
Preliminaries
COMP 455 – 002, Spring 2019

Jim Anderson (modified by Nathan Otterness) 1



Strings

 String: A finite sequence of symbols

This is important!

Letters, digits, $, etc.

 Let 𝑤 denote a string

❖|𝑤| = the length of string 𝑤

❑If 𝑤 = abcd, then 𝑤 = 4

 Let ε denote the empty string

❖ 𝜀 = 0

Jim Anderson (modified by Nathan Otterness) 2



Strings

Given a string 𝑤:

 Prefix: The first 0 up to |𝑤| characters in 𝑤

❖If 𝑤 = abc, then 𝑤’s prefixes are ε, a, ab, and abc

3

Jim Anderson (modified by Nathan Otterness)

“Proper prefixes”



Strings

 Concatenation: If 𝑤 and 𝑥 are strings, then 𝑤𝑥 is a 
string.

❖Example: If 𝑤 = abc and 𝑥 = def,
then 𝑤𝑥 = abcdef

❖𝜀𝑤 = 𝑤𝜀 = 𝑤

Jim Anderson (modified by Nathan Otterness) 4



Alphabets

 Alphabet: A finite set of symbols

Jim Anderson (modified by Nathan Otterness) 5



Languages

 Language: A set of strings over some alphabet

❖Example: 𝐿 is the language of strings containing an 
equal number of 0s and 1s

❑L is defined for the alphabet {0, 1}

❑The strings 𝜀, 01, and 0110, etc. are in L

❑1, 0, 11, and 101, etc. are not in L

Jim Anderson (modified by Nathan Otterness) 6



More Language Examples

 ∅ is the language consisting of no strings

 {𝜀} is the language consisting only of 𝜀

 {𝜀, 0, 1, 010} (a finite language)

 {𝜀, 0, 00, 000, 0000, …} (an infinite language)

 All files denoting legal C programs

 All legal English sentences

❖This is really hard to formally define. Example:
Is “My car ate my shoe.” a valid sentence?

Jim Anderson (modified by Nathan Otterness) 7



“*” Notation

 If Σ is an alphabet, then Σ∗ is the set of all strings 
over Σ.

❖Example: If Σ = {0}, then Σ∗ = {𝜀, 0, 00, 000, …}

❖If Σ = 0, 1 , then Σ∗ = 𝜀, 0, 1, 10, 11, 100,…

Jim Anderson (modified by Nathan Otterness) 8



The Big Picture

 In this class we will study classes of languages

...But what does that have to do with computing?

Jim Anderson (modified by Nathan Otterness) 9



Recursively Enumerable Languages

Language Classes We Cover

Jim Anderson (modified by Nathan Otterness) 10

Recursive Languages

Context-free Languages

Regular Languages
Useful for pattern 
matching.
• Finite automata
• Regular expressions
• Chapters 2-4

Useful for parsing.
• Pushdown automata
• Context-free 

grammars
• Chapters 5-7

Turing machines that 
always halt.
• “Algorithms”
• “Decision problems”
• Chapter 9

Turing machines.
• “Computable 

functions”
• Chapter 8



Languages and Computing
(a preview)

 Imagine a program takes a file as an input and outputs 
success or fail depending on the file’s contents.

 The file’s contents can be considered a string.
❖ All 8-bit bytes can be considered an alphabet.

 The set of strings (files) for which the program outputs 
success can be considered a language.

 Turing machine: A computer program that takes a 
string and outputs success or fail (for now…)

 The terms language, function, and problem often blur 
together in this context.

Jim Anderson (modified by Nathan Otterness) 11



Undecidability and Intractability

 Undecidable problems: Not solvable by a Turing 
machine that always halts

❖Also known as non-recursive problems (using the 
terminology from before)

❖It is impossible for any algorithm to solve such a 
problem!

Jim Anderson (modified by Nathan Otterness) 12



Undecidability and Intractability

 Intractable problems: Problems that can’t be 
solved efficiently.

❖These are formally called “NP-hard” problems

❖We will discuss some of these when we discuss 
recursive languages.

❖This course only touches on this topic.

Jim Anderson (modified by Nathan Otterness) 13



Formal Proofs

 Read Sections 1.2, 1.3 , and 1.4 in the textbook for 
more information, I assume familiarity with basic 
formal logic.

Jim Anderson (modified by Nathan Otterness) 14



Quantifiers

 ∀: “For all”

❖Example: ∀𝑥 ∶ 𝑥 ≥ 1 ∷ 𝑃 𝑥

❑“For all values of 𝑥 where 𝑥 ≥ 1, 𝑃(𝑥) is true.”

 ∃: “There exists”

❖Example: ∃𝑥 ∷ 𝑃 𝑥

❑“There exists some value of x where 𝑃(𝑥) is true.”

Jim Anderson (modified by Nathan Otterness) 15



Formal Proof Basics

 Implication: 𝐴 ⇒ 𝐵

❖“𝐴 implies 𝐵.”

❖Equivalent to ¬𝐴 ∨ 𝐵.

 Contrapositive: The contrapositive of 𝐴 ⇒ 𝐵 is 
¬𝐵 ⇒ ¬𝐴.

❖ 𝐴 ⇒ 𝐵 = ¬𝐵 ⇒ ¬𝐴 .

❖Sometimes it’s easier to prove an assertion by 
proving its contrapositive.

Jim Anderson (modified by Nathan Otterness) 16



Formal Proof Basics

 Contradiction

❖To prove assertion 𝐴 by contradiction, prove 
¬𝐴 ⇒ false.

 Counterexample

❖You only need a single counterexample to 
disprove an assertion.

