Preliminaries

COMP 455 - 002, Spring 2019
Strings

- **String**: A *finite* sequence of symbols

- Let w denote a string
 - $|w| = \text{the length of string } w$
 - If $w = abcd$, then $|w| = 4$

- Let ϵ denote the empty string
 - $|\epsilon| = 0$
Strings

Given a string w:

- **Prefix**: The first 0 up to $|w|$ characters in w
 - If $w = abc$, then w's prefixes are ϵ, a, ab, and abc

“Proper prefixes”
Strings

- **Concatenation**: If w and x are strings, then wx is a string.
 - Example: If $w = abc$ and $x = def$, then $wx = abcdef$
 - $\epsilon w = w \epsilon = w$
Alphabets

- **Alphabet**: A *finite* set of symbols
Languages

- **Language**: A set of strings over some alphabet
 - Example: L is the language of strings containing an equal number of 0s and 1s
 - L is defined for the alphabet $\{0, 1\}$
 - The strings $\varepsilon, 01, \text{ and } 0110, \text{ etc. are in } L$
 - 1, 0, 11, and 101, etc. are not in L
More Language Examples

- ∅ is the language consisting of no strings
- \{ε\} is the language consisting only of ε
- \{ε, 0, 1, 010\} (a finite language)
- \{ε, 0, 00, 000, 0000, …\} (an infinite language)
- All files denoting legal C programs
- All legal English sentences
 - This is really hard to formally define. Example: Is “My car ate my shoe.” a valid sentence?
“*” Notation

- If Σ is an alphabet, then Σ^* is the set of all strings over Σ.
 - Example: If $\Sigma = \{0\}$, then $\Sigma^* = \{\varepsilon, 0, 00, 000, \ldots\}$
 - If $\Sigma = \{0, 1\}$, then $\Sigma^* = \{\varepsilon, 0, 1, 10, 11, 100, \ldots\}$
The Big Picture

- In this class we will study *classes* of languages

...But what does that have to do with *computing*?
Language Classes We Cover

Useful for parsing.
- Pushdown automata
- Context-free grammars
- Chapters 5-7

Useful for pattern matching.
- Finite automata
- Regular expressions
- Chapters 2-4

Recursive Languages

Recursively Enumerable Languages

Turing machines.
- “Computable functions”
- Chapter 8

Turing machines that always halt.
- “Algorithms”
- “Decision problems”
- Chapter 9

Regular Languages

Context-free Languages

- Chapters 2-4

- Chapters 5-7

- Chapters 8-9
Imagine a program takes a file as an input and outputs *success* or *fail* depending on the file’s contents.

The file’s contents can be considered a *string*.

- All 8-bit bytes can be considered an *alphabet*.

The set of strings (files) for which the program outputs *success* can be considered a *language*.

Turing machine: A computer program that takes a string and outputs *success* or *fail* (for now...)

The terms *language, function, and problem* often blur together in this context.
Undecidability and Intractability

- **Undecidable problems**: Not solvable by a Turing machine that always halts
 - Also known as *non-recursive* problems (using the terminology from before)
 - It is *impossible* for *any* algorithm to solve such a problem!
Undecidability and Intractability

- **Intractable problems**: Problems that can’t be solved efficiently.
 - These are formally called “NP-hard” problems
 - We will discuss some of these when we discuss recursive languages.
 - This course only touches on this topic.
Formal Proofs

- Read Sections 1.2, 1.3, and 1.4 in the textbook for more information, I assume familiarity with basic formal logic.
Quantifiers

- **∀:** “For all”
 - Example: \((\forall x : x \geq 1 :: P(x))\)
 - “For all values of \(x\) where \(x \geq 1\), \(P(x)\) is true.”

- **∃:** “There exists”
 - Example: \((\exists x :: P(x))\)
 - “There exists some value of \(x\) where \(P(x)\) is true.”
Formal Proof Basics

- **Implication:** $A \Rightarrow B$
 - “A implies B.”
 - Equivalent to $\neg A \lor B$.
- **Contrapositive:** The *contrapositive* of $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$.
 - $(A \Rightarrow B) = (\neg B \Rightarrow \neg A)$.
 - Sometimes it’s easier to prove an assertion by proving its contrapositive.
Formal Proof Basics

Contradiction

- To prove assertion A by contradiction, prove $\neg A \Rightarrow false$.

