupled

fingerring": wireless wearable keyboard. In

Proceedings of the ACM SIGCHI Conference on

Human factors in computing systems, pages 147-154.

ACM, 1997.

J. Gummeson, B. Priyantha, and J. Liu. An energy

harvesting wearable ring platform for gestureinput on

surfaces. In MobiSys, pages 162-175. ACM, 2014.

C. Harrison and S. E. Hudson. Scratch input: creating

large, inexpensive, unpowered and mobile finger input
surfaces. In Proceedings of the 21st annual ACM

[13]

[16]

[17]

14

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

symposium on User interface software and
technology, pages 205-208. ACM, 2008.

C. Harrison, J. Schwarz, and S. E. Hudson. Tapsense:
enhancing finger interaction on touch surfaces. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology, pages
627-636. ACM, 2011.

C. Harrison, D. Tan, and D. Morris. Skinput:
appropriating the body as an input surface. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 453-462. ACM,
2010.

C. Harrison, R. Xiao, and S. Hudson. Acoustic
barcodes: passive, durable and inexpensive notched
identification tags. In Proceedings of the 25th annual
ACM symposium on User interface software and
technology, pages 563-568. ACM, 2012.

J. Liu, L. Zhong, J. Wickramasuriya, and

V. Vasudevan. uwave: Accelerometer-based
personalized gesture recognition and its applications.
Pervasive and Mobile Computing, 5(6):657-675,
2009.

P. Lopes, R. Jota, and J. A. Jorge. Augmenting touch
interaction through acoustic sensing. In Proceedings
of the ACM International Conference on Interactive
Tabletops and Surfaces, pages 53-56. ACM, 2011.

I. S. MacKenzie and R. W. Soukoreff. Phrase sets for
evaluating text entry techniques. In CHI’03 extended
abstracts on Human factors in computing systems,
pages 754-755. ACM, 2003.

R. Murray-Smith, J. Williamson, S. Hughes, and

T. Quaade. Stane: synthesized surfaces for tactile
input. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages
1299-1302. ACM, 2008.

S. M. Ross. Introduction to probability models.
Academic press, 2014.

T. Schloémer, B. Poppinga, N. Henze, and S. Boll.
Gesture recognition with a wii controller. In
Proceedings of the 2nd international conference on
Tangible and embedded interaction, pages 11-14.
ACM, 2008.

J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: virtual
touch screen in the air using rf signals. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages
235-246. ACM, 2014.

J. Wang, K. Zhao, X. Zhang, and C. Peng. Ubiquitous
keyboard for small mobile devices: harnessing
multipath fading for fine-grained keystroke
localization. In Proceedings of the 12th annual
international conference on Mobile systems,
applications, and services, pages 14-27. ACM, 2014.
L. R. Welch. Hidden markov models and the
baum-welch algorithm. IEEE Information Theory
Society Newsletter, 53(4):10-13, 2003.