❖Example: Disprove ∀𝑥 ∶ 𝑥 ≥ 0 ∷ 𝑥2 = 2𝑥 by 
counterexample.

Jim Anderson (modified by Nathan Otterness) 17



Inductive Proofs Over Integers

 We want to prove assertion 𝑆 𝑛 is true for all 
integer values of 𝑛 where 𝑛 ≥ 0.

 Two steps for an inductive proof:

❖Basis: Prove 𝑆 0 is true

❖Induction: Assuming 𝑆 𝑛 − 1 is true, prove 𝑆 𝑛 .

Jim Anderson (modified by Nathan Otterness) 18

The “inductive hypothesis”

You can start with values 
other than 0 if necessary.



Example Proof by Induction

Example: Prove σ𝑖=0
𝑛 𝑎𝑖 =

1 −𝑎𝑛+1

1 −𝑎
by induction on 𝑛.

Basis: (Start with 𝑛 = 0)



𝑖=0

0

𝑎𝑖 = 𝑎0 = 1 =
1 − 𝑎0+1

1 − 𝑎

Jim Anderson (modified by Nathan Otterness) 19



Example Proof by Induction (cont.)

Inductive step: Assume σ𝑖=0
𝑛−1 𝑎𝑖 =

1 −𝑎𝑛

1 −𝑎
is true.

(This is the original statement for values up to 𝑛 − 1)

Proof:

Jim Anderson (modified by Nathan Otterness) 20



𝑖=0

𝑛

𝑎𝑖 = 

𝑖=0

𝑛−1

𝑎𝑖 + 𝑎𝑛

=
1 − 𝑎𝑛

1 − 𝑎
+ 𝑎𝑛

Our assumption in the inductive 
step lets us make this substitution.

=
1 − 𝑎𝑛 + 1 − 𝑎 𝑎𝑛

1 − 𝑎

=
1 − 𝑎𝑛+1

1 − 𝑎



Other Notes on Induction

 You may sometimes need to assume that the assertion 
holds for multiple prior values in the inductive step.

 You may sometimes need to prove multiple base cases.

Jim Anderson (modified by Nathan Otterness) 21



Other Types of Induction

 Structural Induction: A fancy name for induction 
over the size of some structure.

❖Example: Prove a complete binary tree of height ℎ
has 2ℎ leaf nodes.

 Mutual Induction: A fancy name for needing to 
prove that multiple assertions continue to hold.

❖This includes proving invariants about state 
machines (we will do this a lot).

Jim Anderson (modified by Nathan Otterness) 22



Sets

 Notation: {𝑥 | 𝑃(𝑥)}

❖“The set of all values 𝑥 such that 𝑃 𝑥 is true.”

 𝐴 = 𝑥 𝑥 is even}

❖ 𝐴 is the set of all even numbers

Small sets can also be explicitly written:

 𝐴 = {1, 2, 3, 4}

❖ 𝐴 is the set containing the numbers 1, 2, 3 and 4.

Jim Anderson (modified by Nathan Otterness) 23



More Set Notation

If 𝐴 and 𝐵 are sets:

 𝐴 ⊆ 𝐵 ≡ “𝐴 is a subset of 𝐵.”

 𝐴 = 𝐵 ≡ 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴

 𝐴 ⊂ 𝐵 ≡ 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵 (strict subset)

 𝐴 ∪ 𝐵 ≡ 𝑥 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}

 𝐴 ∩ 𝐵 ≡ 𝑥 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}

 𝐴 − 𝐵 ≡ 𝑥 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵}

 𝐴 × 𝐵 ≡ 𝑎, 𝑏 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}

Jim Anderson (modified by Nathan Otterness) 24



Cardinality

 Sets 𝐴 and 𝐵 have the same cardinality if a one-to-
one mapping of 𝐴 onto 𝐵 is possible.

 This can be counterintuitive for infinite sets.

❖For example, the set of all even integers has the 
same cardinality as the set of all integers.

❑Use the mapping 𝑓 𝑖 = 2𝑖.

 Sets are countably infinite if they have the same 
cardinality as the set of all integers.

Jim Anderson (modified by Nathan Otterness) 25



Real Numbers Are Uncountable

The set of real numbers is uncountably infinite. We’ll 
prove this by contradiction:

 Assume a mapping 𝑓 𝑖 = 𝑥𝑖 exists.

❖𝑖 is the 𝑖th integer

❖𝑥𝑖 is a real number

 Define a real number, 𝑦, such that the 𝑖th digit after 
the decimal in 𝑦 is not equal to the 𝑖th digit after the 
decimal of 𝑥𝑖.

Jim Anderson (modified by Nathan Otterness) 26



Real Numbers Are Uncountable

The set of real numbers is uncountably infinite. We’ll 
prove this by contradiction:

 Assume a mapping 𝑓 𝑖 = 𝑥𝑖 exists.

❖𝑖 is the 𝑖th integer

❖𝑥𝑖 is a real number

 Define a real number, 𝑦, such that the 𝑖th digit after 
the decimal in 𝑦 is not equal to the 𝑖th digit after the 
decimal of 𝑥𝑖.

 This construction makes it impossible for 𝑓(𝑖) to 
equal 𝑦 for any 𝑖, contradicting the assumption.

Jim Anderson (modified by Nathan Otterness) 27



Real Numbers Are Uncountable

 This is a diagonalization argument.

 Imagine putting real numbers in a table:

Jim Anderson (modified by Nathan Otterness) 28

0  .3467…
1  .1289…
2  .9963…
3  .0000…
4  .1122…


𝑦 = .4371…

𝑖 𝑥𝑖

Add 1 to the digits along the 
“diagonal” to construct 𝑦’s digits.

 We will use this kind of argument to show that 
noncomputable functions exist.