Counterexample

- You only need a single counterexample to disprove an assertion.
- Example: Disprove $(\forall x : x \geq 0 :: x^2 = 2x)$ by counterexample.
Inductive Proofs Over Integers

- We want to prove assertion $S(n)$ is true for all integer values of n where $n \geq 0$.
- Two steps for an inductive proof:
 - **Basis**: Prove $S(0)$ is true
 - **Induction**: Assuming $S(n - 1)$ is true, prove $S(n)$.

You can start with values other than 0 if necessary.

The “inductive hypothesis”
Example Proof by Induction

Example: Prove $\sum_{i=0}^{n} a^i = \frac{1-a^{n+1}}{1-a}$ by induction on n.

Basis: (Start with $n = 0$)

$$\sum_{i=0}^{0} a^i = a^0 = 1 = \frac{1 - a^{0+1}}{1 - a}$$

✓
Example Proof by Induction (cont.)

Inductive step: Assume $\sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a}$ is true. (This is the original statement for values up to $n - 1$)

Proof:

$$\sum_{i=0}^{n} a^i = \sum_{i=0}^{n-1} a^i + a^n$$

$$= \frac{1-a^n}{1-a} + a^n$$

$$= \frac{1-a^n + (1-a)a^n}{1-a}$$

$$= \frac{1-a^{n+1}}{1-a}$$

Our assumption in the inductive step lets us make this substitution.
Other Notes on Induction

- You may sometimes need to assume that the assertion holds for multiple prior values in the inductive step.
- You may sometimes need to prove multiple base cases.
Other Types of Induction

- **Structural Induction**: A fancy name for induction over the size of some structure.
 - Example: Prove a complete binary tree of height h has 2^h leaf nodes.

- **Mutual Induction**: A fancy name for needing to prove that multiple assertions continue to hold.
 - This includes proving invariants about state machines (we will do this a lot).
Sets

- **Notation:** \(\{ x \mid P(x) \} \)
 - “The set of all values \(x \) such that \(P(x) \) is true.”

- \(A = \{ x \mid x \text{ is even} \} \)
 - \(A \) is the set of all even numbers

Small sets can also be explicitly written:

- \(A = \{ 1, 2, 3, 4 \} \)
 - \(A \) is the set containing the numbers 1, 2, 3 and 4.
More Set Notation

If A and B are sets:

- $A \subseteq B \equiv \text{“} A \text{ is a subset of } B \text{.”}$
- $A = B \equiv A \subseteq B \text{ and } B \subseteq A$
- $A \subset B \equiv A \subseteq B \text{ and } A \neq B \text{ (strict subset)}$
- $A \cup B \equiv \{ x \mid x \in A \text{ or } x \in B \}$
- $A \cap B \equiv \{ x \mid x \in A \text{ and } x \in B \}$
- $A - B \equiv \{ x \mid x \in A \text{ and } x \notin B \}$
- $A \times B \equiv \{(a, b) \mid a \in A \text{ and } b \in B\}$
Cardinality

Sets A and B have the same *cardinality* if a one-to-one mapping of A onto B is possible.

This can be counterintuitive for infinite sets.

- For example, the set of all even integers has the same cardinality as the set of all integers.
 - Use the mapping $f(i) = 2i$.
- Sets are *countably infinite* if they have the same cardinality as the set of all integers.
Real Numbers Are Uncountable

The set of real numbers is *uncountably infinite*. We’ll prove this by contradiction:

- Assume a mapping $f(i) = x_i$ exists.
 - i is the i^{th} integer
 - x_i is a real number

- Define a real number, y, such that the i^{th} digit after the decimal in y is not equal to the i^{th} digit after the decimal of x_i.
Real Numbers Are Uncountable

The set of real numbers is *uncountably infinite*. We’ll prove this by contradiction:

- Assume a mapping $f(i) = x_i$ exists.
 - i is the i^{th} integer
 - x_i is a real number
- Define a real number, y, such that the i^{th} digit after the decimal in y is not equal to the i^{th} digit after the decimal of x_i.
- This construction makes it impossible for $f(i)$ to equal y for any i, contradicting the assumption.
Real Numbers Are Uncountable

- This is a diagonalization argument.
- Imagine putting real numbers in a table:

<table>
<thead>
<tr>
<th>i</th>
<th>x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3467...</td>
</tr>
<tr>
<td>1</td>
<td>0.1289...</td>
</tr>
<tr>
<td>2</td>
<td>0.9963...</td>
</tr>
<tr>
<td>3</td>
<td>0.0000...</td>
</tr>
<tr>
<td>4</td>
<td>0.1122...</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

$y = 0.4371...$

- We will use this kind of argument to show that noncomputable functions exist.